generated by bibbase.org
  2024 (1)
Attractor-like circuits improve visual decoding and behavior in zebrafish. Privat, M.; Hansen, E., C., A.; Pietri, T.; Marachlian, E.; Uribe-Arias, A.; Duchemin, A.; Candat, V.; Nourin, S.; and Sumbre, G. bioRxiv,2024.02.03.578596. 2 2024.
Attractor-like circuits improve visual decoding and behavior in zebrafish [link]Website   doi   link   bibtex   abstract  
  2023 (1)
Radial astrocyte synchronization modulates the visual system during behavioral-state transitions. Uribe-Arias, A.; Rozenblat, R.; Vinepinsky, E.; Marachlian, E.; Kulkarni, A.; Zada, D.; Privat, M.; Topsakalian, D.; Charpy, S.; Candat, V.; Nourin, S.; Appelbaum, L.; and Sumbre, G. Neuron, 111(24): 4040-4057.e6. 12 2023.
Radial astrocyte synchronization modulates the visual system during behavioral-state transitions [link]Website   doi   link   bibtex   8 downloads  
  2022 (1)
Blind cavefish retain functional connectivity in the tectum despite loss of retinal input. Lloyd, E.; McDole, B.; Privat, M.; Jaggard, J., B.; Duboué, E., R.; Sumbre, G., G.; and Keene, A., C. Current Biology, 32(17): 2021.09.28.461408. 9 2022.
Blind cavefish retain functional connectivity in the tectum despite loss of retinal input [link]Website   doi   link   bibtex   abstract   26 downloads  
  2021 (2)
Blind cavefish retain functional connectivity in the tectum despite loss of retinal input. Lloyd, E.; McDole, B.; Privat, M.; Jaggard, J., B.; Duboué, E.; Sumbre, G.; and Keene, A. bioRxiv,2021.09.28.461408. 9 2021.
Blind cavefish retain functional connectivity in the tectum despite loss of retinal input [link]Website   doi   link   bibtex   abstract   5 downloads  
Fourier Motion Processing in the Optic Tectum and Pretectum of the Zebrafish Larva. Duchemin, A.; Privat, M.; and Sumbre, G. Frontiers in neural circuits, 15(January): 814128. 1 2021.
Fourier Motion Processing in the Optic Tectum and Pretectum of the Zebrafish Larva. [link]Website   doi   link   bibtex   abstract   4 downloads  
  2020 (1)
Naturalistic Behavior: The Zebrafish Larva Strikes Back. Privat, M.; and Sumbre, G. Current Biology, 30(1): R27-R29. 1 2020.
Naturalistic Behavior: The Zebrafish Larva Strikes Back [link]Website   doi   link   bibtex   abstract   26 downloads  
  2019 (3)
An open-source and low-cost feeding system for zebrafish facilities. Tangara, A.; Paresys, G.; Bouallague, F.; Cabirou, Y.; Fodor, J.; Llobet, V.; and Sumbre, G. bioRxiv,1-15. 2 2019.
An open-source and low-cost feeding system for zebrafish facilities [link]Website   doi   link   bibtex   abstract   4 downloads  
Functional Integration of Newborn Neurons in the Zebrafish Optic Tectum. Boulanger-Weill, J.; and Sumbre, G. Frontiers in Cell and Developmental Biology, 7: 57. 4 2019.
Functional Integration of Newborn Neurons in the Zebrafish Optic Tectum [link]Website   doi   link   bibtex   abstract   1 download  
Sensorimotor Transformations in the Zebrafish Auditory System. Privat, M.; Romano, S., A.; Pietri, T.; Jouary, A.; Boulanger-Weill, J.; Elbaz, N.; Duchemin, A.; Soares, D.; and Sumbre, G. Current Biology, 29(23): 4010-4023.e4. 12 2019.
Sensorimotor Transformations in the Zebrafish Auditory System. [link]Website   doi   link   bibtex   abstract   11 downloads  
  2018 (2)
Principles of Functional Circuit Connectivity: Insights From Spontaneous Activity in the Zebrafish Optic Tectum. Marachlian, E.; Avitan, L.; Goodhill, G., J.; and Sumbre, G. Frontiers in Neural Circuits, 12(June): 1-8. 6 2018.
