Model-based Sparse Information Recovery by Collaborative Sensor Management. Xiao, H., Bar-Shalom, Y., & Chen, X. In ASME Dynamic Systems and Control Conference, October, 2018. Paper abstract bibtex This paper considers the real-time recovery of a fast discrete signal (e.g., updated every T seconds) by using sparsely sampled sensor measurements whose sampling intervals are much larger than T (e.g., MT and NT, where M and N are integers). Assuming the fast signal is an autoregressive process with known parameters, we propose an online information recovery algorithm that reconstructs the missing, fast time series by a complementary modulation of the sensor speeds MT and NT, and by a model-based fusion of the sparsely collected data. We provide the collaborative sensing design, parametric analysis, existence of solutions, and optimization of the algorithm. Application to a closed-loop disturbance rejection problem reveals the feasibility to reject fast disturbance signals fully with only slow sensors in real time, and in particular, the rejection of narrow-band disturbances whose frequencies are much higher than the Nyquist frequencies of the sensors.
@inproceedings{Hui_DSCC2018,
Abstract = {This paper considers the real-time recovery of a fast discrete signal (e.g., updated every T seconds) by using sparsely sampled sensor measurements whose sampling intervals are much larger than T (e.g., MT and NT, where M and N are integers). Assuming the fast signal is an autoregressive process with known parameters, we propose an online information recovery algorithm that reconstructs the missing, fast time series by a complementary modulation of the sensor speeds MT and NT, and by a model-based fusion of the sparsely collected data. We provide the collaborative sensing design, parametric analysis, existence of solutions, and optimization of the algorithm. Application to a closed-loop disturbance rejection problem reveals the feasibility to reject fast disturbance signals fully with only slow sensors in real time, and in particular, the rejection of narrow-band disturbances whose frequencies are much higher than the Nyquist frequencies of the sensors.},
Author = {Hui Xiao and Yaakov Bar-Shalom and Xu Chen},
Booktitle = {{ASME} Dynamic Systems and Control Conference},
Date-Modified = {2018-08-01 12:16:33 -0400},
Keyword = {sparse sensing, irregular sampling, collaborative sensing},
Month = {October},
Title = {Model-based Sparse Information Recovery by Collaborative Sensor Management},
Url = {https://www.researchgate.net/publication/325556564_Model-based_Sparse_Information_Recovery_by_Collaborative_Sensing},
Year = 2018,
