Nitrogen trace gas emissions from a riparian ecosystem in southern Appalachia. Walker, J. T., Geron, C. D., Vose, J., & Swank, W. Chemosphere, 2002.
Nitrogen trace gas emissions from a riparian ecosystem in southern Appalachia. [pdf]Paper  abstract   bibtex   
In this paper, we present two years of seasonal nitric oxide (NO), ammonia (NH3), and nitrous oxide (N2O) trace gas fluxes measured in a recovering riparian zone with cattle excluded and adjacent riparian zone grazed by cattle. In the recovering riparian zone, average NO, NH3, and N2O fluxes were 5.8, 2.0, and 76.7 ng N m(-2) s(-1) (1.83, 0.63, and 24.19 kg N ha(-1) y(-1)), respectively. Fluxes in the grazed riparian zone were larger, especially for NO and NH3, measuring 9.1, 4.3, and 77.6 ngN m(-2) s(-1) (2.87, 1.35, and 24.50 kg N ha(-1) y(-1)) for NO, NH3, and N2O, respectively. On average, N2O accounted for greater than 85% of total trace gas flux in both the recovering and grazed riparian zones, though N2O fluxes were highly variable temporally. In the recovering riparian zone, variability in seasonal average fluxes was explained by variability in soil nitrogen (N) concentrations. Nitric oxide flux was positively correlated with soil ammonium (NH4+) concentration, while N2O flux was positively correlated with soil nitrate (NO3-) concentration. Ammonia flux was positively correlated with the ratio of NH4+ to NO3-. In the grazed riparian zone, average NH3 and N2O fluxes were not correlated with soil temperature, N concentrations, or moisture. This was likely due to high variability in soil microsite conditions related to cattle effects such as compaction and N input. Nitric oxide flux in the grazed riparian zone was positively correlated with soil temperature and NO3- concentration. Restoration appeared to significantly affect NO flux, which increased approximate to600% during the first year following restoration and decreased during the second year to levels encountered at the onset of restoration. By comparing the ratio of total trace gas flux to soil N concentration, we show that the restored riparian zone is likely more efficient than the grazed riparian zone at diverting upper-soil N from the receiving stream to the atmosphere. This is likely due to the recovery of microbiological communities following changes in soil physical characteristics.

Downloads: 0