REMARK-LLM: A Robust and Efficient Watermarking Framework for Generative Large Language Models. Zhang, R., Hussain, S. S., Neekhara, P., & Koushanfar, F. In Balzarotti, D. & Xu, W., editors, 33rd USENIX Security Symposium, USENIX Security 2024, Philadelphia, PA, USA, August 14-16, 2024, 2024. USENIX Association.
Paper bibtex 2 downloads @inproceedings{DBLP:conf/uss/ZhangHNK24,
author = {Ruisi Zhang and
Shehzeen Samarah Hussain and
Paarth Neekhara and
Farinaz Koushanfar},
editor = {Davide Balzarotti and
Wenyuan Xu},
title = {{REMARK-LLM:} {A} Robust and Efficient Watermarking Framework for
Generative Large Language Models},
booktitle = {33rd {USENIX} Security Symposium, {USENIX} Security 2024, Philadelphia,
PA, USA, August 14-16, 2024},
publisher = {{USENIX} Association},
year = {2024},
url = {https://drive.google.com/uc?export=download&id=1fB4wRre-S9tom-hcmopCBsZbJZ50E7Bn},
timestamp = {Mon, 22 Jul 2024 17:10:49 +0200},
biburl = {https://dblp.org/rec/conf/uss/ZhangHNK24.bib},
bibsource = {dblp computer science bibliography, https://dblp.org}
}
Downloads: 2
{"_id":"rDgBjFzf45CX5zQoZ","bibbaseid":"zhang-hussain-neekhara-koushanfar-remarkllmarobustandefficientwatermarkingframeworkforgenerativelargelanguagemodels-2024","author_short":["Zhang, R.","Hussain, S. S.","Neekhara, P.","Koushanfar, F."],"bibdata":{"bibtype":"inproceedings","type":"inproceedings","author":[{"firstnames":["Ruisi"],"propositions":[],"lastnames":["Zhang"],"suffixes":[]},{"firstnames":["Shehzeen","Samarah"],"propositions":[],"lastnames":["Hussain"],"suffixes":[]},{"firstnames":["Paarth"],"propositions":[],"lastnames":["Neekhara"],"suffixes":[]},{"firstnames":["Farinaz"],"propositions":[],"lastnames":["Koushanfar"],"suffixes":[]}],"editor":[{"firstnames":["Davide"],"propositions":[],"lastnames":["Balzarotti"],"suffixes":[]},{"firstnames":["Wenyuan"],"propositions":[],"lastnames":["Xu"],"suffixes":[]}],"title":"REMARK-LLM: A Robust and Efficient Watermarking Framework for Generative Large Language Models","booktitle":"33rd USENIX Security Symposium, USENIX Security 2024, Philadelphia, PA, USA, August 14-16, 2024","publisher":"USENIX Association","year":"2024","url":"https://drive.google.com/uc?export=download&id=1fB4wRre-S9tom-hcmopCBsZbJZ50E7Bn","timestamp":"Mon, 22 Jul 2024 17:10:49 +0200","biburl":"https://dblp.org/rec/conf/uss/ZhangHNK24.bib","bibsource":"dblp computer science bibliography, https://dblp.org","bibtex":"@inproceedings{DBLP:conf/uss/ZhangHNK24,\n author = {Ruisi Zhang and\n Shehzeen Samarah Hussain and\n Paarth Neekhara and\n Farinaz Koushanfar},\n editor = {Davide Balzarotti and\n Wenyuan Xu},\n title = {{REMARK-LLM:} {A} Robust and Efficient Watermarking Framework for\n Generative Large Language Models},\n booktitle = {33rd {USENIX} Security Symposium, {USENIX} Security 2024, Philadelphia,\n PA, USA, August 14-16, 2024},\n publisher = {{USENIX} Association},\n year = {2024},\n url = {https://drive.google.com/uc?export=download&id=1fB4wRre-S9tom-hcmopCBsZbJZ50E7Bn},\n timestamp = {Mon, 22 Jul 2024 17:10:49 +0200},\n biburl = {https://dblp.org/rec/conf/uss/ZhangHNK24.bib},\n bibsource = {dblp computer science bibliography, https://dblp.org}\n}\n\n","author_short":["Zhang, R.","Hussain, S. S.","Neekhara, P.","Koushanfar, F."],"editor_short":["Balzarotti, D.","Xu, W."],"key":"DBLP:conf/uss/ZhangHNK24","id":"DBLP:conf/uss/ZhangHNK24","bibbaseid":"zhang-hussain-neekhara-koushanfar-remarkllmarobustandefficientwatermarkingframeworkforgenerativelargelanguagemodels-2024","role":"author","urls":{"Paper":"https://drive.google.com/uc?export=download&id=1fB4wRre-S9tom-hcmopCBsZbJZ50E7Bn"},"metadata":{"authorlinks":{}},"downloads":2},"bibtype":"inproceedings","biburl":"https://github.com/ACESLabUCSD/website-bib/raw/main/papers.bib","dataSources":["T3mbtLzoWgBWpcSve","kZuJc5RhCBzjncqGM","so7r9j4cPhhA9SuA6"],"keywords":[],"search_terms":["remark","llm","robust","efficient","watermarking","framework","generative","large","language","models","zhang","hussain","neekhara","koushanfar"],"title":"REMARK-LLM: A Robust and Efficient Watermarking Framework for Generative Large Language Models","year":2024,"downloads":2}