Synthesis, characterization and thermal properties of novel nanoencapsulated phase change materials for thermal energy storage. Zhang, G., H., Bon, S., A., F., & Zhao, C., Y. Solar Energy, 86(5):1149-1154, Elsevier, 2012.
Website doi abstract bibtex In this paper, nanocapsules containing n-octadecane with an average 50. nm thick shell of poly(ethyl methacrylate) (PEMA) and poly(methyl methacrylate) (PMMA), and a core/shell weight ratio of 80/20 were synthesized by the direct miniemulsion method, respectively. The average size of the capsules is 140. nm and 119. nm, respectively. The chemical structure of the sample was analyzed using Fourier Transformed Infrared Spectroscopy (FTIR). Crystallography of nanocapsules was investigated by X-ray diffractometer. The surface morphology was studied by Scanning Electron Microscopy (SEM) and Transmission Electron Microscopy (TEM). The thermal properties and thermal stability of the sample were obtained from Differential Scanning Calorimeter (DSC) and Thermal Gravimetric Analysis (TGA). The temperatures and latent heats of melting and crystallizing of PEMA nanocapsule were determined as 32.7 and 29.8 ??C, 198.5 and -197.1. kJ/kg, respectively. TGA analysis indicated that PEMA/octadecane nanocapsule had good thermal stability. The nanocapsules prepared in this work had a much higher encapsulation ratio (89.5%) and encapsulation efficiency (89.5%). Therefore, the findings of the work lead to the conclusion that the present work provides a novel method for fabricating nanoencapsulated phase change material, and it has a better potential for thermal energy storage. ?? 2012 Elsevier Ltd.
@article{
title = {Synthesis, characterization and thermal properties of novel nanoencapsulated phase change materials for thermal energy storage},
type = {article},
year = {2012},
keywords = {Miniemulsion,N-octadecane,Nanocapsules,PEMA,Thermal physical property},
pages = {1149-1154},
volume = {86},
websites = {http://www.sciencedirect.com/science/article/pii/S0038092X12000199},
publisher = {Elsevier},
id = {2cd4d421-9695-340e-a51e-bbcb60b67d7a},
created = {2024-01-02T14:09:35.684Z},
file_attached = {false},
profile_id = {36921318-7a81-32e6-acca-75b835acd8f1},
group_id = {f2d52f92-0a5a-3712-a53b-a4492da8da5f},
last_modified = {2024-01-02T14:09:35.684Z},
read = {false},
starred = {false},
authored = {false},
confirmed = {true},
hidden = {false},
citation_key = {zhang2012synthesis},
source_type = {article},
private_publication = {false},
abstract = {In this paper, nanocapsules containing n-octadecane with an average 50. nm thick shell of poly(ethyl methacrylate) (PEMA) and poly(methyl methacrylate) (PMMA), and a core/shell weight ratio of 80/20 were synthesized by the direct miniemulsion method, respectively. The average size of the capsules is 140. nm and 119. nm, respectively. The chemical structure of the sample was analyzed using Fourier Transformed Infrared Spectroscopy (FTIR). Crystallography of nanocapsules was investigated by X-ray diffractometer. The surface morphology was studied by Scanning Electron Microscopy (SEM) and Transmission Electron Microscopy (TEM). The thermal properties and thermal stability of the sample were obtained from Differential Scanning Calorimeter (DSC) and Thermal Gravimetric Analysis (TGA). The temperatures and latent heats of melting and crystallizing of PEMA nanocapsule were determined as 32.7 and 29.8 ??C, 198.5 and -197.1. kJ/kg, respectively. TGA analysis indicated that PEMA/octadecane nanocapsule had good thermal stability. The nanocapsules prepared in this work had a much higher encapsulation ratio (89.5%) and encapsulation efficiency (89.5%). Therefore, the findings of the work lead to the conclusion that the present work provides a novel method for fabricating nanoencapsulated phase change material, and it has a better potential for thermal energy storage. ?? 2012 Elsevier Ltd.},
