Fine Structure and Finer Details. Williams, D. B. & Carter, C. B. In Williams, D. B. & Carter, C. B., editors, Transmission Electron Microscopy: A Textbook for Materials Science, pages 741–760. Springer US, Boston, MA, 2009.
Fine Structure and Finer Details [link]Paper  doi  abstract   bibtex   
In the previous chapter, we described elemental analysis using ionization edges, but there is much more than just elemental information in the ionization edges and this distinguishes EELS from XEDS. There are detailed intensity variations in the core-loss spectra called energy-loss near-edge structure (ELNES) and extended energy-loss fine structure (EXELFS). From this fine structure, which we can resolve because of the high-energy resolution inherent in EELS, we can obtain data on how the ionized atom is bonded, the coordination of that specific atom, and its density of states. As always, we can use any intensity changes to create filtered images which show the distribution of, e.g., regions of different bonding states. Furthermore, we can probe the distribution of other atoms around the ionized atom (i.e., determine the radial-distribution function (RDF) which is very useful for the study of amorphous materials) and we can study momentum-resolved EELS, observe the anisotropy of chemical bonds, combine EELS with tomography, inter alia.
@incollection{williams_fine_2009,
	address = {Boston, MA},
	title = {Fine {Structure} and {Finer} {Details}},
	isbn = {978-0-387-76501-3},
	url = {https://doi.org/10.1007/978-0-387-76501-3_40},
	abstract = {In the previous chapter, we described elemental analysis using ionization edges, but there is much more than just elemental information in the ionization edges and this distinguishes EELS from XEDS. There are detailed intensity variations in the core-loss spectra called energy-loss near-edge structure (ELNES) and extended energy-loss fine structure (EXELFS). From this fine structure, which we can resolve because of the high-energy resolution inherent in EELS, we can obtain data on how the ionized atom is bonded, the coordination of that specific atom, and its density of states. As always, we can use any intensity changes to create filtered images which show the distribution of, e.g., regions of different bonding states. Furthermore, we can probe the distribution of other atoms around the ionized atom (i.e., determine the radial-distribution function (RDF) which is very useful for the study of amorphous materials) and we can study momentum-resolved EELS, observe the anisotropy of chemical bonds, combine EELS with tomography, inter alia.},
	language = {en},
	urldate = {2021-09-02},
	booktitle = {Transmission {Electron} {Microscopy}: {A} {Textbook} for {Materials} {Science}},
	publisher = {Springer US},
	author = {Williams, David B. and Carter, C. Barry},
	editor = {Williams, David B. and Carter, C. Barry},
	year = {2009},
	doi = {10.1007/978-0-387-76501-3_40},
	keywords = {Augmented Plane Wave, Bulk Metallic Glass, Core Hole, Ionization Edge, Multiple Scattering Method},
	pages = {741--760},
}

Downloads: 0