Facile synthesis of highly aligned multiwalled carbon nanotubes from polymer precursors. Wang, H H, Han, C Y, Xiao, Z., Lin, X., Trasobares, S, & Cook, R E Journal of Nanomaterials, Materials Science Division, Argonne National Laboratory, Argonne, IL 60439, United States, 2009.
Facile synthesis of highly aligned multiwalled carbon nanotubes from polymer precursors [link]Paper  abstract   bibtex   
We report a facile one-step approach which involves no flammable gas, no catalyst, and no in situ polymerization for the preparation of well-aligned carbon nanotube array. A polymer precursor is placed on top of an anodized aluminum oxide (AAO) membrane containing regular nanopore arrays, and slow heating under Ar flow allows the molten polymer to wet the template through adhesive force. The polymer spread into the nanopores of the template to form polymer nanotubes. Upon carbonization the resulting multi-walled carbon nanotubes duplicate the nanopores morphology precisely. The process is demonstrated for 230, 50, and 20nm pore membranes. The synthesized carbon nanotubes are characterized with scanning/transmission electron microscopies, Raman spectroscopy, and resistive measurements. Convenient functionalization of the nanotubes with this method is demonstrated through premixing CoPt nanoparticles in the polymer precursors. Copyright © 2009 Catherine Y. Han et al.
@article{Wang2009,
abstract = {We report a facile one-step approach which involves no flammable gas, no catalyst, and no in situ polymerization for the preparation of well-aligned carbon nanotube array. A polymer precursor is placed on top of an anodized aluminum oxide (AAO) membrane containing regular nanopore arrays, and slow heating under Ar flow allows the molten polymer to wet the template through adhesive force. The polymer spread into the nanopores of the template to form polymer nanotubes. Upon carbonization the resulting multi-walled carbon nanotubes duplicate the nanopores morphology precisely. The process is demonstrated for 230, 50, and 20nm pore membranes. The synthesized carbon nanotubes are characterized with scanning/transmission electron microscopies, Raman spectroscopy, and resistive measurements. Convenient functionalization of the nanotubes with this method is demonstrated through premixing CoPt nanoparticles in the polymer precursors. Copyright © 2009 Catherine Y. Han et al.},
address = {Materials Science Division, Argonne National Laboratory, Argonne, IL 60439, United States},
annote = {Cited By (since 1996): 2

        
Export Date: 15 January 2013

        
Source: Scopus

        
Art. No.: 562376

        
doi: 10.1155/2009/562376

        
Language of Original Document: English

        
Correspondence Address: Wang, H. H.; Materials Science Division, Argonne National Laboratory, Argonne, IL 60439, United States; email: hau.wang@anl.gov

