The B-Box-Containing MicroProtein miP1a/BBX31 Regulates Photomorphogenesis and UV-B Protection. Yadav, A., Bakshi, S., Yadukrishnan, P., Lingwan, M., Dolde, U., Wenkel, S., Masakapalli, S. K., & Datta, S. Plant Physiology, 179(4):1876–1892, April, 2019.
The B-Box-Containing MicroProtein miP1a/BBX31 Regulates Photomorphogenesis and UV-B Protection [link]Paper  doi  abstract   bibtex   
The bZIP transcription factor ELONGATED HYPOCOTYL5 (HY5) represents a major hub in the light-signaling cascade both under visible and UV-B light. The mode of transcriptional regulation of HY5, especially under UV-B light, is not well characterized. B-BOX (BBX) transcription factors regulate HY5 transcription and also posttranscriptionally modulate HY5 to control photomorphogenesis under white light. Here, we identify BBX31 as a key signaling intermediate in visible and UV-B light signal transduction in Arabidopsis (Arabidopsis thaliana). BBX31 expression is induced by UV-B radiation in a fluence-dependent manner. HY5 directly binds to the promoter of BBX31 and regulates its transcript levels. Loss- and gain-of-function mutants of BBX31 indicate that it acts as a negative regulator of photomorphogenesis under white light but is a positive regulator of UV-B signaling. Genetic interaction studies suggest that BBX31 regulates photomorphogenesis independent of HY5. We found no evidence for a direct BBX31-HY5 interaction, and they primarily regulate different sets of genes in white light. Under high doses of UV-B radiation, BBX31 promotes the accumulation of UV-protective flavonoids and phenolic compounds. It enhances tolerance to UV-B radiation by regulating genes involved in photoprotection and DNA repair in a HY5-dependent manner. Under UV-B radiation, overexpression of BBX31 enhances HY5 transcriptional levels in a UV RESISTANCE LOCUS8-dependent manner, suggesting that BBX31 might regulate HY5 transcription.
@article{yadav_b-box-containing_2019,
	title = {The {B}-{Box}-{Containing} {MicroProtein} {miP1a}/{BBX31} {Regulates} {Photomorphogenesis} and {UV}-{B} {Protection}},
	volume = {179},
	issn = {0032-0889},
	url = {https://doi.org/10.1104/pp.18.01258},
	doi = {10.1104/pp.18.01258},
	abstract = {The bZIP transcription factor ELONGATED HYPOCOTYL5 (HY5) represents a major hub in the light-signaling cascade both under visible and UV-B light. The mode of transcriptional regulation of HY5, especially under UV-B light, is not well characterized. B-BOX (BBX) transcription factors regulate HY5 transcription and also posttranscriptionally modulate HY5 to control photomorphogenesis under white light. Here, we identify BBX31 as a key signaling intermediate in visible and UV-B light signal transduction in Arabidopsis (Arabidopsis thaliana). BBX31 expression is induced by UV-B radiation in a fluence-dependent manner. HY5 directly binds to the promoter of BBX31 and regulates its transcript levels. Loss- and gain-of-function mutants of BBX31 indicate that it acts as a negative regulator of photomorphogenesis under white light but is a positive regulator of UV-B signaling. Genetic interaction studies suggest that BBX31 regulates photomorphogenesis independent of HY5. We found no evidence for a direct BBX31-HY5 interaction, and they primarily regulate different sets of genes in white light. Under high doses of UV-B radiation, BBX31 promotes the accumulation of UV-protective flavonoids and phenolic compounds. It enhances tolerance to UV-B radiation by regulating genes involved in photoprotection and DNA repair in a HY5-dependent manner. Under UV-B radiation, overexpression of BBX31 enhances HY5 transcriptional levels in a UV RESISTANCE LOCUS8-dependent manner, suggesting that BBX31 might regulate HY5 transcription.},
	number = {4},
	urldate = {2022-11-30},
	journal = {Plant Physiology},
	author = {Yadav, Arpita and Bakshi, Souvika and Yadukrishnan, Premachandran and Lingwan, Maneesh and Dolde, Ulla and Wenkel, Stephan and Masakapalli, Shyam Kumar and Datta, Sourav},
	month = apr,
	year = {2019},
	pages = {1876--1892},
}

Downloads: 0