(2R,6R)-Hydroxynorketamine is not essential for the antidepressant actions of (R)-ketamine in mice. Yamaguchi, J., Toki, H., Qu, Y., Yang, C., Koike, H., Hashimoto, K., Mizuno-yasuhira, A., & Chaki, S. Neuropsychopharmacology, Nature Publishing Group, 5, 2018.
(2R,6R)-Hydroxynorketamine is not essential for the antidepressant actions of (R)-ketamine in mice [pdf]Paper  (2R,6R)-Hydroxynorketamine is not essential for the antidepressant actions of (R)-ketamine in mice [link]Website  abstract   bibtex   
(R,S)-Ketamine has rapid and sustained antidepressant effects in depressed patients. Although the metabolism of (R,S)-ketamine to (2 R,6 R)-hydroxynorketamine (HNK), a metabolite of (R)-ketamine, has been reported to be essential for its antidepressant effects, recent evidence suggests otherwise. The present study investigated the role of the metabolism of (R)-ketamine to (2 R,6 R)-HNK in the antidepressant actions of (R)-ketamine. Antidepressant effects were evaluated using the forced swimming test in the lipopolysaccharide (LPS)-induced inflammation model of mice and the tail suspension test in naive mice. To prevent the metabolism of (R)-ketamine to (2 R,6 R)-HNK, mice were pretreated with cytochrome P450 (CYP) inhibitors. The concentrations of (R)-ketamine, (R)-norketamine, and (2 R,6 R)-HNK in plasma, brain, and cerebrospinal fluid (CSF) samples were determined using enantioselective liquid chromatography-tandem mass spectrometry. The concentrations of (R)-norketamine and (2 R,6 R)-HNK in plasma, brain, and CSF samples after administration of (R)-norketamine (10 mg/kg) and (2 R,6 R)-HNK (10 mg/kg), respectively, were higher than those generated after administration of (R)-ketamine (10 mg/kg). Nonetheless, while (R)-ketamine attenuated, neither (R)-norketamine nor (2 R,6 R)-HNK significantly altered immobility times of LPS-treated mice. Treatment with CYP inhibitors prior to administration of (R)-ketamine increased the plasma levels of (R)-ketamine, while generation of (2 R,6 R)-HNK was almost completely blocked. (R)-Ketamine exerted the antidepressant effects at a lower dose in the presence of CYP inhibitors than in their absence, which is consistent with exposure levels of (R)-ketamine but not (2 R,6 R)-HNK. These results indicate that metabolism to (2 R,6 R)-HNK is not necessary for the antidepressant effects of (R)-ketamine and that unmetabolized (R)-ketamine itself may be responsible for its antidepressant actions.
@article{
 title = {(2R,6R)-Hydroxynorketamine is not essential for the antidepressant actions of (R)-ketamine in mice},
 type = {article},
 year = {2018},
 identifiers = {[object Object]},
 pages = {0-1},
 websites = {http://dx.doi.org/10.1038/s41386-018-0084-y},
 month = {5},
 publisher = {Nature Publishing Group},
 day = {3},
 id = {e5871c3f-12bf-37ff-9ebe-d201071ece8b},
 created = {2018-05-12T15:03:35.733Z},
 accessed = {2018-05-12},
 file_attached = {true},
 profile_id = {48f1fda5-0084-39cd-8cc7-68fcbd29ae85},
 group_id = {d9389c6c-8ab5-3b8b-86ed-33db09ca0198},
 last_modified = {2018-05-31T16:53:46.883Z},
 tags = {CA},
 read = {false},
 starred = {false},
 authored = {false},
 confirmed = {true},
 hidden = {false},
 citation_key = {Yamaguchi2018},
 notes = {FL},
 private_publication = {false},
 abstract = {(R,S)-Ketamine has rapid and sustained antidepressant effects in depressed patients. Although the metabolism of (R,S)-ketamine to (2 R,6 R)-hydroxynorketamine (HNK), a metabolite of (R)-ketamine, has been reported to be essential for its antidepressant effects, recent evidence suggests otherwise. The present study investigated the role of the metabolism of (R)-ketamine to (2 R,6 R)-HNK in the antidepressant actions of (R)-ketamine. Antidepressant effects were evaluated using the forced swimming test in the lipopolysaccharide (LPS)-induced inflammation model of mice and the tail suspension test in naive mice. To prevent the metabolism of (R)-ketamine to (2 R,6 R)-HNK, mice were pretreated with cytochrome P450 (CYP) inhibitors. The concentrations of (R)-ketamine, (R)-norketamine, and (2 R,6 R)-HNK in plasma, brain, and cerebrospinal fluid (CSF) samples were determined using enantioselective liquid chromatography-tandem mass spectrometry. The concentrations of (R)-norketamine and (2 R,6 R)-HNK in plasma, brain, and CSF samples after administration of (R)-norketamine (10 mg/kg) and (2 R,6 R)-HNK (10 mg/kg), respectively, were higher than those generated after administration of (R)-ketamine (10 mg/kg). Nonetheless, while (R)-ketamine attenuated, neither (R)-norketamine nor (2 R,6 R)-HNK significantly altered immobility times of LPS-treated mice. Treatment with CYP inhibitors prior to administration of (R)-ketamine increased the plasma levels of (R)-ketamine, while generation of (2 R,6 R)-HNK was almost completely blocked. (R)-Ketamine exerted the antidepressant effects at a lower dose in the presence of CYP inhibitors than in their absence, which is consistent with exposure levels of (R)-ketamine but not (2 R,6 R)-HNK. These results indicate that metabolism to (2 R,6 R)-HNK is not necessary for the antidepressant effects of (R)-ketamine and that unmetabolized (R)-ketamine itself may be responsible for its antidepressant actions.},
 bibtype = {article},
 author = {Yamaguchi, Jun-ichi and Toki, Hidetoh and Qu, Youge and Yang, Chun and Koike, Hiroyuki and Hashimoto, Kenji and Mizuno-yasuhira, Akiko and Chaki, Shigeyuki},
 journal = {Neuropsychopharmacology},
 number = {April}
}
Downloads: 0