Soil mercury and its response to atmospheric mercury deposition across the northeastern United States. Yu, X., Driscoll, C., T., Warby, R., A., F., Montesdeoca, M., & Johnson, C., E. Ecological Applications, 24(4):812-822, 2014.
abstract   bibtex   
Terrestrial soil is a large reservoir of atmospherically deposited mercury (Hg). However, few studies have evaluated the accumulation of Hg in terrestrial ecosystems in the northeastern United States, a region which is sensitive to atmospheric Hg deposition. We characterized Hg and organic matter in soil profiles from 139 sampling sites for five subregions across the northeastern United States and estimated atmospheric Hg deposition to these sites by combining numerical modeling with experimental data from the literature. We did not observe any significant relationships between current net atmospheric Hg deposition and soil Hg concentrations or pools, even though soils are a net sink for Hg inputs. Soil Hg appears to be preserved relative to organic carbon (OC) and/or nitrogen (N) in the soil matrix, as a significant negative relationship was observed between the ratios of Hg/OC and OC/N (r ¼ 0.54, P , 0.0001) that shapes the horizonal distribution patterns. We estimated that atmospheric Hg deposition since 1850 (3.97 mg/m 2) accounts for 102% of the Hg pool in the organic horizons (3.88 mg/m 2
@article{
 title = {Soil mercury and its response to atmospheric mercury deposition across the northeastern United States},
 type = {article},
 year = {2014},
 identifiers = {[object Object]},
 keywords = {Atmospheric mercury deposition,Mercury,Soil carbon,Soil profile,Spatial pattern},
 pages = {812-822},
 volume = {24},
 id = {5e69aa75-0a44-36ab-ab07-aefa347cf108},
 created = {2019-01-11T15:56:02.092Z},
 file_attached = {true},
 profile_id = {03bdbf9c-0848-344e-95e3-9d552532f95c},
 group_id = {3addd0f7-d578-34d3-be80-24022cc062a1},
 last_modified = {2019-01-11T15:56:30.463Z},
 read = {false},
 starred = {false},
 authored = {false},
 confirmed = {true},
 hidden = {false},
 folder_uuids = {52eb4509-b777-47b5-a15a-2d8e687cd91d},
 private_publication = {false},
 abstract = {Terrestrial soil is a large reservoir of atmospherically deposited mercury (Hg). However, few studies have evaluated the accumulation of Hg in terrestrial ecosystems in the northeastern United States, a region which is sensitive to atmospheric Hg deposition. We characterized Hg and organic matter in soil profiles from 139 sampling sites for five subregions across the northeastern United States and estimated atmospheric Hg deposition to these sites by combining numerical modeling with experimental data from the literature. We did not observe any significant relationships between current net atmospheric Hg deposition and soil Hg concentrations or pools, even though soils are a net sink for Hg inputs. Soil Hg appears to be preserved relative to organic carbon (OC) and/or nitrogen (N) in the soil matrix, as a significant negative relationship was observed between the ratios of Hg/OC and OC/N (r ¼ 0.54, P , 0.0001) that shapes the horizonal distribution patterns. We estimated that atmospheric Hg deposition since 1850 (3.97 mg/m 2) accounts for 102% of the Hg pool in the organic horizons (3.88 mg/m 2},
 bibtype = {article},
 author = {Yu, Xue and Driscoll, Charles T. and Warby, Richard A F and Montesdeoca, Mario and Johnson, Chris E.},
 journal = {Ecological Applications},
 number = {4}
}

Downloads: 0