Efficient and High-Quality Prehensile Rearrangement in Cluttered and Confined Spaces. Wang, R., Miao, Y., & Bekris, K. E
abstract   bibtex   
Prehensile object rearrangement in cluttered and confined spaces has broad applications but is also challenging. For instance, rearranging products in a grocery shelf means that the robot cannot directly access all objects and has limited free space. This is harder than tabletop rearrangement where objects are easily accessible with top-down grasps, which simplifies robot-object interactions. This work focuses on problems where such interactions are critical for completing tasks. It proposes a new efficient and complete solver under general constraints for monotone instances, which can be solved by moving each object at most once. The monotone solver reasons about robot-object constraints and uses them to effectively prune the search space. The new monotone solver is integrated with a global planner to solve non-monotone instances with high-quality solutions fast. Furthermore, this work contributes an effective pre-processing tool to significantly speed up online motion planning queries for rearrangement in confined spaces. Experiments further demonstrate that the proposed monotone solver, equipped with the pre-processing tool, results in 57.3% faster computation and 3 times higher success rate than state-of-the-art methods. Similarly, the resulting global planner is computationally more efficient and has a higher success rate, while producing highquality solutions for non-monotone instances (i.e., only 1.3 additional actions are needed on average). Videos of demonstrating solutions on a real robotic system and codes can be found at https://github.com/Rui1223/uniform object rearrangement.
@article{wang_efficient_nodate,
	title = {Efficient and {High}-{Quality} {Prehensile} {Rearrangement} in {Cluttered} and {Confined} {Spaces}},
	abstract = {Prehensile object rearrangement in cluttered and confined spaces has broad applications but is also challenging. For instance, rearranging products in a grocery shelf means that the robot cannot directly access all objects and has limited free space. This is harder than tabletop rearrangement where objects are easily accessible with top-down grasps, which simplifies robot-object interactions. This work focuses on problems where such interactions are critical for completing tasks. It proposes a new efficient and complete solver under general constraints for monotone instances, which can be solved by moving each object at most once. The monotone solver reasons about robot-object constraints and uses them to effectively prune the search space. The new monotone solver is integrated with a global planner to solve non-monotone instances with high-quality solutions fast. Furthermore, this work contributes an effective pre-processing tool to significantly speed up online motion planning queries for rearrangement in confined spaces. Experiments further demonstrate that the proposed monotone solver, equipped with the pre-processing tool, results in 57.3\% faster computation and 3 times higher success rate than state-of-the-art methods. Similarly, the resulting global planner is computationally more efficient and has a higher success rate, while producing highquality solutions for non-monotone instances (i.e., only 1.3 additional actions are needed on average). Videos of demonstrating solutions on a real robotic system and codes can be found at https://github.com/Rui1223/uniform object rearrangement.},
	language = {en},
	author = {Wang, Rui and Miao, Yinglong and Bekris, Kostas E},
	pages = {8},
}

Downloads: 0