        
References: Iijima, S., Helical microtubules of graphitic carbon (1991) Nature, 354 (6348), pp. 56-58; 
Dresselhaus, M.S., Dresselhaus, G., Eklund, P.C., (1996) Science of Fullerenes and Carbon Nanotubes, , San Diego, Calif, USA Academic Press; 
Kong, J., Franklin, N.R., Zhou, C., Chapline, M.G., Peng, S., Cho, K., Dai, H., Nanotube molecular wires as chemical sensors (2000) Science, 287 (5453), pp. 622-625. , DOI 10.1126/science.287.5453.622; 
Baughman, R.H., Cui, C., Zakhidov, A.A., Iqbal, Z., Barisci, J.N., Spinks, G.M., Wallace, G.G., Kertesz, M., Carbon nanotube actuators (1999) Science, 284 (5418), pp. 1340-1344. , DOI 10.1126/science.284.5418.1340; 
Choi, W.B., Park, W., Bae, E.J., Aligned carbon nanotubes for Nanoelectronics (2004) Nanotechnology, 15, pp. 512-516; 
Rinzler, A.G., Hafner, J.H., Nikolaev, P., Unraveling nanotubes: Field emission from an atomic wire (1995) Science, 269 (5230), pp. 1550-1553; 
Che, G., Lakshmi, B.B., Fisher, E.R., Martin, C.R., Carbon nanotubule membranes for electrochemical energy storage and production (1998) Nature, 393 (6683), pp. 346-349. , DOI 10.1038/30694; 
Wong, S.S., Harper, J.D., Lansbury Jr., P.T., Lieber, C.M., Carbon nanotube tips: High-resolution probes for imaging biological systems (1998) Journal of the American Chemical Society, 120 (3), pp. 603-604. , DOI 10.1021/ja9737735; 
Dai, H., Hafner, J.H., Rinzler, A.G., Colbert, D.T., Smalley, R.E., Nanotubes as nanoprobes in scanning probe microscopy (1996) Nature, 384 (6605), pp. 147-150. , DOI 10.1038/384147a0; 
Wong, S.S., Joselevich, E., Woolley, A.T., Cheung, C.L., Lieber, C.M., Covalently functionalized nanotubes as nanometresized probes in chemistry and biology (1998) Nature, 394 (6688), pp. 52-55. , DOI 10.1038/27873; 
Martel, R., Schmidt, T., Shea, H.R., Hertel, T., Avouris, P., Single- and multi-wall carbon nanotube field-effect transistors (1998) Applied Physics Letters, 73 (17), pp. 2447-2449. , DOI 10.1063/1.122477, PII S0003695198001430; 
Ahlskog, M., Tarkiainen, R., Roschier, L., Hakonen, P., Single-electron transistor made of two crossing multiwalled carbon nanotubes and its noise properties (2000) Applied Physics Letters, 77 (24), pp. 4037-4039; 
Dai, L., Mau, A.W.H., Controlled synthesis and modification of carbon nanotubes and C60: Carbon nanostructures for advanced polymeric composite materials (2001) Advanced Materials, 13 (1213), pp. 899-913; 
Wang, X.K., Lin, X.W., Dravid, V.P., Ketterson, J.B., Chang, R.P.H., Carbon nanotubes synthesized in a hydrogen arc discharge (1995) Applied Physics Letters, 66 (18), pp. 2430-2432; 
Zhang, Y., Iijima, S., Formation of single-wall carbon nanotubes by laser ablation of fullerenes at low temperature (1999) Applied Physics Letters, 75 (20), pp. 3087-3089; 
Li, J., Papadopoulos, C., Xu, J.M., Moskovits, M., Highly-ordered carbon nanotube arrays for electronics applications (1999) Applied Physics Letters, 75 (3), pp. 367-369; 
Journet, C., Maser, W.K., Bernier, P., Loiseau, A., Lamy De La Chapelle, M., Lefrant, S., Deniard, P., Fischer, J.E., Large-scale production of single-walled carbon nanotubes by the electric-arc technique (1997) Nature, 388 (6644), pp. 756-758. , DOI 10.1038/41972; 
Thess, A., Lee, R., Nikolaev, P., Dai, H., Petit, P., Robert, J., Xu, C., Smalley, R.E., Crystalline ropes of metallic carbon nanotubes (1996) Science, 273 (5274), pp. 483-487; 
Ebbesen, T.W., Ajayan, P.M., Large-scale synthesis of carbon nanotubes (1992) Nature, 358 (6383), pp. 220-222; 
Cheng, H.M., Li, F., Su, G., Pan, H.Y., He, L.L., Sun, X., Dresselhaus, M.S., Large-scale and low-cost synthesis of single-walled carbon nanotubes by the catalytic pyrolysis of hydrocarbons (1998) Applied Physics Letters, 72 (25), pp. 3282-3284. , DOI 10.1063/1.121624, PII S0003695198011255; 