Bdsk-File-1 = {YnBsaXN0MDDSAQIDBFxyZWxhdGl2ZVBhdGhZYWxpYXNEYXRhXxBZLi4vLi4vRG9jdW1lbnRzL1BhcGVycy9YaWFvL01vZGVsLWJhc2VkIFNwYXJzZSBJbmZvcm1hdGlvbiBSZWNvdmVyeSBieSBDb2xsYWJvcmF0aXZlMC5wZGZPEQIWAAAAAAIWAAIAAAxNYWNpbnRvc2ggSEQAAAAAAAAAAAAAAAAAAAAAAAAAQkQAAf////8fTW9kZWwtYmFzZWQgU3BhcnNlI0ZGRkZGRkZGLnBkZgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA/////wAAAAAAAAAAAAAAAAACAAQAAAogY3UAAAAAAAAAAAAAAAAABFhpYW8AAgBhLzpVc2Vyczp4Y2hlbjpEb2N1bWVudHM6UGFwZXJzOlhpYW86TW9kZWwtYmFzZWQgU3BhcnNlIEluZm9ybWF0aW9uIFJlY292ZXJ5IGJ5IENvbGxhYm9yYXRpdmUwLnBkZgAADgB8AD0ATQBvAGQAZQBsAC0AYgBhAHMAZQBkACAAUwBwAGEAcgBzAGUAIABJAG4AZgBvAHIAbQBhAHQAaQBvAG4AIABSAGUAYwBvAHYAZQByAHkAIABiAHkAIABDAG8AbABsAGEAYgBvAHIAYQB0AGkAdgBlADAALgBwAGQAZgAPABoADABNAGEAYwBpAG4AdABvAHMAaAAgAEgARAASAF9Vc2Vycy94Y2hlbi9Eb2N1bWVudHMvUGFwZXJzL1hpYW8vTW9kZWwtYmFzZWQgU3BhcnNlIEluZm9ybWF0aW9uIFJlY292ZXJ5IGJ5IENvbGxhYm9yYXRpdmUwLnBkZgAAEwABLwAAFQACAAz//wAAAAgADQAaACQAgAAAAAAAAAIBAAAAAAAAAAUAAAAAAAAAAAAAAAAAAAKa},
Bdsk-File-2 = {YnBsaXN0MDDSAQIDBFxyZWxhdGl2ZVBhdGhZYWxpYXNEYXRhXxBYLi4vLi4vRG9jdW1lbnRzL1BhcGVycy9YaWFvL01vZGVsLWJhc2VkIFNwYXJzZSBJbmZvcm1hdGlvbiBSZWNvdmVyeSBieSBDb2xsYWJvcmF0aXZlLnBkZk8RAhAAAAAAAhAAAgAADE1hY2ludG9zaCBIRAAAAAAAAAAAAAAAAAAAAAAAAABCRAAB/////x9Nb2RlbC1iYXNlZCBTcGFyc2UjRkZGRkZGRkYucGRmAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAD/////AAAAAAAAAAAAAAAAAAIABAAACiBjdQAAAAAAAAAAAAAAAAAEWGlhbwACAGAvOlVzZXJzOnhjaGVuOkRvY3VtZW50czpQYXBlcnM6WGlhbzpNb2RlbC1iYXNlZCBTcGFyc2UgSW5mb3JtYXRpb24gUmVjb3ZlcnkgYnkgQ29sbGFib3JhdGl2ZS5wZGYADgB6ADwATQBvAGQAZQBsAC0AYgBhAHMAZQBkACAAUwBwAGEAcgBzAGUAIABJAG4AZgBvAHIAbQBhAHQAaQBvAG4AIABSAGUAYwBvAHYAZQByAHkAIABiAHkAIABDAG8AbABsAGEAYgBvAHIAYQB0AGkAdgBlAC4AcABkAGYADwAaAAwATQBhAGMAaQBuAHQAbwBzAGgAIABIAEQAEgBeVXNlcnMveGNoZW4vRG9jdW1lbnRzL1BhcGVycy9YaWFvL01vZGVsLWJhc2VkIFNwYXJzZSBJbmZvcm1hdGlvbiBSZWNvdmVyeSBieSBDb2xsYWJvcmF0aXZlLnBkZgATAAEvAAAVAAIADP//AAAACAANABoAJAB/AAAAAAAAAgEAAAAAAAAABQAAAAAAAAAAAAAAAAAAApM=},
Bdsk-File-3 = {YnBsaXN0MDDSAQIDBFxyZWxhdGl2ZVBhdGhZYWxpYXNEYXRhXxBULi4vLi4vRG9jdW1lbnRzL1BhcGVycy9YaWFvL01vZGVsLWJhc2VkIFNwYXJzZSBJbmZvcm1hdGlvbiBSZWNvdmVyeSBieSBDb2xsYWJvcmF0aXZlTxECAgAAAAACAgACAAEMTWFjaW50b3NoIEhEAAAAAAAAAAAAAAAAAAAAAAAAAEJEAAH/////H01vZGVsLWJhc2VkIFNwYXJzZSBJbmYjRkZGRkZGRkYAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAP////8AAAAAAAAAAAAAAAAAAgAEAAAKIGN1AAAAAAAAAAAAAAAAAARYaWFvAAIAXS86VXNlcnM6eGNoZW46RG9jdW1lbnRzOlBhcGVyczpYaWFvOk1vZGVsLWJhc2VkIFNwYXJzZSBJbmZvcm1hdGlvbiBSZWNvdmVyeSBieSBDb2xsYWJvcmF0aXZlLwAADgByADgATQBvAGQAZQBsAC0AYgBhAHMAZQBkACAAUwBwAGEAcgBzAGUAIABJAG4AZgBvAHIAbQBhAHQAaQBvAG4AIABSAGUAYwBvAHYAZQByAHkAIABiAHkAIABDAG8AbABsAGEAYgBvAHIAYQB0AGkAdgBlAA8AGgAMAE0AYQBjAGkAbgB0AG8AcwBoACAASABEABIAWlVzZXJzL3hjaGVuL0RvY3VtZW50cy9QYXBlcnMvWGlhby9Nb2RlbC1iYXNlZCBTcGFyc2UgSW5mb3JtYXRpb24gUmVjb3ZlcnkgYnkgQ29sbGFib3JhdGl2ZQATAAEvAAAVAAIADP//AAAACAANABoAJAB7AAAAAAAAAgEAAAAAAAAABQAAAAAAAAAAAAAAAAAAAoE=},
