A Paradigm Shift From an Experimental-Based to a Simulation-Based Framework Using Motion-Capture Driven MIMO Radar Data Synthesis. Waqar, S., Muaaz, M., Sigg, S., & Pätzold, M. IEEE Sensors Journal, 24(10):16614-16628, 2024. doi bibtex @ARTICLE{10500314,
author={Waqar, Sahil and Muaaz, Muhammad and Sigg, Stephan and Pätzold, Matthias},
journal={IEEE Sensors Journal},
title={A Paradigm Shift From an Experimental-Based to a Simulation-Based Framework Using Motion-Capture Driven MIMO Radar Data Synthesis},
year={2024},
volume={24},
number={10},
pages={16614-16628},
keywords={Radar;Human activity recognition;MIMO radar;Radar antennas;Sensors;MIMO;Trajectory;Motion capture;Virtual reality;Deep learning;Aspect angle;data augmentation;data synthesis;deep learning;distributed multiple-input multiple-output (MIMO) radar simulation;human activity recognition (HAR);micro-Doppler analysis;motion capture (MoCap);motion synthesis;multiclass classification;virtual reality},
doi={10.1109/JSEN.2024.3386221}}
Downloads: 0
{"_id":"Efmpkn8S5N8ndTzDf","bibbaseid":"waqar-muaaz-sigg-ptzold-aparadigmshiftfromanexperimentalbasedtoasimulationbasedframeworkusingmotioncapturedrivenmimoradardatasynthesis-2024","author_short":["Waqar, S.","Muaaz, M.","Sigg, S.","Pätzold, M."],"bibdata":{"bibtype":"article","type":"article","author":[{"propositions":[],"lastnames":["Waqar"],"firstnames":["Sahil"],"suffixes":[]},{"propositions":[],"lastnames":["Muaaz"],"firstnames":["Muhammad"],"suffixes":[]},{"propositions":[],"lastnames":["Sigg"],"firstnames":["Stephan"],"suffixes":[]},{"propositions":[],"lastnames":["Pätzold"],"firstnames":["Matthias"],"suffixes":[]}],"journal":"IEEE Sensors Journal","title":"A Paradigm Shift From an Experimental-Based to a Simulation-Based Framework Using Motion-Capture Driven MIMO Radar Data Synthesis","year":"2024","volume":"24","number":"10","pages":"16614-16628","keywords":"Radar;Human activity recognition;MIMO radar;Radar antennas;Sensors;MIMO;Trajectory;Motion capture;Virtual reality;Deep learning;Aspect angle;data augmentation;data synthesis;deep learning;distributed multiple-input multiple-output (MIMO) radar simulation;human activity recognition (HAR);micro-Doppler analysis;motion capture (MoCap);motion synthesis;multiclass classification;virtual reality","doi":"10.1109/JSEN.2024.3386221","bibtex":"@ARTICLE{10500314,\n author={Waqar, Sahil and Muaaz, Muhammad and Sigg, Stephan and Pätzold, Matthias},\n journal={IEEE Sensors Journal}, \n title={A Paradigm Shift From an Experimental-Based to a Simulation-Based Framework Using Motion-Capture Driven MIMO Radar Data Synthesis}, \n year={2024},\n volume={24},\n number={10},\n pages={16614-16628},\n keywords={Radar;Human activity recognition;MIMO radar;Radar antennas;Sensors;MIMO;Trajectory;Motion capture;Virtual reality;Deep learning;Aspect angle;data augmentation;data synthesis;deep learning;distributed multiple-input multiple-output (MIMO) radar simulation;human activity recognition (HAR);micro-Doppler analysis;motion capture (MoCap);motion synthesis;multiclass classification;virtual reality},\n doi={10.1109/JSEN.2024.3386221}}\n\n","author_short":["Waqar, S.","Muaaz, M.","Sigg, S.","Pätzold, M."],"key":"10500314","id":"10500314","bibbaseid":"waqar-muaaz-sigg-ptzold-aparadigmshiftfromanexperimentalbasedtoasimulationbasedframeworkusingmotioncapturedrivenmimoradardatasynthesis-2024","role":"author","urls":{},"keyword":["Radar;Human activity recognition;MIMO radar;Radar antennas;Sensors;MIMO;Trajectory;Motion capture;Virtual reality;Deep learning;Aspect angle;data augmentation;data synthesis;deep learning;distributed multiple-input multiple-output (MIMO) radar simulation;human activity recognition (HAR);micro-Doppler analysis;motion capture (MoCap);motion synthesis;multiclass classification;virtual reality"],"metadata":{"authorlinks":{}}},"bibtype":"article","biburl":"http://ambientintelligence.aalto.fi/bibtex/LiteraturAll","dataSources":["aPfcTvMp5jE2KuS7H","a6QYyvmdLfrsx7DiL"],"keywords":["radar;human activity recognition;mimo radar;radar antennas;sensors;mimo;trajectory;motion capture;virtual reality;deep learning;aspect angle;data augmentation;data synthesis;deep learning;distributed multiple-input multiple-output (mimo) radar simulation;human activity recognition (har);micro-doppler analysis;motion capture (mocap);motion synthesis;multiclass classification;virtual reality"],"search_terms":["paradigm","shift","experimental","based","simulation","based","framework","using","motion","capture","driven","mimo","radar","data","synthesis","waqar","muaaz","sigg","pätzold"],"title":"A Paradigm Shift From an Experimental-Based to a Simulation-Based Framework Using Motion-Capture Driven MIMO Radar Data Synthesis","year":2024}