Nonadiabatic dynamics of a slowly driven dissipative two-level system. Xu, C., Poudel, A., & Vavilov, M., G. *Physical Review A*, 89(5):052102, 5, 2014. Paper Website abstract bibtex We study the dynamics of a two-level system described by a slowly varying Hamiltonian and weakly coupled to the Ohmic environment. We follow the Bloch--Redfield perturbative approach to include the effect of the environment on qubit evolution and take into account modification of the spectrum and matrix elements of qubit transitions due to time-dependence of the Hamiltonian. This formalism is applied to two problems. (1) We consider a qubit, or a spin-1/2, in a rotating magnetic field. We show that once the rotation starts, the spin has a component perpendicular to the rotation plane of the field that initially wiggles and eventually settles to the value proportional to the product of angular rotation velocity of the field and the Berry curvature. (2) We re-examine the Landau--Zener transition for a system coupled to environment at arbitrary temperature. We show that as temperature increases, the thermal excitation and relaxation become leading processes responsible for transition between states of the system. We also apply the Lindblad master equations to these two problems and compare results with those obtained from the Bloch--Redfield equations.

@article{
title = {Nonadiabatic dynamics of a slowly driven dissipative two-level system},
type = {article},
year = {2014},
identifiers = {[object Object]},
pages = {052102},
volume = {89},
websites = {http://arxiv.org/abs/1402.4210,http://link.aps.org/doi/10.1103/PhysRevA.89.052102},
month = {5},
day = {6},
id = {ac2ff502-6ba1-3a9d-ab2b-e47329a76506},
created = {2014-03-03T20:50:11.000Z},
accessed = {2014-05-25},
file_attached = {true},
profile_id = {6f7edced-4cf8-3a0e-9af9-b8f648762088},
last_modified = {2017-03-25T01:19:12.306Z},
tags = {0955500,1105178},
read = {true},
starred = {true},
authored = {true},
confirmed = {true},
hidden = {false},
citation_key = {Xu2014},
genre = {Quantum Physics; Mesoscale and Nanoscale Physics; Other Condensed Matter},
abstract = {We study the dynamics of a two-level system described by a slowly varying Hamiltonian and weakly coupled to the Ohmic environment. We follow the Bloch--Redfield perturbative approach to include the effect of the environment on qubit evolution and take into account modification of the spectrum and matrix elements of qubit transitions due to time-dependence of the Hamiltonian. This formalism is applied to two problems. (1) We consider a qubit, or a spin-1/2, in a rotating magnetic field. We show that once the rotation starts, the spin has a component perpendicular to the rotation plane of the field that initially wiggles and eventually settles to the value proportional to the product of angular rotation velocity of the field and the Berry curvature. (2) We re-examine the Landau--Zener transition for a system coupled to environment at arbitrary temperature. We show that as temperature increases, the thermal excitation and relaxation become leading processes responsible for transition between states of the system. We also apply the Lindblad master equations to these two problems and compare results with those obtained from the Bloch--Redfield equations.},
bibtype = {article},
author = {Xu, Canran and Poudel, Amrit and Vavilov, Maxim G.},
journal = {Physical Review A},
number = {5}
}

