The Nonlinear Driving Force of the Urban Thermal Environment Based on the Bayesian Optimization Ensemble Learning. Wu, Z., Qiao, R., Zhao, S., Liu, X., Gao, S., Liu, Z., Ao, X., Zhou, S., & Wang, Z. March, 2022. Paper doi abstract bibtex 全球城市化进程空前发展,居民与城市温度日益交织在一起。尽管研究人员对城市热环境感兴趣,但大多数研究集中在城市建成环境特征与温度之间的整体线性联系。研究旨在揭示城市特征在整个过程中不同取值范围对城市热环境的具体驱动作用。通过高分辨率遥感图像和贝叶斯优化集成学习来解耦城市建筑特征与城市热环境之间的关系。本研究的主要结论如下:(1)2 km观测缓冲区最适合分析城市热环境。(2)生态环境因素对城市气温的影响较城市形态因素更为显着。(3)夏季,当植被茂盛度超过58.1%时,每增加10%,可使气温降低0.839℃。与夏季相反,当春季和秋季植被覆盖度分别超过64.7%和73.2%时,就会出现显着的边际影响。(4)建筑高度的影响具有季节变化。春季18m~75m高度降温效果最大,气温下降1.253℃。这些发现将有助于了解建筑施工如何影响城市表面温度,并为未来的城市政策制定者和规划者提供理论和统计支持。
@misc{wu_nonlinear_2022,
address = {Rochester, NY},
type = {{SSRN} {Scholarly} {Paper}},
title = {The {Nonlinear} {Driving} {Force} of the {Urban} {Thermal} {Environment} {Based} on the {Bayesian} {Optimization} {Ensemble} {Learning}},
url = {https://papers.ssrn.com/abstract=4067341},
doi = {10.2139/ssrn.4067341},
abstract = {全球城市化进程空前发展,居民与城市温度日益交织在一起。尽管研究人员对城市热环境感兴趣,但大多数研究集中在城市建成环境特征与温度之间的整体线性联系。研究旨在揭示城市特征在整个过程中不同取值范围对城市热环境的具体驱动作用。通过高分辨率遥感图像和贝叶斯优化集成学习来解耦城市建筑特征与城市热环境之间的关系。本研究的主要结论如下:(1)2 km观测缓冲区最适合分析城市热环境。(2)生态环境因素对城市气温的影响较城市形态因素更为显着。(3)夏季,当植被茂盛度超过58.1\%时,每增加10\%,可使气温降低0.839℃。与夏季相反,当春季和秋季植被覆盖度分别超过64.7\%和73.2\%时,就会出现显着的边际影响。(4)建筑高度的影响具有季节变化。春季18m{\textasciitilde}75m高度降温效果最大,气温下降1.253℃。这些发现将有助于了解建筑施工如何影响城市表面温度,并为未来的城市政策制定者和规划者提供理论和统计支持。},
language = {zh-CN},
urldate = {2023-12-18},
author = {Wu, Zhiqiang and Qiao, Renlu and Zhao, Shuang and Liu, Xiaochang and Gao, Shuo and Liu, Zhiyu and Ao, Xiang and Zhou, Shiqi and Wang, Zhensheng},
month = mar,
year = {2022},
keywords = {Land surface temperature, Nonlinear decoupling model, Urban morphology, Urban thermal environment},
}
Downloads: 0
{"_id":"LGqighnzcwLbHHxHP","bibbaseid":"wu-qiao-zhao-liu-gao-liu-ao-zhou-etal-thenonlineardrivingforceoftheurbanthermalenvironmentbasedonthebayesianoptimizationensemblelearning-2022","author_short":["Wu, Z.","Qiao, R.","Zhao, S.","Liu, X.","Gao, S.","Liu, Z.","Ao, X.","Zhou, S.","Wang, Z."],"bibdata":{"bibtype":"misc","type":"SSRN Scholarly Paper","address":"Rochester, NY","title":"The Nonlinear Driving Force of the Urban Thermal Environment Based on the Bayesian Optimization Ensemble Learning","url":"https://papers.ssrn.com/abstract=4067341","doi":"10.2139/ssrn.4067341","abstract":"全球城市化进程空前发展,居民与城市温度日益交织在一起。尽管研究人员对城市热环境感兴趣,但大多数研究集中在城市建成环境特征与温度之间的整体线性联系。研究旨在揭示城市特征在整个过程中不同取值范围对城市热环境的具体驱动作用。通过高分辨率遥感图像和贝叶斯优化集成学习来解耦城市建筑特征与城市热环境之间的关系。本研究的主要结论如下:(1)2 km观测缓冲区最适合分析城市热环境。(2)生态环境因素对城市气温的影响较城市形态因素更为显着。(3)夏季,当植被茂盛度超过58.1%时,每增加10%,可使气温降低0.839℃。与夏季相反,当春季和秋季植被覆盖度分别超过64.7%和73.2%时,就会出现显着的边际影响。(4)建筑高度的影响具有季节变化。春季18m~75m高度降温效果最大,气温下降1.253℃。