bibtype = {article},
author = {Zhang, G. H. and Bon, S. A F and Zhao, C. Y.},
doi = {10.1016/j.solener.2012.01.003},
journal = {Solar Energy},
number = {5}
}
Downloads: 0
{"_id":"5ZGbQuAePdzhsNbf2","bibbaseid":"zhang-bon-zhao-synthesischaracterizationandthermalpropertiesofnovelnanoencapsulatedphasechangematerialsforthermalenergystorage-2012","downloads":0,"creationDate":"2015-12-22T20:07:00.646Z","title":"Synthesis, characterization and thermal properties of novel nanoencapsulated phase change materials for thermal energy storage","author_short":["Zhang, G., H.","Bon, S., A., F.","Zhao, C., Y."],"year":2012,"bibtype":"article","biburl":"https://bibbase.org/service/mendeley/36921318-7a81-32e6-acca-75b835acd8f1","bibdata":{"title":"Synthesis, characterization and thermal properties of novel nanoencapsulated phase change materials for thermal energy storage","type":"article","year":"2012","keywords":"Miniemulsion,N-octadecane,Nanocapsules,PEMA,Thermal physical property","pages":"1149-1154","volume":"86","websites":"http://www.sciencedirect.com/science/article/pii/S0038092X12000199","publisher":"Elsevier","id":"2cd4d421-9695-340e-a51e-bbcb60b67d7a","created":"2024-01-02T14:09:35.684Z","file_attached":false,"profile_id":"36921318-7a81-32e6-acca-75b835acd8f1","group_id":"f2d52f92-0a5a-3712-a53b-a4492da8da5f","last_modified":"2024-01-02T14:09:35.684Z","read":false,"starred":false,"authored":false,"confirmed":"true","hidden":false,"citation_key":"zhang2012synthesis","source_type":"article","private_publication":false,"abstract":"In this paper, nanocapsules containing n-octadecane with an average 50. nm thick shell of poly(ethyl methacrylate) (PEMA) and poly(methyl methacrylate) (PMMA), and a core/shell weight ratio of 80/20 were synthesized by the direct miniemulsion method, respectively. The average size of the capsules is 140. nm and 119. nm, respectively. The chemical structure of the sample was analyzed using Fourier Transformed Infrared Spectroscopy (FTIR). Crystallography of nanocapsules was investigated by X-ray diffractometer. The surface morphology was studied by Scanning Electron Microscopy (SEM) and Transmission Electron Microscopy (TEM). The thermal properties and thermal stability of the sample were obtained from Differential Scanning Calorimeter (DSC) and Thermal Gravimetric Analysis (TGA). The temperatures and latent heats of melting and crystallizing of PEMA nanocapsule were determined as 32.7 and 29.8 ??C, 198.5 and -197.1. kJ/kg, respectively. TGA analysis indicated that PEMA/octadecane nanocapsule had good thermal stability. The nanocapsules prepared in this work had a much higher encapsulation ratio (89.5%) and encapsulation efficiency (89.5%). Therefore, the findings of the work lead to the conclusion that the present work provides a novel method for fabricating nanoencapsulated phase change material, and it has a better potential for thermal energy storage. ?? 