Downloads: 0

{"_id":"RK3dGsHXhDZqho2oC","bibbaseid":"xu-poudel-vavilov-nonadiabaticdynamicsofaslowlydrivendissipativetwolevelsystem-2014","downloads":0,"creationDate":"2017-03-24T04:39:43.232Z","title":"Nonadiabatic dynamics of a slowly driven dissipative two-level system","author_short":["Xu, C.","Poudel, A.","Vavilov, M., G."],"year":2014,"bibtype":"article","biburl":null,"bibdata":{"title":"Nonadiabatic dynamics of a slowly driven dissipative two-level system","type":"article","year":"2014","identifiers":"[object Object]","pages":"052102","volume":"89","websites":"http://arxiv.org/abs/1402.4210,http://link.aps.org/doi/10.1103/PhysRevA.89.052102","month":"5","day":"6","id":"ac2ff502-6ba1-3a9d-ab2b-e47329a76506","created":"2014-03-03T20:50:11.000Z","accessed":"2014-05-25","file_attached":"true","profile_id":"6f7edced-4cf8-3a0e-9af9-b8f648762088","last_modified":"2017-03-25T01:19:12.306Z","tags":"0955500,1105178","read":"true","starred":"true","authored":"true","confirmed":"true","hidden":false,"citation_key":"Xu2014","genre":"Quantum Physics; Mesoscale and Nanoscale Physics; Other Condensed Matter","abstract":"We study the dynamics of a two-level system described by a slowly varying Hamiltonian and weakly coupled to the Ohmic environment. We follow the Bloch--Redfield perturbative approach to include the effect of the environment on qubit evolution and take into account modification of the spectrum and matrix elements of qubit transitions due to time-dependence of the Hamiltonian. This formalism is applied to two problems. (1) We consider a qubit, or a spin-1/2, in a rotating magnetic field. We show that once the rotation starts, the spin has a component perpendicular to the rotation plane of the field that initially wiggles and eventually settles to the value proportional to the product of angular rotation velocity of the field and the Berry curvature. (2) We re-examine the Landau--Zener transition for a system coupled to environment at arbitrary temperature. We show that as temperature increases, the thermal excitation and relaxation become leading processes responsible for transition between states of the system. We also apply the Lindblad master equations to these two problems and compare results with those obtained from the Bloch--Redfield equations.","bibtype":"article","author":"Xu, Canran and Poudel, Amrit and Vavilov, Maxim G.","journal":"Physical Review A","number":"5","bibtex":"@article{\n title = {Nonadiabatic dynamics of a slowly driven dissipative two-level system},\n type = {article},\n year = {2014},\n identifiers = {[object Object]},\n pages = {052102},\n volume = {89},\n websites = {http://arxiv.org/abs/1402.4210,http://link.aps.org/doi/10.1103/PhysRevA.89.052102},\n month = {5},\n day = {6},\n id = {ac2ff502-6ba1-3a9d-ab2b-e47329a76506},\n created = {2014-03-03T20:50:11.000Z},\n accessed = {2014-05-25},\n file_attached = {true},\n profile_id = {6f7edced-4cf8-3a0e-9af9-b8f648762088},\n last_modified = {2017-03-25T01:19:12.306Z},\n tags = {0955500,1105178},\n read = {true},\n starred = {true},\n authored = {true},\n confirmed = {true},\n hidden = {false},\n citation_key = {Xu2014},\n genre = {Quantum Physics; Mesoscale and Nanoscale Physics; Other Condensed Matter},\n abstract = {We study the dynamics of a two-level system described by a slowly varying Hamiltonian and weakly coupled to the Ohmic environment. We follow the Bloch--Redfield perturbative approach to include the effect of the environment on qubit evolution and take into account modification of the spectrum and matrix elements of qubit transitions due to time-dependence of the Hamiltonian. This formalism is applied to two problems. (1) We consider a qubit, or a spin-1/2, in a rotating magnetic field. We show that once the rotation starts, the spin has a component perpendicular to the rotation plane of the field that initially wiggles and eventually settles to the value proportional to the product of angular rotation velocity of the field and the Berry curvature. (2) We re-examine the Landau--Zener transition for a system coupled to environment at arbitrary temperature. We show that as temperature increases, the thermal excitation and relaxation become leading processes responsible for transition between states of the system. We also apply the Lindblad master equations to these two problems and compare results with those obtained from the Bloch--Redfield equations.},\n bibtype = {article},\n author = {Xu, Canran and Poudel, Amrit and Vavilov, Maxim G.},\n journal = {Physical Review A},\n number = {5}\n}","author_short":["Xu, C.","Poudel, A.","Vavilov, M., G."],"urls":{"Paper":"http://bibbase.org/service/mendeley/6f7edced-4cf8-3a0e-9af9-b8f648762088/file/5f50bf68-7a78-4a89-7ff0-41dc8f246939/2014-Nonadiabatic_dynamics_of_a_slowly_driven_dissipative_two-level_system.pdf.pdf","Website":"http://arxiv.org/abs/1402.4210,http://link.aps.org/doi/10.1103/PhysRevA.89.052102"},"bibbaseid":"xu-poudel-vavilov-nonadiabaticdynamicsofaslowlydrivendissipativetwolevelsystem-2014","role":"author","downloads":0},"search_terms":["nonadiabatic","dynamics","slowly","driven","dissipative","two","level","system","xu","poudel","vavilov"],"keywords":[],"authorIDs":[]}