Hu, W., Yuan, L., Chen, Z., Gong, D., Saito, K., Fabrication and Characterization of Vertically Aligned Carbon Nanotubes on Silicon Substrates Using Porous Alumina Nanotemplates (2002) Journal of Nanoscience and Nanotechnology, 2 (2), pp. 203-207. , DOI 10.1166/jnn.2002.104; 
Yuan, L., Saito, K., Hu, W., Chen, Z., Ethylene flame synthesis of well-aligned multi-walled carbon nanotubes (2001) Chemical Physics Letters, 346 (1-2), pp. 23-28. , DOI 10.1016/S0009-2614(01)00959-9, PII S0009261401009599; 
Yuan, L., Saito, K., Pan, C., Williams, F.A., Gordon, A.S., Nanotubes from methane flames (2001) Chemical Physics Letters, 340 (3-4), pp. 237-241. , DOI 10.1016/S0009-2614(01)00435-3, PII S0009261401004353; 
Saito, K., Williams, F.A., Gordon, A.S., Structure of laminar coflow methane-air diffusion flames (1986) Journal of Heat Transfer, 108 (3), pp. 640-648; 
Suh, J.S., Lee, J.S., Highly ordered two-dimensional carbon nanotube arrays (1999) Applied Physics Letters, 75 (14), pp. 2047-2049; 
Kyotani, T., Tsai, L.-F., Tomita, A., Formation of ultrafine carbon tubes by using an anodic aluminum oxide film as a template (1995) Chemistry of Materials, 7 (8), pp. 1427-1428; 
Parthasarathy, R.V., Phani, K.L.N., Martin, C.R., Template synthesis of graphitic nanotubules (1998) Advanced Materials, 7 (11), pp. 896-897; 
Xu, T.T., Fisher, F.T., Brinson, L.C., Ruoff, R.S., Bone-shaped nanomaterials for nanocomposite applications (2003) Nano Letters, 3 (8), pp. 1135-1139. , DOI 10.1021/nl0343396; 
Suh, J.S., Lee, J.S., Kim, H., Linearly joined carbon nanotubes (2001) Synthetic Metals, 123 (3), pp. 381-383. , DOI 10.1016/S0379-6779(01)00316-2, PII S0379677901003162; 
Lee, J.S., Gu, G.H., Kim, H., Jeong, K.S., Bae, J., Suh, J.S., Growth of carbon nanotubes on anodic aluminum oxide templates: Fabrication of a tube-in-tube and linearly joined tube (2001) Chemistry of Materials, 13 (7), pp. 2387-2391; 
Li, J., Papadopoulos, C., Xu, J., Growing Y-junction carbon nanotubes (1999) Nature, 402 (6759), pp. 253-254; 
Yang, Y., Hu, Z., Wu, Q., Lu, Y.N., Wang, X.Z., Chen, Y., Template-confined growth and structural characterization of amorphous carbon nanotubes (2003) Chemical Physics Letters, 373 (5-6), pp. 580-585. , DOI 10.1016/S0009-2614(03)00651-1, PII S0009261403006511; 
Parthasarathy, R.V., Phani, K.L.N., Martin, C.R., Template synthesis of graphitic nanotubules (1995) Advanced Materials, 7 (11), pp. 896-897; 
Kyotani, T., Pradhan, B.K., Tomita, A., Synthesis of carbon nanotube composites in nanochannels of an anodic aluminum oxide film (1999) Bulletin of the Chemical Society of Japan, 72 (9), pp. 1957-1970. , DOI 10.1246/bcsj.72.1957; 
Kyotani, T., Tsai, L.-F., Tomita, A., Preparation of ultrafine carbon tubes in nanochannels of an anodic aluminum oxide film (1996) Chemistry of Materials, 8 (8), pp. 2109-2113; 
Steinhart, M., Wendorff, J.H., Greiner, A., Wehrspohn, R.B., Nielsch, K., Schilling, J., Choi, J., Gosele, U., Polymer nanotubes by wetting of ordered porous templates (2002) Science, 296 (5575), p. 1997. , DOI 10.1126/science.1071210; 
Xiao, Z.L., Han, C.Y., Welp, U., Wang, H.H., Kwok, W.K., Willing, G.A., Hiller, J.M., Crabtree, G.W., Fabrication of Alumina Nanotubes and Nanowires by Etching Porous Alumina Membranes (2002) Nano Letters, 2 (11), pp. 1293-1297. , DOI 10.1021/nl025758q; 
Masuda, H., Satoh, M., Fabrication of gold nanodot array using anodic porous alumina as an evaporation mask (1996) Japanese Journal of Applied Physics, Part 2, 35 (B), pp. 126-L129; 
Masuda, H., Hasegwa, F., Ono, S., Self-ordering of cell arrangement of anodic porous alumina formed in sulfuric acid solution (1997) Journal of the Electrochemical Society, 144 (5), pp. 127-L130; 