Bdsk-File-4 = {YnBsaXN0MDDSAQIDBFxyZWxhdGl2ZVBhdGhZYWxpYXNEYXRhXxBZLi4vLi4vRG9jdW1lbnRzL1BhcGVycy9YaWFvL01vZGVsLWJhc2VkIFNwYXJzZSBJbmZvcm1hdGlvbiBSZWNvdmVyeSBieSBDb2xsYWJvcmF0aXZlLnBwdHhPEQIWAAAAAAIWAAIAAAxNYWNpbnRvc2ggSEQAAAAAAAAAAAAAAAAAAAAAAAAAQkQAAf////8fTW9kZWwtYmFzZWQgU3BhcnMjRkZGRkZGRkYucHB0eAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA/////wAAAAAAAAAAAAAAAAACAAQAAAogY3UAAAAAAAAAAAAAAAAABFhpYW8AAgBhLzpVc2Vyczp4Y2hlbjpEb2N1bWVudHM6UGFwZXJzOlhpYW86TW9kZWwtYmFzZWQgU3BhcnNlIEluZm9ybWF0aW9uIFJlY292ZXJ5IGJ5IENvbGxhYm9yYXRpdmUucHB0eAAADgB8AD0ATQBvAGQAZQBsAC0AYgBhAHMAZQBkACAAUwBwAGEAcgBzAGUAIABJAG4AZgBvAHIAbQBhAHQAaQBvAG4AIABSAGUAYwBvAHYAZQByAHkAIABiAHkAIABDAG8AbABsAGEAYgBvAHIAYQB0AGkAdgBlAC4AcABwAHQAeAAPABoADABNAGEAYwBpAG4AdABvAHMAaAAgAEgARAASAF9Vc2Vycy94Y2hlbi9Eb2N1bWVudHMvUGFwZXJzL1hpYW8vTW9kZWwtYmFzZWQgU3BhcnNlIEluZm9ybWF0aW9uIFJlY292ZXJ5IGJ5IENvbGxhYm9yYXRpdmUucHB0eAAAEwABLwAAFQACAAz//wAAAAgADQAaACQAgAAAAAAAAAIBAAAAAAAAAAUAAAAAAAAAAAAAAAAAAAKa},
Bdsk-File-5 = {YnBsaXN0MDDSAQIDBFxyZWxhdGl2ZVBhdGhZYWxpYXNEYXRhXxBZLi4vLi4vRG9jdW1lbnRzL1BhcGVycy9YaWFvL01vZGVsLWJhc2VkIFNwYXJzZSBJbmZvcm1hdGlvbiBSZWNvdmVyeSBieSBDb2xsYWJvcmF0aXZlMS5wZGZPEQIWAAAAAAIWAAIAAAxNYWNpbnRvc2ggSEQAAAAAAAAAAAAAAAAAAAAAAAAAQkQAAf////8fTW9kZWwtYmFzZWQgU3BhcnNlI0ZGRkZGRkZGLnBkZgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA/////wAAAAAAAAAAAAAAAAACAAQAAAogY3UAAAAAAAAAAAAAAAAABFhpYW8AAgBhLzpVc2Vyczp4Y2hlbjpEb2N1bWVudHM6UGFwZXJzOlhpYW86TW9kZWwtYmFzZWQgU3BhcnNlIEluZm9ybWF0aW9uIFJlY292ZXJ5IGJ5IENvbGxhYm9yYXRpdmUxLnBkZgAADgB8AD0ATQBvAGQAZQBsAC0AYgBhAHMAZQBkACAAUwBwAGEAcgBzAGUAIABJAG4AZgBvAHIAbQBhAHQAaQBvAG4AIABSAGUAYwBvAHYAZQByAHkAIABiAHkAIABDAG8AbABsAGEAYgBvAHIAYQB0AGkAdgBlADEALgBwAGQAZgAPABoADABNAGEAYwBpAG4AdABvAHMAaAAgAEgARAASAF9Vc2Vycy94Y2hlbi9Eb2N1bWVudHMvUGFwZXJzL1hpYW8vTW9kZWwtYmFzZWQgU3BhcnNlIEluZm9ybWF0aW9uIFJlY292ZXJ5IGJ5IENvbGxhYm9yYXRpdmUxLnBkZgAAEwABLwAAFQACAAz//wAAAAgADQAaACQAgAAAAAAAAAIBAAAAAAAAAAUAAAAAAAAAAAAAAAAAAAKa}}
Downloads: 0
{"_id":"GgLKtEXz5fnC4JQb4","bibbaseid":"xiao-barshalom-chen-modelbasedsparseinformationrecoverybycollaborativesensormanagement-2018","authorIDs":["6c6WK2TnGgXAR7F3w"],"author_short":["Xiao, H.","Bar-Shalom, Y.","Chen, X."],"bibdata":{"bibtype":"inproceedings","type":"inproceedings","abstract":"This paper considers the real-time recovery of a fast discrete signal (e.g., updated every T seconds) by using sparsely sampled sensor measurements whose sampling intervals are much larger than T (e.g., MT and NT, where M and N are integers). Assuming the fast signal is an autoregressive process