Modelling Mean Annual Sediment Yield Using a Distributed Approach. Van Rompaey, A. J. J., Verstraeten, G., Van Oost, K., Govers, G., & Poesen, J. 26(11):1221–1236.
Modelling Mean Annual Sediment Yield Using a Distributed Approach [link]Paper  doi  abstract   bibtex   
In this paper a spatially distributed model for the calculation of sediment delivery to river channels is presented (SEDEM: SEdiment DElivery Model). The model consists of two components: (1) the calculation of a spatial pattern of mean annual soil erosion rates in the catchment using a RUSLE (Revised Soil Erosion Equation) approach; and (2) the routing of the eroded sediment to the river channel network taking into account the transport capacity of each spatial unit. If the amount of routed sediment exceeds the local transport capacity, sediment deposition occurs. An existing dataset on sediment yield for 24 catchments in central Belgium was used to calibrate the transport capacity parameters of the model. A validation of the model results shows that the sediment yield for small and medium sized catchments (10-5000 ha) can be predicted with an average accuracy of 41 per cent. The predicted sediment yield values with SEDEM are significantly more accurate than the predictions using a lumped regression model. Moreover a spatially distributed approach allows simulation of the effect of different land use scenarios and soil conservation techniques.
@article{vanrompaeyModellingMeanAnnual2001,
  title = {Modelling Mean Annual Sediment Yield Using a Distributed Approach},
  author = {Van Rompaey, Anton J. J. and Verstraeten, Gert and Van Oost, Kristof and Govers, Gerard and Poesen, Jean},
  date = {2001-10},
  journaltitle = {Earth Surface Processes and Landforms},
  volume = {26},
  pages = {1221--1236},
  issn = {0197-9337},
  doi = {10.1002/esp.275},
  url = {https://doi.org/10.1002/esp.275},
  abstract = {In this paper a spatially distributed model for the calculation of sediment delivery to river channels is presented (SEDEM: SEdiment DElivery Model). The model consists of two components: (1) the calculation of a spatial pattern of mean annual soil erosion rates in the catchment using a RUSLE (Revised Soil Erosion Equation) approach; and (2) the routing of the eroded sediment to the river channel network taking into account the transport capacity of each spatial unit. If the amount of routed sediment exceeds the local transport capacity, sediment deposition occurs. An existing dataset on sediment yield for 24 catchments in central Belgium was used to calibrate the transport capacity parameters of the model. A validation of the model results shows that the sediment yield for small and medium sized catchments (10-5000 ha) can be predicted with an average accuracy of 41 per cent. The predicted sediment yield values with SEDEM are significantly more accurate than the predictions using a lumped regression model. Moreover a spatially distributed approach allows simulation of the effect of different land use scenarios and soil conservation techniques.},
  keywords = {*imported-from-citeulike-INRMM,~INRMM-MiD:c-13481297,environmental-modelling,modelling,sediment-yield,spatial-analysis},
  number = {11}
}

Downloads: 0