A bHLH-Based Feedback Loop Restricts Vascular Cell Proliferation in Plants. Vera-Sirera, F., De Rybel, B., Urbez, C., Kouklas, E., Pesquera, M., Alvarez-Mahecha, J. C., Minguet, E. G., Tuominen, H., Carbonell, J., Borst, J. W., Weijers, D., & Blazquez, M. A. Dev Cell, 35(4):432–43, November, 2015.
A bHLH-Based Feedback Loop Restricts Vascular Cell Proliferation in Plants [link]Paper  doi  abstract   bibtex   
Control of tissue dimensions in multicellular organisms requires the precise quantitative regulation of mitotic activity. In plants, where cells are immobile, tissue size is achieved through control of both cell division orientation and mitotic rate. The bHLH transcription factor heterodimer formed by target of monopteros5 (TMO5) and lonesome highway (LHW) is a central regulator of vascular width-increasing divisions. An important unanswered question is how its activity is limited to specify vascular tissue dimensions. Here we identify a regulatory network that restricts TMO5/LHW activity. We show that thermospermine synthase ACAULIS5 antagonizes TMO5/LHW activity by promoting the accumulation of SAC51-LIKE (SACL) bHLH transcription factors. SACL proteins heterodimerize with LHW-therefore likely competing with TMO5/LHW interactions-prevent activation of TMO5/LHW target genes, and suppress the over-proliferation caused by excess TMO5/LHW activity. These findings connect two thus-far disparate pathways and provide a mechanistic understanding of the quantitative control of vascular tissue growth.
@article{vera-sirera_bhlh-based_2015,
	title = {A {bHLH}-{Based} {Feedback} {Loop} {Restricts} {Vascular} {Cell} {Proliferation} in {Plants}},
	volume = {35},
	issn = {1878-1551 (Electronic) 1534-5807 (Linking)},
	url = {https://www.ncbi.nlm.nih.gov/pubmed/26609958},
	doi = {10.1016/j.devcel.2015.10.022},
	abstract = {Control of tissue dimensions in multicellular organisms requires the precise quantitative regulation of mitotic activity. In plants, where cells are immobile, tissue size is achieved through control of both cell division orientation and mitotic rate. The bHLH transcription factor heterodimer formed by target of monopteros5 (TMO5) and lonesome highway (LHW) is a central regulator of vascular width-increasing divisions. An important unanswered question is how its activity is limited to specify vascular tissue dimensions. Here we identify a regulatory network that restricts TMO5/LHW activity. We show that thermospermine synthase ACAULIS5 antagonizes TMO5/LHW activity by promoting the accumulation of SAC51-LIKE (SACL) bHLH transcription factors. SACL proteins heterodimerize with LHW-therefore likely competing with TMO5/LHW interactions-prevent activation of TMO5/LHW target genes, and suppress the over-proliferation caused by excess TMO5/LHW activity. These findings connect two thus-far disparate pathways and provide a mechanistic understanding of the quantitative control of vascular tissue growth.},
	language = {en},
	number = {4},
	urldate = {2021-06-07},
	journal = {Dev Cell},
	author = {Vera-Sirera, F. and De Rybel, B. and Urbez, C. and Kouklas, E. and Pesquera, M. and Alvarez-Mahecha, J. C. and Minguet, E. G. and Tuominen, H. and Carbonell, J. and Borst, J. W. and Weijers, D. and Blazquez, M. A.},
	month = nov,
	year = {2015},
	keywords = {*Gene Expression Regulation, Plant, Arabidopsis Proteins/antagonists \& inhibitors/genetics/*metabolism, Arabidopsis/genetics/*growth \& development/metabolism, Basic Helix-Loop-Helix Transcription Factors/antagonists \&, Gene Expression Regulation, Developmental, Plant Roots/*cytology/metabolism, Plants, Genetically Modified/genetics/growth \& development/metabolism, RNA, Messenger/genetics, Real-Time Polymerase Chain Reaction, Reverse Transcriptase Polymerase Chain Reaction, Trans-Activators/antagonists \& inhibitors/genetics/metabolism, Xylem/*cytology/metabolism, inhibitors/genetics/*metabolism},
	pages = {432--43},
}

Downloads: 0