with known parameters, we propose an online information recovery algorithm that reconstructs the missing, fast time series by a complementary modulation of the sensor speeds MT and NT, and by a model-based fusion of the sparsely collected data. We provide the collaborative sensing design, parametric analysis, existence of solutions, and optimization of the algorithm. Application to a closed-loop disturbance rejection problem reveals the feasibility to reject fast disturbance signals fully with only slow sensors in real time, and in particular, the rejection of narrow-band disturbances whose frequencies are much higher than the Nyquist frequencies of the sensors.","author":[{"firstnames":["Hui"],"propositions":[],"lastnames":["Xiao"],"suffixes":[]},{"firstnames":["Yaakov"],"propositions":[],"lastnames":["Bar-Shalom"],"suffixes":[]},{"firstnames":["Xu"],"propositions":[],"lastnames":["Chen"],"suffixes":[]}],"booktitle":"ASME Dynamic Systems and Control Conference","date-modified":"2018-08-01 12:16:33 -0400","keyword":["sparse sensing"," irregular sampling"," collaborative sensing"],"month":"October","title":"Model-based Sparse Information Recovery by Collaborative Sensor Management","url":"https://www.researchgate.net/publication/325556564_Model-based_Sparse_Information_Recovery_by_Collaborative_Sensing","year":"2018","bdsk-file-1":"YnBsaXN0MDDSAQIDBFxyZWxhdGl2ZVBhdGhZYWxpYXNEYXRhXxBZLi4vLi4vRG9jdW1lbnRzL1BhcGVycy9YaWFvL01vZGVsLWJhc2VkIFNwYXJzZSBJbmZvcm1hdGlvbiBSZWNvdmVyeSBieSBDb2xsYWJvcmF0aXZlMC5wZGZPEQIWAAAAAAIWAAIAAAxNYWNpbnRvc2ggSEQAAAAAAAAAAAAAAAAAAAAAAAAAQkQAAf////8fTW9kZWwtYmFzZWQgU3BhcnNlI0ZGRkZGRkZGLnBkZgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA/////wAAAAAAAAAAAAAAAAACAAQAAAogY3UAAAAAAAAAAAAAAAAABFhpYW8AAgBhLzpVc2Vyczp4Y2hlbjpEb2N1bWVudHM6UGFwZXJzOlhpYW86TW9kZWwtYmFzZWQgU3BhcnNlIEluZm9ybWF0aW9uIFJlY292ZXJ5IGJ5IENvbGxhYm9yYXRpdmUwLnBkZgAADgB8AD0ATQBvAGQAZQBsAC0AYgBhAHMAZQBkACAAUwBwAGEAcgBzAGUAIABJAG4AZgBvAHIAbQBhAHQAaQBvAG4AIABSAGUAYwBvAHYAZQByAHkAIABiAHkAIABDAG8AbABsAGEAYgBvAHIAYQB0AGkAdgBlADAALgBwAGQAZgAPABoADABNAGEAYwBpAG4AdABvAHMAaAAgAEgARAASAF9Vc2Vycy94Y2hlbi9Eb2N1bWVudHMvUGFwZXJzL1hpYW8vTW9kZWwtYmFzZWQgU3BhcnNlIEluZm9ybWF0aW9uIFJlY292ZXJ5IGJ5IENvbGxhYm9yYXRpdmUwLnBkZgAAEwABLwAAFQACAAz//wAAAAgADQAaACQAgAAAAAAAAAIBAAAAAAAAAAUAAAAAAAAAAAAAAAAAAAKa","bdsk-file-2":"YnBsaXN0MDDSAQIDBFxyZWxhdGl2ZVBhdGhZYWxpYXNEYXRhXxBYLi4vLi4vRG9jdW1lbnRzL1BhcGVycy9YaWFvL01vZGVsLWJhc2VkIFNwYXJzZSBJbmZvcm1hdGlvbiBSZWNvdmVyeSBieSBDb2xsYWJvcmF0aXZlLnBkZk8RAhAAAAAAAhAAAgAADE1hY2ludG9zaCBIRAAAAAAAAAAAAAAAAAAAAAAAAABCRAAB/////x9Nb2RlbC1iYXNlZCBTcGFyc2UjRkZGRkZGRkYucGRmAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAD/////AAAAAAAAAAAAAAAAAAIABAAACiBjdQAAAAAAAAAAAAAAAAAEWGlhbwACAGAvOlVzZXJzOnhjaGVuOkRvY3VtZW50czpQYXBlcnM6WGlhbzpNb2RlbC1iYXNlZCBTcGFyc2UgSW5mb3JtYXRpb24gUmVjb3ZlcnkgYnkgQ29sbGFib3JhdGl2ZS5wZGYADgB6ADwATQBvAGQAZQBsAC0AYgBhAHMAZQBkACAAUwBwAGEAcgBzAGUAIABJAG4AZgBvAHIAbQBhAHQAaQBvAG4AIABSAGUAYwBvAHYAZQByAHkAIABiAHkAIABDAG8AbABsAGEAYgBvAHIAYQB0AGkAdgBlAC4AcABkAGYADwAaAAwATQBhAGMAaQBuAHQAbwBzAGgAIABIAEQAEgBeVXNlcnMveGNoZW4vRG9jdW1lbnRzL1BhcGVycy9YaWFvL01vZGVsLWJhc2VkIFNwYXJzZSBJbmZvcm1hdGlvbiBSZWNvdmVyeSBieSBDb2xsYWJvcmF0aXZlLnBkZgATAAEvAAAVAAIADP//AAAACAANABoAJAB/AAAAAAAAAgEAAAAAAAAABQAAAAAAAAAAAAAAAAAAApM=","bdsk-file-3":"YnBsaXN0MDDSAQIDBFxyZWxhdGl2ZVBhdGhZYWxpYXNEYXRhXxBULi4vLi4vRG9jdW1lbnRzL1BhcGVycy9YaWFvL01vZGVsLWJhc2VkIFNwYXJzZSBJbmZvcm1hdGlvbiBSZWNvdmVyeSBieSBDb2xsYWJvcmF0aXZlTxECAgAAAAACAgACAAEMTWFjaW50b3NoIEhEAAAAAAAAAAAAAAAAAAAAAAAAAEJEAAH/////H01vZGVsLWJhc2VkIFNwYXJzZSBJbmYjRkZGRkZGRkYAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAP////8AAAAAAAAAAAAAAAAAAgAEAAAKIGN1AAAAAAAAAAAAAAAAAARYaWFvAAIAXS86VXNlcnM6eGNoZW46RG9jdW1lbnRzOlBhcGVyczpYaWFvOk1vZGVsLWJhc2VkIFNwYXJzZSBJbmZvcm1hdGlvbiBSZWNvdmVyeSBieSBDb2xsYWJvcmF0aXZlLwAADgByADgATQBvAGQAZQBsAC0AYgBhAHMAZQBkACAAUwBwAGEAcgBzAGUAIABJAG4AZgBvAHIAbQBhAHQAaQBvAG4AIABSAGUAYwBvAHYAZQByAHkAIABiAHkAIABDAG8AbABsAGEAYgBvAHIAYQB0AGkAdgBlAA8AGgAMAE0AYQBjAGkAbgB0AG8AcwBoACAASABEABIAWlVzZXJzL3hjaGVuL0RvY3VtZW50cy9QYXBlcnMvWGlhby9Nb2RlbC1iYXNlZCBTcGFyc2UgSW5mb3JtYXRpb24gUmVjb3ZlcnkgYnkgQ29sbGFib3JhdGl2ZQATAAEvAAAVAAIADP//AAAACAANABoAJAB7AAAAAAAAAgEAAAAAAAAABQAAAAAAAAAAAAAAAAAAAoE=","bdsk-file-4":"YnBsaXN0MDDSAQIDBFxyZWxhdGl2ZVBhdGhZYWxpYXNEYXRhXxBZLi4vLi4vRG9jdW1lbnRzL1BhcGVycy9YaWFvL01vZGVsLWJhc2VkIFNwYXJzZSBJbmZvcm1hdGlvbiBSZWNvdmVyeSBieSBDb2xsYWJvcmF0aXZlLnBwdHhPEQIWAAAAAAIWAAIAAAxNYWNpbnRvc2ggSEQAAAAAAAAAAAAAAAAAAAAAAAAAQkQAAf////8fTW9kZWwtYmFzZWQgU3BhcnMjRkZGRkZGRkYucHB0eAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA/////wAAAAAAAAAAAAAAAAACAAQAAAogY3UAAAAAAAAAAAAAAAAABFhpYW8AAgBhLzpVc2Vyczp4Y2hlbjpEb2N1bWVudHM6UGFwZXJzOlhpYW86TW9kZWwtYmFzZWQgU3BhcnNlIEluZm9ybWF0aW9uIFJlY292ZXJ5IGJ5IENvbGxhYm9yYXRpdmUucHB0eAAADgB8AD0ATQBvAGQAZQBsAC0AYgBhAHMAZQBkACAAUwBwAGEAcgBzAGUAIABJAG4AZgBvAHIAbQBhAHQAaQBvAG4AIABSAGUAYwBvAHYAZQByAHkAIABiAHkAIABDAG8AbABsAGEAYgBvAHIAYQB0AGkAdgBlAC4AcABwAHQAeAAPABoADABNAGEAYwBpAG4AdABvAHMAaAAgAEgARAASAF9Vc2Vycy94Y2hlbi9Eb2N1bWVudHMvUGFwZXJzL1hpYW8vTW9kZWwtYmFzZWQgU3BhcnNlIEluZm9ybWF0aW9uIFJlY292ZXJ5IGJ5IENvbGxhYm9yYXRpdmUucHB0eAAAEwABLwAAFQACAAz//wAAAAgADQAaACQAgAAAAAAAAAIBAAAAAAAAAAUAAAAAAAAAAAAAAAAAAAKa","bdsk-file-5":"YnBsaXN0MDDSAQIDBFxyZWxhdGl2ZVBhdGhZYWxpYXNEYXRhXxBZLi4vLi4vRG9jdW1lbnRzL1BhcGVycy9YaWFvL01vZGVsLWJhc2VkIFNwYXJzZSBJbmZvcm1hdGlvbiBSZWNvdmVyeSBieSBDb2xsYWJvcmF0aXZlMS5wZGZPEQIWAAAAAAIWAAIAAAxNYWNpbnRvc2ggSEQAAAAAAAAAAAAAAAAAAAAAAAAAQkQAAf////8fTW9kZWwtYmFzZWQgU3BhcnNlI0ZGRkZGRkZGLnBkZgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA/////wAAAAAAAAAAAAAAAAACAAQAAAogY3UAAAAAAAAAAAAAAAAABFhpYW8AAgBhLzpVc2Vyczp4Y2hlbjpEb2N1bWVudHM6UGFwZXJzOlhpYW86TW9kZWwtYmFzZWQgU3BhcnNlIEluZm9ybWF0aW9uIFJlY292ZXJ5IGJ5IENvbGxhYm9yYXRpdmUxLnBkZgAADgB8AD0ATQBvAGQAZQBsAC0AYgBhAHMAZQBkACAAUwBwAGEAcgBzAGUAIABJAG4AZgBvAHIAbQBhAHQAaQBvAG4AIABSAGUAYwBvAHYAZQByAHkAIABiAHkAIABDAG8AbABsAGEAYgBvAHIAYQB0AGkAdgBlADEALgBwAGQAZgAPABoADABNAGEAYwBpAG4AdABvAHMAaAAgAEgARAASAF9Vc2Vycy94Y2hlbi9Eb2N1bWVudHMvUGFwZXJzL1hpYW8vTW9kZWwtYmFzZWQgU3BhcnNlIEluZm9ybWF0aW9uIFJlY292ZXJ5IGJ5IENvbGxhYm9yYXRpdmUxLnBkZgAAEwABLwAAFQACAAz//wAAAAgADQAaACQAgAAAAAAAAAIBAAAAAAAAAAUAAAAAAAAAAAAAAAAAAAKa","bibtex":"@inproceedings{Hui_DSCC2018,\n\tAbstract = {This paper considers the real-time recovery of a fast discrete signal (e.g., updated every T seconds) by using sparsely sampled sensor measurements whose sampling intervals are much larger than T (e.g., MT and NT, where M and N are integers). Assuming the fast signal is an autoregressive process with known parameters, we propose an online information recovery algorithm that reconstructs the missing, fast time series by a complementary modulation of the sensor speeds MT and NT, and by a model-based fusion of the sparsely collected data. We provide the collaborative sensing design, parametric analysis, existence of solutions, and optimization of the algorithm. Application to a closed-loop disturbance rejection problem reveals the feasibility to reject fast disturbance signals fully with only slow sensors in real time, and in particular, the rejection of narrow-band disturbances whose frequencies are much higher than the Nyquist frequencies of the sensors.},\n\tAuthor = {Hui Xiao and Yaakov Bar-Shalom and Xu Chen},\n\tBooktitle = {{ASME} Dynamic Systems and Control Conference},\n\tDate-Modified = {2018-08-01 12:16:33 -0400},\n\tKeyword = {sparse sensing, irregular sampling, collaborative sensing},\n\tMonth = {October},\n\tTitle = {Model-based Sparse Information Recovery by Collaborative Sensor Management},\n\tUrl = {https://www.researchgate.net/publication/325556564_Model-based_Sparse_Information_Recovery_by_Collaborative_Sensing},\n\tYear = 2018,\n\tBdsk-File-1 = {YnBsaXN0MDDSAQIDBFxyZWxhdGl2ZVBhdGhZYWxpYXNEYXRhXxBZLi4vLi4vRG9jdW1lbnRzL1BhcGVycy9YaWFvL01vZGVsLWJhc2VkIFNwYXJzZSBJbmZvcm1hdGlvbiBSZWNvdmVyeSBieSBDb2xsYWJvcmF0aXZlMC5wZGZPEQIWAAAAAAIWAAIAAAxNYWNpbnRvc2ggSEQAAAAAAAAAAAAAAAAAAAAAAAAAQkQAAf////8fTW9kZWwtYmFzZWQgU3BhcnNlI0ZGRkZGRkZGLnBkZgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA/////wAAAAAAAAAAAAAAAAACAAQAAAogY3UAAAAAAAAAAAAAAAAABFhpYW8AAgBhLzpVc2Vyczp4Y2hlbjpEb2N1bWVudHM6UGFwZXJzOlhpYW86TW9kZWwtYmFzZWQgU3BhcnNlIEluZm9ybWF0aW9uIFJlY292ZXJ5IGJ5IENvbGxhYm9yYXRpdmUwLnBkZgAADgB8AD0ATQBvAGQAZQBsAC0AYgBhAHMAZQBkACAAUwBwAGEAcgBzAGUAIABJAG4AZgBvAHIAbQBhAHQAaQBvAG4AIABSAGUAYwBvAHYAZQByAHkAIABiAHkAIABDAG8AbABsAGEAYgBvAHIAYQB0AGkAdgBlADAALgBwAGQAZgAPABoADABNAGEAYwBpAG4AdABvAHMAaAAgAEgARAASAF9Vc2Vycy94Y2hlbi9Eb2N1bWVudHMvUGFwZXJzL1hpYW8vTW9kZWwtYmFzZWQgU3BhcnNlIEluZm9ybWF0aW9uIFJlY292ZXJ5IGJ5IENvbGxhYm9yYXRpdmUwLnBkZgAAEwABLwAAFQACAAz//wAAAAgADQAaACQAgAAAAAAAAAIBAAAAAAAAAAUAAAAAAAAAAAAAAAAAAAKa},\n\tBdsk-File-2 = {YnBsaXN0MDDSAQIDBFxyZWxhdGl2ZVBhdGhZYWxpYXNEYXRhXxBYLi4vLi4vRG9jdW1lbnRzL1BhcGVycy9YaWFvL01vZGVsLWJhc2VkIFNwYXJzZSBJbmZvcm1hdGlvbiBSZWNvdmVyeSBieSBDb2xsYWJvcmF0aXZlLnBkZk8RAhAAAAAAAhAAAgAADE1hY2ludG9zaCBIRAAAAAAAAAAAAAAAAAAAAAAAAABCRAAB/////x9Nb2RlbC1iYXNlZCBTcGFyc2UjRkZGRkZGRkYucGRmAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAD/////AAAAAAAAAAAAAAAAAAIABAAACiBjdQAAAAAAAAAAAAAAAAAEWGlhbwACAGAvOlVzZXJzOnhjaGVuOkRvY3VtZW50czpQYXBlcnM6WGlhbzpNb2RlbC1iYXNlZCBTcGFyc2UgSW5mb3JtYXRpb24gUmVjb3ZlcnkgYnkgQ29sbGFib3JhdGl2ZS5wZGYADgB6ADwATQBvAGQAZQBsAC0AYgBhAHMAZQBkACAAUwBwAGEAcgBzAGUAIABJAG4AZgBvAHIAbQBhAHQAaQBvAG4AIABSAGUAYwBvAHYAZQByAHkAIABiAHkAIABDAG8AbABsAGEAYgBvAHIAYQB0AGkAdgBlAC4AcABkAGYADwAaAAwATQBhAGMAaQBuAHQAbwBzAGgAIABIAEQAEgBeVXNlcnMveGNoZW4vRG9jdW1lbnRzL1BhcGVycy9YaWFvL01vZGVsLWJhc2VkIFNwYXJzZSBJbmZvcm1hdGlvbiBSZWNvdmVyeSBieSBDb2xsYWJvcmF0aXZlLnBkZgATAAEvAAAVAAIADP//AAAACAANABoAJAB/AAAAAAAAAgEAAAAAAAAABQAAAAAAAAAAAAAAAAAAApM=},\n\tBdsk-File-3 = {YnBsaXN0MDDSAQIDBFxyZWxhdGl2ZVBhdGhZYWxpYXNEYXRhXxBULi4vLi4vRG9jdW1lbnRzL1BhcGVycy9YaWFvL01vZGVsLWJhc2VkIFNwYXJzZSBJbmZvcm1hdGlvbiBSZWNvdmVyeSBieSBDb2xsYWJvcmF0aXZlTxECAgAAAAACAgACAAEMTWFjaW50b3NoIEhEAAAAAAAAAAAAAAAAAAAAAAAAAEJEAAH/////H01vZGVsLWJhc2VkIFNwYXJzZSBJbmYjRkZGRkZGRkYAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAP////8AAAAAAAAAAAAAAAAAAgAEAAAKIGN1AAAAAAAAAAAAAAAAAARYaWFvAAIAXS86VXNlcnM6eGNoZW46RG9jdW1lbnRzOlBhcGVyczpYaWFvOk1vZGVsLWJhc2VkIFNwYXJzZSBJbmZvcm1hdGlvbiBSZWNvdmVyeSBieSBDb2xsYWJvcmF0aXZlLwAADgByADgATQBvAGQAZQBsAC0AYgBhAHMAZQBkACAAUwBwAGEAcgBzAGUAIABJAG4AZgBvAHIAbQBhAHQAaQBvAG4AIABSAGUAYwBvAHYAZQByAHkAIABiAHkAIABDAG8AbABsAGEAYgBvAHIAYQB0AGkAdgBlAA8AGgAMAE0AYQBjAGkAbgB0AG8AcwBoACAASABEABIAWlVzZXJzL3hjaGVuL0RvY3VtZW50cy9QYXBlcnMvWGlhby9Nb2RlbC1iYXNlZCBTcGFyc2UgSW5mb3JtYXRpb24gUmVjb3ZlcnkgYnkgQ29sbGFib3JhdGl2ZQATAAEvAAAVAAIADP//AAAACAANABoAJAB7AAAAAAAAAgEAAAAAAAAABQAAAAAAAAAAAAAAAAAAAoE=},\n\tBdsk-File-4 = {YnBsaXN0MDDSAQIDBFxyZWxhdGl2ZVBhdGhZYWxpYXNEYXRhXxBZLi4vLi4vRG9jdW1lbnRzL1BhcGVycy9YaWFvL01vZGVsLWJhc2VkIFNwYXJzZSBJbmZvcm1hdGlvbiBSZWNvdmVyeSBieSBDb2xsYWJvcmF0aXZlLnBwdHhPEQIWAAAAAAIWAAIAAAxNYWNpbnRvc2ggSEQAAAAAAAAAAAAAAAAAAAAAAAAAQkQAAf////8fTW9kZWwtYmFzZWQgU3BhcnMjRkZGRkZGRkYucHB0eAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA/////wAAAAAAAAAAAAAAAAACAAQAAAogY3UAAAAAAAAAAAAAAAAABFhpYW8AAgBhLzpVc2Vyczp4Y2hlbjpEb2N1bWVudHM6UGFwZXJzOlhpYW86TW9kZWwtYmFzZWQgU3BhcnNlIEluZm9ybWF0aW9uIFJlY292ZXJ5IGJ5IENvbGxhYm9yYXRpdmUucHB0eAAADgB8AD0ATQBvAGQAZQBsAC0AYgBhAHMAZQBkACAAUwBwAGEAcgBzAGUAIABJAG4AZgBvAHIAbQBhAHQAaQBvAG4AIABSAGUAYwBvAHYAZQByAHkAIABiAHkAIABDAG8AbABsAGEAYgBvAHIAYQB0AGkAdgBlAC4AcABwAHQAeAAPABoADABNAGEAYwBpAG4AdABvAHMAaAAgAEgARAASAF9Vc2Vycy94Y2hlbi9Eb2N1bWVudHMvUGFwZXJzL1hpYW8vTW9kZWwtYmFzZWQgU3BhcnNlIEluZm9ybWF0aW9uIFJlY292ZXJ5IGJ5IENvbGxhYm9yYXRpdmUucHB0eAAAEwABLwAAFQACAAz//wAAAAgADQAaACQAgAAAAAAAAAIBAAAAAAAAAAUAAAAAAAAAAAAAAAAAAAKa},\n\tBdsk-File-5 = {YnBsaXN0MDDSAQIDBFxyZWxhdGl2ZVBhdGhZYWxpYXNEYXRhXxBZLi4vLi4vRG9jdW1lbnRzL1BhcGVycy9YaWFvL01vZGVsLWJhc2VkIFNwYXJzZSBJbmZvcm1hdGlvbiBSZWNvdmVyeSBieSBDb2xsYWJvcmF0aXZlMS5wZGZPEQIWAAAAAAIWAAIAAAxNYWNpbnRvc2ggSEQAAAAAAAAAAAAAAAAAAAAAAAAAQkQAAf////8fTW9kZWwtYmFzZWQgU3BhcnNlI0ZGRkZGRkZGLnBkZgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA/////wAAAAAAAAAAAAAAAAACAAQAAAogY3UAAAAAAAAAAAAAAAAABFhpYW8AAgBhLzpVc2Vyczp4Y2hlbjpEb2N1bWVudHM6UGFwZXJzOlhpYW86TW9kZWwtYmFzZWQgU3BhcnNlIEluZm9ybWF0aW9uIFJlY292ZXJ5IGJ5IENvbGxhYm9yYXRpdmUxLnBkZgAADgB8AD0ATQBvAGQAZQBsAC0AYgBhAHMAZQBkACAAUwBwAGEAcgBzAGUAIABJAG4AZgBvAHIAbQBhAHQAaQBvAG4AIABSAGUAYwBvAHYAZQByAHkAIABiAHkAIABDAG8AbABsAGEAYgBvAHIAYQB0AGkAdgBlADEALgBwAGQAZgAPABoADABNAGEAYwBpAG4AdABvAHMAaAAgAEgARAASAF9Vc2Vycy94Y2hlbi9Eb2N1bWVudHMvUGFwZXJzL1hpYW8vTW9kZWwtYmFzZWQgU3BhcnNlIEluZm9ybWF0aW9uIFJlY292ZXJ5IGJ5IENvbGxhYm9yYXRpdmUxLnBkZgAAEwABLwAAFQACAAz//wAAAAgADQAaACQAgAAAAAAAAAIBAAAAAAAAAAUAAAAAAAAAAAAAAAAAAAKa}}\n\n","author_short":["Xiao, H.","Bar-Shalom, Y.","Chen, X."],"key":"Hui_DSCC2018","id":"Hui_DSCC2018","bibbaseid":"xiao-barshalom-chen-modelbasedsparseinformationrecoverybycollaborativesensormanagement-2018","role":"author","urls":{"Paper":"https://www.researchgate.net/publication/325556564_Model-based_Sparse_Information_Recovery_by_Collaborative_Sensing"},"metadata":{"authorlinks":{"chen, x":"https://xchen-me.github.io/publications/"}},"downloads":0,"html":""},"bibtype":"inproceedings","biburl":"https://xchen-me.github.io/bibtex_XuChen_UConn.bib","creationDate":"2021-03-19T05:11:49.025Z","downloads":0,"keywords":["sparse sensing"," irregular sampling"," collaborative sensing"],"search_terms":["model","based","sparse","information","recovery","collaborative","sensor","management","xiao","bar-shalom","chen"],"title":"Model-based Sparse Information Recovery by Collaborative Sensor Management","year":2018,"dataSources":["hHZrcJyhveBr8MCqA"]}