Sveningsson, M., Morjan, R.-E., Nerushev, O.A., Sato, Y., Backstrom, J., Campbell, E.E.B., Rohmund, F., Raman spectroscopy and field-emission properties of CVD-grown carbon-nanotube films (2001) Applied Physics A: Materials Science and Processing, 73 (4), pp. 409-418; 
Dresselhaus, M.S., Dresselhaus, G., Jorio, A., Souza Filho, A.G., Saito, R., Raman spectroscopy on isolated single wall carbon nanotubes (2002) Carbon, 40 (12), pp. 2043-2061. , DOI 10.1016/S0008-6223(02)00066-0, PII S0008622302000660; 
Han, C.Y., Willing, G.A., Xiao, Z., Wang, H.H., Control of the anodic aluminum oxide barrier layer opening process by wet chemical etching (2007) Langmuir, 23 (3), pp. 1564-1568. , DOI 10.1021/la060190c; 
Samia, A.C.S., Schlueter, J.A., Jiang, J.S., Bader, S.D., Qin, C.-J., Lin, X.-M., Effect of ligand-metal interactions on the growth of transition-metal and alloy nanoparticles (2006) Chemistry of Materials, 18 (22), pp. 5203-5212. , DOI 10.1021/cm0610579; 
Jang, J., Lee, K.J., Kim, Y., Fabrication of polyimide nanotubes and carbon nanotubes containing magnetic iron oxide in confinement (2005) Chemical Communications, (30), pp. 3847-3849. , DOI 10.1039/b503831f; 
Elam, J.W., Xiong, G., Han, C.Y., Atomic layer deposition for the conformal coating of nanoporous materials (2006) Journal of Nanomaterials, 2006, p. 5; 
Elam, J.W., Zinovev, A., Han, C.Y., Atomic layer deposition of palladium films on Al2O3 surfaces (2006) Thin Solid Films, 515 (4), pp. 1664-1673; 
Xiong, G., Elam, J.W., Feng, H., Han, C.Y., Wang, H.-H., Iton, L.E., Curtiss, L.A., Stair, P.C., Effect of atomic layer deposition coatings on the surface structure of anodic aluminum oxide membranes (2005) Journal of Physical Chemistry B, 109 (29), pp. 14059-14063. , DOI 10.1021/jp0503415; 
Pellin, M.J., Stair, P.C., Xiong, G., Mesoporous catalytic membranes: Synthetic control of pore size and wall composition (2005) Catalysis Letters, 102 (34), pp. 127-130; 
Zettl, A., Extreme oxygen sensitivity of electronic properties of carbon nanotubes (2000) Science, 287 (5459), pp. 1801-1804. , DOI 10.1126/science.287.5459.1801; 
Kong, J., Chapline, M.G., Dai, H., Functionalized carbon nanotubes for molecular hydrogen sensors (2001) Advanced Materials, 13 (18), pp. 1384-1386; 
Bazilevsky, A.V., Sun, K., Yarin, A.L., Megaridis, C.M., Selective intercalation of polymers in carbon nanotubes (2007) Langmuir, 23 (14), pp. 7451-7455; 
Bazilevsky, A.V., Sun, K., Yarin, A.L., Megaridis, C.M., Room-temperature, open-air, wet intercalation of liquids, surfactants, polymers and nanoparticles within nanotubes and microchannels (2008) Journal of Materials Chemistry, 18 (6), pp. 696-702. , DOI 10.1039/b714541c; 
Puglisi, C., Samperi, F., Carroccio, S., Montaudo, G., MALDI-TOF investigation of polymer degradation. Pyrolysis of poly(bisphenol A carbonate) (1999) Macromolecules, 32 (26), pp. 8821-8828. , DOI 10.1021/ma9912148; 
Peterson, J.D., Vyazovkin, S., Wight, C.A., Kinetics of the thermal and thermo-oxidative degradation of polystyrene, polyethylene and poly(propylene) (2001) Macromolecular Chemistry and Physics, 202 (6), pp. 775-784; 
Chopra, N.G., Benedict, L.X., Crespi, V.H., Cohen, M.L., Louie, S.G., Zettl, A., Fully collapsed carbon nanotubes (1995) Nature, 377 (6545), pp. 135-138; 
Qian, W., Wei, F., Liu, T., Wang, Z., Li, Y., What causes the carbon nanotubes collapse in a chemical vapor deposition process (2003) Journal of Chemical Physics, 118 (2), pp. 878-882},
author = {Wang, H H and Han, C Y and Xiao, Z.-L. and Lin, X.-M. and Trasobares, S and Cook, R E},
issn = {16874110 (ISSN)},
journal = {Journal of Nanomaterials},
title = {{Facile synthesis of highly aligned multiwalled carbon nanotubes from polymer precursors}},
url = {https://www.scopus.com/inward/record.url?eid=2-s2.0-67650914282&partnerID=40&md5=904da2e0b40c5dc20d89d0e17eefd3d4},
volume = {2009},
year = {2009}
}

Downloads: 0