Topography and synaptic shaping of direction selectivity in primary auditory cortex. Zhang, L. I, Tan, A. Y Y, Schreiner, C. E, & Merzenich, M. M Nature, 424(6945):201-5, 2003.
doi  abstract   bibtex   
The direction of frequency-modulated (FM) sweeps is an important temporal cue in animal and human communication. FM direction-selective neurons are found in the primary auditory cortex (A1), but their topography and the mechanisms underlying their selectivity remain largely unknown. Here we report that in the rat A1, direction selectivity is topographically ordered in parallel with characteristic frequency (CF): low CF neurons preferred upward sweeps, whereas high CF neurons preferred downward sweeps. The asymmetry of 'inhibitory sidebands', suppressive regions flanking the tonal receptive field (TRF) of the spike response, also co-varied with CF. In vivo whole-cell recordings showed that the direction selectivity already present in the synaptic inputs was enhanced by cortical synaptic inhibition, which suppressed the synaptic excitation of the non-preferred direction more than that of the preferred. The excitatory and inhibitory synaptic TRFs had identical spectral tuning, but with inhibition delayed relative to excitation. The spectral asymmetry of the synaptic TRFs co-varied with CF, as had direction selectivity and sideband asymmetry, and thus suggested a synaptic mechanism for the shaping of FM direction selectivity and its topographic ordering.
@Article{Zhang2003,
  author   = {Li I Zhang and Andrew Y Y Tan and Christoph E Schreiner and Michael M Merzenich},
  journal  = {Nature},
  title    = {Topography and synaptic shaping of direction selectivity in primary auditory cortex.},
  year     = {2003},
  number   = {6945},
  pages    = {201-5},
  volume   = {424},
  abstract = {The direction of frequency-modulated (FM) sweeps is an important temporal
	cue in animal and human communication. FM direction-selective neurons
	are found in the primary auditory cortex (A1), but their topography
	and the mechanisms underlying their selectivity remain largely unknown.
	Here we report that in the rat A1, direction selectivity is topographically
	ordered in parallel with characteristic frequency (CF): low CF neurons
	preferred upward sweeps, whereas high CF neurons preferred downward
	sweeps. The asymmetry of 'inhibitory sidebands', suppressive regions
	flanking the tonal receptive field (TRF) of the spike response, also
	co-varied with CF. In vivo whole-cell recordings showed that the
	direction selectivity already present in the synaptic inputs was
	enhanced by cortical synaptic inhibition, which suppressed the synaptic
	excitation of the non-preferred direction more than that of the preferred.
	The excitatory and inhibitory synaptic TRFs had identical spectral
	tuning, but with inhibition delayed relative to excitation. The spectral
	asymmetry of the synaptic TRFs co-varied with CF, as had direction
	selectivity and sideband asymmetry, and thus suggested a synaptic
	mechanism for the shaping of FM direction selectivity and its topographic
	ordering.},
  doi      = {10.1038/nature01796},
  keywords = {Computing Methodologies, Human, Language, Learning, Mental Processes, Models, Theoretical, Stochastic Processes, Support, U.S. Gov't, Non-P.H.S., Cognition, Linguistics, Neural Networks (Computer), Practice (Psychology), Non-U.S. Gov't, Memory, Psychological, Task Performance and Analysis, Time Factors, Visual Perception, Adult, Attention, Discrimination Learning, Female, Male, Short-Term, Mental Recall, Orientation, Pattern Recognition, Visual, Perceptual Masking, Reading, Concept Formation, Form Perception, Animals, Corpus Striatum, Shrews, P.H.S., Visual