The inhibition of ammonium uptake in excised birch (Betula pendula) roots by batatasin-III. Wallstedt, A., Sommarin, M., Nilsson, M., Munson, A. D., & Margolis, H. A. Physiologia Plantarum, 113(3):368–376, 2001. _eprint: https://onlinelibrary.wiley.com/doi/pdf/10.1034/j.1399-3054.2001.1130310.x
The inhibition of ammonium uptake in excised birch (Betula pendula) roots by batatasin-III [link]Paper  doi  abstract   bibtex   
In northern Sweden, plants growing in association with the clonal dwarf shrub Empetrum hermaphroditum usually exhibit limited growth and are N-depleted. Previous studies suggest that this negative effect by E. hermaphroditum may be explained, at least in part, by the release of phenolic compounds, particularly the dihydrostilbene, batatasin-III from foliage to soil. In the present work, we investigated whether batatasin-III has the potential to interfere with NH4+ uptake in birch (Betula pendula) roots. Excised birch roots were exposed to batatasin-III during brief periods in 15NH4+ solutions, and then analyzed for labeled N. Batatasin-III inhibited N-NH4+ uptake by 28, 89 and 95% compared with the control, when roots were treated with 0.1, 1.0 and 2.8 mM of batatasin-III, respectively. The effect of 1.0-mM batatasin-III was greater at pH 4.2 than at pH 6.8. In addition, the inhibition of N-NH4+ uptake by batatasin-III was not reversed after rinsing the roots in water and transferring them to a batatasin-III free solution. Furthermore, birch seedlings immersed in a 1.0-mM batatasin-III solution for 2 h, and then replanted in pots with soil, had decreased growth, such that 10 weeks after treatment, the dry mass of both shoots and roots was reduced by 74 and 73%, respectively, compared with control seedlings. This suggests that a brief exposure to batatasin-III may have a long-term inhibitory effect on whole plant growth. Using plasma membrane vesicles isolated from easily extractable spinach (Spinacia oleracea) leaves, it was found that batatasin-III strongly inhibited proton pumping in isolated plasma membrane vesicles, while it only slightly inhibited ATP hydrolytic activity. The uncoupling of proton pumping from ATP hydrolytic activity suggests that batatasin-III disturbs membrane integrity. This hypothesis was further supported by a greater efflux of ions from birch roots immersed in a batatasin-III solution than from roots in a control solution.
@article{wallstedt_inhibition_2001,
	title = {The inhibition of ammonium uptake in excised birch ({Betula} pendula) roots by batatasin-{III}},
	volume = {113},
	issn = {1399-3054},
	url = {https://onlinelibrary.wiley.com/doi/abs/10.1034/j.1399-3054.2001.1130310.x},
	doi = {10.1034/j.1399-3054.2001.1130310.x},
	abstract = {In northern Sweden, plants growing in association with the clonal dwarf shrub Empetrum hermaphroditum usually exhibit limited growth and are N-depleted. Previous studies suggest that this negative effect by E. hermaphroditum may be explained, at least in part, by the release of phenolic compounds, particularly the dihydrostilbene, batatasin-III from foliage to soil. In the present work, we investigated whether batatasin-III has the potential to interfere with NH4+ uptake in birch (Betula pendula) roots. Excised birch roots were exposed to batatasin-III during brief periods in 15NH4+ solutions, and then analyzed for labeled N. Batatasin-III inhibited N-NH4+ uptake by 28, 89 and 95\% compared with the control, when roots were treated with 0.1, 1.0 and 2.8 mM of batatasin-III, respectively. The effect of 1.0-mM batatasin-III was greater at pH 4.2 than at pH 6.8. In addition, the inhibition of N-NH4+ uptake by batatasin-III was not reversed after rinsing the roots in water and transferring them to a batatasin-III free solution. Furthermore, birch seedlings immersed in a 1.0-mM batatasin-III solution for 2 h, and then replanted in pots with soil, had decreased growth, such that 10 weeks after treatment, the dry mass of both shoots and roots was reduced by 74 and 73\%, respectively, compared with control seedlings. This suggests that a brief exposure to batatasin-III may have a long-term inhibitory effect on whole plant growth. Using plasma membrane vesicles isolated from easily extractable spinach (Spinacia oleracea) leaves, it was found that batatasin-III strongly inhibited proton pumping in isolated plasma membrane vesicles, while it only slightly inhibited ATP hydrolytic activity. The uncoupling of proton pumping from ATP hydrolytic activity suggests that batatasin-III disturbs membrane integrity. This hypothesis was further supported by a greater efflux of ions from birch roots immersed in a batatasin-III solution than from roots in a control solution.},
	language = {en},
	number = {3},
	urldate = {2021-11-02},
	journal = {Physiologia Plantarum},
	author = {Wallstedt, Anna and Sommarin, Marianne and Nilsson, Marie-Charlotte and Munson, Alison D. and Margolis, Hank A.},
	year = {2001},
	note = {\_eprint: https://onlinelibrary.wiley.com/doi/pdf/10.1034/j.1399-3054.2001.1130310.x},
	pages = {368--376},
}

Downloads: 0