Norway spruce deploys tissue-specific responses during acclimation to cold. Vergara, A., Haas, J. C., Aro, T., Stachula, P., Street, N. R., & Hurry, V. Plant, Cell & Environment, February, 2022.
Norway spruce deploys tissue-specific responses during acclimation to cold [link]Paper  doi  abstract   bibtex   
Climate change in the conifer-dominated boreal forest is expected to lead to warmer but more dynamic winter air temperatures, reducing the depth and duration of snow cover, which in turn results in colder winter soils. To gain insight into the mechanisms that have enabled conifers to dominate when exposed to extremes of long exposure to freezing temperatures, we performed genome-wide RNA-Seq analysis from needles and roots of non-dormant two-year Norway spruce (Picea abies (L.) H. Karst), and contrasted these response to herbaceous model Arabidopsis We show that, relative to Arabidopsis leaves, the main transcriptional response of Norway spruce (Picea abies (L.) H. Karst) needles exposed to cold was delayed, and this delay was associated with slower development of freezing tolerance. However, despite this difference in timing, our results indicate that Norway spruce principally utilizes early response transcription factors (TFs) belonging to the same gene families as used by Arabidopsis, indicating broad evolutionary conservation of cold response networks. However, needles and root of Norway spruce showed contrasting results, in keeping with their different metabolic and developmental states. Regulatory network analysis identified conserved TFs, including a root-specific bHLH101 homolog, and other members of the same TF family with a pervasive role in cold regulation, such as homologs of ICE1 and AKS3, and also homologs of the NAC (anac47 and anac28) and AP2/ERF superfamilies (DREB2 and ERF3), providing new functional insights into cold stress response strategies in Norway spruce. This article is protected by copyright. All rights reserved.
@article{vergara_norway_2022,
	title = {Norway spruce deploys tissue-specific responses during acclimation to cold},
	volume = {45},
	issn = {1365-3040},
	url = {https://onlinelibrary.wiley.com/doi/abs/10.1111/pce.14241},
	doi = {10.1111/pce.14241},
	abstract = {Climate change in the conifer-dominated boreal forest is expected to lead to warmer but more dynamic winter air temperatures, reducing the depth and duration of snow cover, which in turn results in colder winter soils. To gain insight into the mechanisms that have enabled conifers to dominate when exposed to extremes of long exposure to freezing temperatures, we performed genome-wide RNA-Seq analysis from needles and roots of non-dormant two-year Norway spruce (Picea abies (L.) H. Karst), and contrasted these response to herbaceous model Arabidopsis We show that, relative to Arabidopsis leaves, the main transcriptional response of Norway spruce (Picea abies (L.) H. Karst) needles exposed to cold was delayed, and this delay was associated with slower development of freezing tolerance. However, despite this difference in timing, our results indicate that Norway spruce principally utilizes early response transcription factors (TFs) belonging to the same gene families as used by Arabidopsis, indicating broad evolutionary conservation of cold response networks. However, needles and root of Norway spruce showed contrasting results, in keeping with their different metabolic and developmental states. Regulatory network analysis identified conserved TFs, including a root-specific bHLH101 homolog, and other members of the same TF family with a pervasive role in cold regulation, such as homologs of ICE1 and AKS3, and also homologs of the NAC (anac47 and anac28) and AP2/ERF superfamilies (DREB2 and ERF3), providing new functional insights into cold stress response strategies in Norway spruce. This article is protected by copyright. All rights reserved.},
	language = {en},
	number = {2},
	urldate = {2021-12-09},
	journal = {Plant, Cell \& Environment},
	author = {Vergara, Alexander and Haas, Julia Christa and Aro, Tuuli and Stachula, Paulina and Street, Nathaniel Robert and Hurry, Vaughan},
	month = feb,
	year = {2022},
	keywords = {Norway spruce, cold, transcriptome},
}

Downloads: 0