2012 Elsevier Ltd.","bibtype":"article","author":"Zhang, G. H. and Bon, S. A F and Zhao, C. Y.","doi":"10.1016/j.solener.2012.01.003","journal":"Solar Energy","number":"5","bibtex":"@article{\n title = {Synthesis, characterization and thermal properties of novel nanoencapsulated phase change materials for thermal energy storage},\n type = {article},\n year = {2012},\n keywords = {Miniemulsion,N-octadecane,Nanocapsules,PEMA,Thermal physical property},\n pages = {1149-1154},\n volume = {86},\n websites = {http://www.sciencedirect.com/science/article/pii/S0038092X12000199},\n publisher = {Elsevier},\n id = {2cd4d421-9695-340e-a51e-bbcb60b67d7a},\n created = {2024-01-02T14:09:35.684Z},\n file_attached = {false},\n profile_id = {36921318-7a81-32e6-acca-75b835acd8f1},\n group_id = {f2d52f92-0a5a-3712-a53b-a4492da8da5f},\n last_modified = {2024-01-02T14:09:35.684Z},\n read = {false},\n starred = {false},\n authored = {false},\n confirmed = {true},\n hidden = {false},\n citation_key = {zhang2012synthesis},\n source_type = {article},\n private_publication = {false},\n abstract = {In this paper, nanocapsules containing n-octadecane with an average 50. nm thick shell of poly(ethyl methacrylate) (PEMA) and poly(methyl methacrylate) (PMMA), and a core/shell weight ratio of 80/20 were synthesized by the direct miniemulsion method, respectively. The average size of the capsules is 140. nm and 119. nm, respectively. The chemical structure of the sample was analyzed using Fourier Transformed Infrared Spectroscopy (FTIR). Crystallography of nanocapsules was investigated by X-ray diffractometer. The surface morphology was studied by Scanning Electron Microscopy (SEM) and Transmission Electron Microscopy (TEM). The thermal properties and thermal stability of the sample were obtained from Differential Scanning Calorimeter (DSC) and Thermal Gravimetric Analysis (TGA). The temperatures and latent heats of melting and crystallizing of PEMA nanocapsule were determined as 32.7 and 29.8 ??C, 198.5 and -197.1. kJ/kg, respectively. TGA analysis indicated that PEMA/octadecane nanocapsule had good thermal stability. The nanocapsules prepared in this work had a much higher encapsulation ratio (89.5%) and encapsulation efficiency (89.5%). Therefore, the findings of the work lead to the conclusion that the present work provides a novel method for fabricating nanoencapsulated phase change material, and it has a better potential for thermal energy storage. ?? 2012 Elsevier Ltd.},\n bibtype = {article},\n author = {Zhang, G. H. and Bon, S. A F and Zhao, C. Y.},\n doi = {10.1016/j.solener.2012.01.003},\n journal = {Solar Energy},\n number = {5}\n}","author_short":["Zhang, G., H.","Bon, S., A., F.","Zhao, C., Y."],"urls":{"Website":"http://www.sciencedirect.com/science/article/pii/S0038092X12000199"},"biburl":"https://bibbase.org/service/mendeley/36921318-7a81-32e6-acca-75b835acd8f1","bibbaseid":"zhang-bon-zhao-synthesischaracterizationandthermalpropertiesofnovelnanoencapsulatedphasechangematerialsforthermalenergystorage-2012","role":"author","keyword":["Miniemulsion","N-octadecane","Nanocapsules","PEMA","Thermal physical property"],"metadata":{"authorlinks":{"bon, s":"https://www.bonlab.info/publications"}},"downloads":0},"search_terms":["synthesis","characterization","thermal","properties","novel","nanoencapsulated","phase","change","materials","thermal","energy","storage","zhang","bon","zhao"],"keywords":["miniemulsion","n-octadecane","nanocapsules","pema","thermal physical property"],"authorIDs":["74yNAkKzJDypPwNAe"],"dataSources":["wdhyC6gK4W6qkYPZc","ya2CyA73rpZseyrZ8","pC6zmZiqEM2Foo9na","NcAak6LpL4rerwSST","QM3qFC2vNe7ca6T4f","W7y5fCfvoA9wPS8ig","HnQgdqk5gSojsMrCe","mSrdWAs3jeuoSxB2E","qrDxaqEHcg3eA7bSF","GxJqJfCNGPEYnWKPq","6ZG38dwbepkczBAzY","2252seNhipfTmjEBQ"]}