Production Machine Learning Pipelines: Empirical Analysis and Optimization Opportunities. Xin, D., Miao, H., Parameswaran, A. G., & Polyzotis, N. In Li, G., Li, Z., Idreos, S., & Srivastava, D., editors, SIGMOD '21: International Conference on Management of Data, Virtual Event, China, June 20-25, 2021, pages 2639–2652, 2021. ACM. Paper doi bibtex @inproceedings{DBLP:conf/sigmod/XinMPP21,
author = {Doris Xin and
Hui Miao and
Aditya G. Parameswaran and
Neoklis Polyzotis},
editor = {Guoliang Li and
Zhanhuai Li and
Stratos Idreos and
Divesh Srivastava},
title = {Production Machine Learning Pipelines: Empirical Analysis and Optimization
Opportunities},
booktitle = {{SIGMOD} '21: International Conference on Management of Data, Virtual
Event, China, June 20-25, 2021},
pages = {2639--2652},
publisher = {{ACM}},
year = {2021},
url = {https://doi.org/10.1145/3448016.3457566},
doi = {10.1145/3448016.3457566},
timestamp = {Sun, 02 Oct 2022 01:00:00 +0200},
biburl = {https://dblp.org/rec/conf/sigmod/XinMPP21.bib},
bibsource = {dblp computer science bibliography, https://dblp.org}
}
Downloads: 0
{"_id":"Yyt3covr8y9fy9FFv","bibbaseid":"xin-miao-parameswaran-polyzotis-productionmachinelearningpipelinesempiricalanalysisandoptimizationopportunities-2021","author_short":["Xin, D.","Miao, H.","Parameswaran, A. G.","Polyzotis, N."],"bibdata":{"bibtype":"inproceedings","type":"inproceedings","author":[{"firstnames":["Doris"],"propositions":[],"lastnames":["Xin"],"suffixes":[]},{"firstnames":["Hui"],"propositions":[],"lastnames":["Miao"],"suffixes":[]},{"firstnames":["Aditya","G."],"propositions":[],"lastnames":["Parameswaran"],"suffixes":[]},{"firstnames":["Neoklis"],"propositions":[],"lastnames":["Polyzotis"],"suffixes":[]}],"editor":[{"firstnames":["Guoliang"],"propositions":[],"lastnames":["Li"],"suffixes":[]},{"firstnames":["Zhanhuai"],"propositions":[],"lastnames":["Li"],"suffixes":[]},{"firstnames":["Stratos"],"propositions":[],"lastnames":["Idreos"],"suffixes":[]},{"firstnames":["Divesh"],"propositions":[],"lastnames":["Srivastava"],"suffixes":[]}],"title":"Production Machine Learning Pipelines: Empirical Analysis and Optimization Opportunities","booktitle":"SIGMOD '21: International Conference on Management of Data, Virtual Event, China, June 20-25, 2021","pages":"2639–2652","publisher":"ACM","year":"2021","url":"https://doi.org/10.1145/3448016.3457566","doi":"10.1145/3448016.3457566","timestamp":"Sun, 02 Oct 2022 01:00:00 +0200","biburl":"https://dblp.org/rec/conf/sigmod/XinMPP21.bib","bibsource":"dblp computer science bibliography, https://dblp.org","bibtex":"@inproceedings{DBLP:conf/sigmod/XinMPP21,\n author = {Doris Xin and\n Hui Miao and\n Aditya G. Parameswaran and\n Neoklis Polyzotis},\n editor = {Guoliang Li and\n Zhanhuai Li and\n Stratos Idreos and\n Divesh Srivastava},\n title = {Production Machine Learning Pipelines: Empirical Analysis and Optimization\n Opportunities},\n booktitle = {{SIGMOD} '21: International Conference on Management of Data, Virtual\n Event, China, June 20-25, 2021},\n pages = {2639--2652},\n publisher = {{ACM}},\n year = {2021},\n url = {https://doi.org/10.1145/3448016.3457566},\n doi = {10.1145/3448016.3457566},\n timestamp = {Sun, 02 Oct 2022 01:00:00 +0200},\n biburl = {https://dblp.org/rec/conf/sigmod/XinMPP21.bib},\n bibsource = {dblp computer science bibliography, https://dblp.org}\n}\n\n","author_short":["Xin, D.","Miao, H.","Parameswaran, A. G.","Polyzotis, N."],"editor_short":["Li, G.","Li, Z.","Idreos, S.","Srivastava, D."],"key":"DBLP:conf/sigmod/XinMPP21","id":"DBLP:conf/sigmod/XinMPP21","bibbaseid":"xin-miao-parameswaran-polyzotis-productionmachinelearningpipelinesempiricalanalysisandoptimizationopportunities-2021","role":"author","urls":{"Paper":"https://doi.org/10.1145/3448016.3457566"},"metadata":{"authorlinks":{}}},"bibtype":"inproceedings","biburl":"https://dblp.org/pid/135/0135.bib","dataSources":["fTuicW87N9HwLk8iq","zjtj6xZj5ckN4MDjB"],"keywords":[],"search_terms":["production","machine","learning","pipelines","empirical","analysis","optimization","opportunities","xin","miao","parameswaran","polyzotis"],"title":"Production Machine Learning Pipelines: Empirical Analysis and Optimization Opportunities","year":2021}