这些发现将有助于了解建筑施工如何影响城市表面温度,并为未来的城市政策制定者和规划者提供理论和统计支持。","language":"zh-CN","urldate":"2023-12-18","author":[{"propositions":[],"lastnames":["Wu"],"firstnames":["Zhiqiang"],"suffixes":[]},{"propositions":[],"lastnames":["Qiao"],"firstnames":["Renlu"],"suffixes":[]},{"propositions":[],"lastnames":["Zhao"],"firstnames":["Shuang"],"suffixes":[]},{"propositions":[],"lastnames":["Liu"],"firstnames":["Xiaochang"],"suffixes":[]},{"propositions":[],"lastnames":["Gao"],"firstnames":["Shuo"],"suffixes":[]},{"propositions":[],"lastnames":["Liu"],"firstnames":["Zhiyu"],"suffixes":[]},{"propositions":[],"lastnames":["Ao"],"firstnames":["Xiang"],"suffixes":[]},{"propositions":[],"lastnames":["Zhou"],"firstnames":["Shiqi"],"suffixes":[]},{"propositions":[],"lastnames":["Wang"],"firstnames":["Zhensheng"],"suffixes":[]}],"month":"March","year":"2022","keywords":"Land surface temperature, Nonlinear decoupling model, Urban morphology, Urban thermal environment","bibtex":"@misc{wu_nonlinear_2022,\n\taddress = {Rochester, NY},\n\ttype = {{SSRN} {Scholarly} {Paper}},\n\ttitle = {The {Nonlinear} {Driving} {Force} of the {Urban} {Thermal} {Environment} {Based} on the {Bayesian} {Optimization} {Ensemble} {Learning}},\n\turl = {https://papers.ssrn.com/abstract=4067341},\n\tdoi = {10.2139/ssrn.4067341},\n\tabstract = {全球城市化进程空前发展,居民与城市温度日益交织在一起。尽管研究人员对城市热环境感兴趣,但大多数研究集中在城市建成环境特征与温度之间的整体线性联系。研究旨在揭示城市特征在整个过程中不同取值范围对城市热环境的具体驱动作用。通过高分辨率遥感图像和贝叶斯优化集成学习来解耦城市建筑特征与城市热环境之间的关系。本研究的主要结论如下:(1)2 km观测缓冲区最适合分析城市热环境。(2)生态环境因素对城市气温的影响较城市形态因素更为显着。(3)夏季,当植被茂盛度超过58.1\\%时,每增加10\\%,可使气温降低0.839℃。与夏季相反,当春季和秋季植被覆盖度分别超过64.7\\%和73.2\\%时,就会出现显着的边际影响。(4)建筑高度的影响具有季节变化。春季18m{\\textasciitilde}75m高度降温效果最大,气温下降1.253℃。这些发现将有助于了解建筑施工如何影响城市表面温度,并为未来的城市政策制定者和规划者提供理论和统计支持。},\n\tlanguage = {zh-CN},\n\turldate = {2023-12-18},\n\tauthor = {Wu, Zhiqiang and Qiao, Renlu and Zhao, Shuang and Liu, Xiaochang and Gao, Shuo and Liu, Zhiyu and Ao, Xiang and Zhou, Shiqi and Wang, Zhensheng},\n\tmonth = mar,\n\tyear = {2022},\n\tkeywords = {Land surface temperature, Nonlinear decoupling model, Urban morphology, Urban thermal environment},\n}\n\n","author_short":["Wu, Z.","Qiao, R.","Zhao, S.","Liu, X.","Gao, S.","Liu, Z.","Ao, X.","Zhou, S.","Wang, Z."],"key":"wu_nonlinear_2022","id":"wu_nonlinear_2022","bibbaseid":"wu-qiao-zhao-liu-gao-liu-ao-zhou-etal-thenonlineardrivingforceoftheurbanthermalenvironmentbasedonthebayesianoptimizationensemblelearning-2022","role":"author","urls":{"Paper":"https://papers.ssrn.com/abstract=4067341"},"keyword":["Land surface temperature","Nonlinear decoupling model","Urban morphology","Urban thermal environment"],"metadata":{"authorlinks":{}}},"bibtype":"misc","biburl":"https://bibbase.org/zotero/zyliu0917","dataSources":["MWi8bMX5svx2GFwWx"],"keywords":["land surface temperature","nonlinear decoupling model","urban morphology","urban thermal environment"],"search_terms":["nonlinear","driving","force","urban","thermal","environment","based","bayesian","optimization","ensemble","learning","wu","qiao","zhao","liu","gao","liu","ao","zhou","wang"],"title":"The Nonlinear Driving Force of the Urban Thermal Environment Based on the Bayesian Optimization Ensemble Learning","year":2022}