Cortex, Visual Pathways, Acoustic Stimulation, Auditory Cortex, Auditory Perception, Cochlea, Ear, Gerbillinae, Glycine, Hearing, Neurons, Space Perception, Strychnine, Adolescent, Decision Making, Reaction Time, Astrocytoma, Brain Mapping, Brain Neoplasms, Cerebral Cortex, Electric Stimulation, Electrophysiology, Epilepsy, Temporal Lobe, Evoked Potentials, Frontal Lobe, Noise, Parietal Lobe, Scalp, Child, Language Development, Psycholinguistics, Brain, Perception, Speech, Vocalization, Animal, Discrimination (Psychology), Hippocampus, Rats, Calcium, Chelating Agents, Excitatory Postsynaptic Potentials, Glutamic Acid, Guanosine Diphosphate, In Vitro, Neuronal Plasticity, Pyramidal Cells, Receptors, AMPA, Metabotropic Glutamate, N-Methyl-D-Aspartate, Somatosensory Cortex, Synapses, Synaptic Transmission, Thionucleotides, Action Potentials, Calcium Channels, L-Type, Electric Conductivity, Entorhinal Cortex, Neurological, Long-Evans, Infant, Mathematics, Statistics, Probability Learning, Problem Solving, Psychophysics, Association Learning, Child Psychology, Habituation (Psychophysiology), Probability Theory, Analysis of Variance, Semantics, Symbolism, Behavior, Eye Movements, Macaca mulatta, Prefrontal Cortex, Cats, Dogs, Haplorhini, Photic Stimulation, Electroencephalography, Nervous System Physiology, Darkness, Grasshoppers, Light, Membrane Potentials, Neural Inhibition, Afferent, Picrotoxin, Vision, Deoxyglucose, Injections, Microspheres, Neural Pathways, Rhodamines, Choice Behavior, Speech Perception, Verbal Learning, Dominance, Cerebral, Fixation, Ocular, Language Tests, Random Allocation, Comparative Study, Saguinus, Sound Spectrography, Species Specificity, Audiometry, Auditory Threshold, Calibration, Data Interpretation, Statistical, Anesthesia, General, Electrodes, Implanted, Pitch Perception, Sound Localization, Paired-Associate Learning, Serial Learning, Auditory, Age Factors, Motion Perception, Brain Injuries, Computer Simulation, Blindness, Psychomotor Performance, Color Perception, Signal Detection (Psychology), Judgment, ROC Curve, Regression Analysis, Music, Probability, Arm, Cerebrovascular Disorders, Hemiplegia, Movement, Muscle, Skeletal, Myoclonus, Robotics, Magnetoencephalography, Phonetics, Software, Speech Production Measurement, Epilepsies, Partial, Laterality, Stereotaxic Techniques, Germany, Speech Acoustics, Verbal Behavior, Child Development, Instinct, Brain Stem, Coma, Diagnosis, Differential, Hearing Disorders, Hearing Loss, Central, Neuroma, Acoustic, Dendrites, Down-Regulation, Patch-Clamp Techniques, Wistar, Up-Regulation, Aged, Aphasia, Middle Aged, Cones (Retina), Primates, Retina, Retinal Ganglion Cells, Tympanic Membrane, Cell Communication, Extremities, Biological, Motor Activity, Rana catesbeiana, Spinal Cord, Central Nervous System, Motion, Motor Cortex, Intelligence, Macaca fascicularis, Adoption, Critical Period (Psychology), France, Korea, Magnetic Resonance Imaging, Multilingualism, Auditory Pathways, Cochlear Nerve, Loudness Perception, Neural Conduction, Sensory Thresholds, Sound, Language Disorders, Preschool, Generalization (Psychology), Vocabulary, Biophysics, Nerve Net, Potassium Channels, Sodium Channels, Cues, Differential Threshold, Arousal, Newborn, Sucking Behavior, Ferrets, Microelectrodes, Gestalt Theory, Mathematical Computing, Perceptual Closure, Vestibulocochlear Nerve, Brain Damage, Chronic, Regional Blood Flow, Thinking, Tomography, Emission-Computed, Case-Control Studies, Multivariate Analysis, Artificial Intelligence, Depth Perception, Broca, Encephalitis, Herpes Simplex, Infarction, Middle Cerebral Artery, X-Ray Computed, Sprague-Dawley, 12853959},
}

Downloads: 0