Sharp thresholds for high-dimensional and noisy sparsity recovery using l1-constrained quadratic programming (Lasso). Wainwright, M. J. IEEE Trans. Information Theory, 55(5):2183-2202, 2009.
Sharp thresholds for high-dimensional and noisy sparsity recovery using l1-constrained quadratic programming (Lasso). [link]Link  Sharp thresholds for high-dimensional and noisy sparsity recovery using l1-constrained quadratic programming (Lasso). [link]Paper  bibtex   
@article{journals/tit/Wainwright09,
  added-at = {2018-11-02T00:00:00.000+0100},
  author = {Wainwright, Martin J.},
  biburl = {https://www.bibsonomy.org/bibtex/2863310b8c841c7c09f9214c3c7b066d1/dblp},
  ee = {https://doi.org/10.1109/TIT.2009.2016018},
  interhash = {41c2cda6e0df3dcc84dbbc16c24ff0e7},
  intrahash = {863310b8c841c7c09f9214c3c7b066d1},
  journal = {IEEE Trans. Information Theory},
  keywords = {dblp},
  number = 5,
  pages = {2183-2202},
  timestamp = {2018-11-03T12:05:14.000+0100},
  title = {Sharp thresholds for high-dimensional and noisy sparsity recovery using l1-constrained quadratic programming (Lasso).},
  url = {http://dblp.uni-trier.de/db/journals/tit/tit55.html#Wainwright09},
  volume = 55,
  year = 2009
}

Downloads: 0