Principles of Functional Circuit Connectivity: Insights From Spontaneous Activity in the Zebrafish Optic Tectum [link]Website   doi   link   bibtex   abstract   4 downloads  
Whole-Brain Neuronal Activity Displays Crackling Noise Dynamics. Ponce-Alvarez, A.; Jouary, A.; Privat, M.; Deco, G.; and Sumbre, G. Neuron, 100(6): 1446-1459.e6. 12 2018.
Whole-Brain Neuronal Activity Displays Crackling Noise Dynamics [link]Website   doi   link   bibtex   abstract   3 downloads  
  2017 (4)
A computational toolbox and step-by-step tutorial for the analysis of neuronal population dynamics in calcium imaging data. Romano, S., A.; Pérez-schuster, V.; Jouary, A.; Candeo, A.; Boulanger-Weill, J.; and Sumbre, G. bioRxiv,1-36. 4 2017.
A computational toolbox and step-by-step tutorial for the analysis of neuronal population dynamics in calcium imaging data [link]Website   doi   link   bibtex   abstract  
Functional Interactions between Newborn and Mature Neurons Leading to Integration into Established Neuronal Circuits. Boulanger-Weill, J.; Candat, V.; Jouary, A.; Romano, S., A.; Pérez-Schuster, V.; and Sumbre, G. Current Biology, 27(12): 1707-1720.e5. 6 2017.
Functional Interactions between Newborn and Mature Neurons Leading to Integration into Established Neuronal Circuits. [link]Website   doi   link   bibtex   abstract   1 download  
An integrated calcium imaging processing toolbox for the analysis of neuronal population dynamics. Romano, S., A.; Pérez-Schuster, V.; Jouary, A.; Boulanger-Weill, J.; Candeo, A.; Pietri, T.; and Sumbre, G. PLOS Computational Biology, 13(6): e1005526. 6 2017.
An integrated calcium imaging processing toolbox for the analysis of neuronal population dynamics [link]Website   doi   link   bibtex   abstract   2 downloads  
The Emergence of the Spatial Structure of Tectal Spontaneous Activity Is Independent of Visual Inputs. Pietri, T.; Romano, S., A.; Pérez-Schuster, V.; Boulanger-Weill, J.; Candat, V.; and Sumbre, G. Cell Reports, 19(5): 939-948. 5 2017.
The Emergence of the Spatial Structure of Tectal Spontaneous Activity Is Independent of Visual Inputs [link]Website   doi   link   bibtex   abstract   4 downloads  
  2016 (3)
Automatic classification of behavior in zebrafish larva. Jouary, A.; and Sumbre, G. bioRxiv,1-14. 5 2016.
Automatic classification of behavior in zebrafish larva [link]Website   doi   link   bibtex   abstract  
A 2D virtual reality system for visual goal-driven navigation in zebrafish larvae. Jouary, A.; Haudrechy, M.; Candelier, R.; and Sumbre, G. Scientific Reports, 6(1): 34015. 9 2016.
A 2D virtual reality system for visual goal-driven navigation in zebrafish larvae [link]Website   doi   link   bibtex   abstract   2 downloads  
Sustained Rhythmic Brain Activity Underlies Visual Motion Perception in Zebrafish. Pérez-Schuster, V.; Kulkarni, A.; Nouvian, M.; Romano, S., A.; Lygdas, K.; Jouary, A.; Dipoppa, M.; Pietri, T.; Haudrechy, M.; Candat, V.; Boulanger-Weill, J.; Hakim, V.; and Sumbre, G. Cell Reports, 17(4): 1098-1112. 10 2016.
Sustained Rhythmic Brain Activity Underlies Visual Motion Perception in Zebrafish [link]Website   doi   link   bibtex   abstract   2 downloads  
  2015 (2)
A microfluidic device to study neuronal and motor responses to acute chemical stimuli in zebrafish. Candelier, R.; Sriti Murmu, M.; Alejo Romano, S.; Jouary, A.; Debrégeas, G.; and Sumbre, G. Scientific Reports, 5(1): 12196. 12 2015.
A microfluidic device to study neuronal and motor responses to acute chemical stimuli in zebrafish [link]Website   doi   link   bibtex   abstract  
Spontaneous neuronal network dynamics reveal circuit's functional adaptations for behavior. Romano, S., A.; Pietri, T.; Pérez-Schuster, V.; Jouary, A.; Haudrechy, M.; and Sumbre, G. Neuron, 85(5): 1070-85. 3 2015.
Spontaneous neuronal network dynamics reveal circuit's functional adaptations for behavior. [link]Website   doi   link   bibtex   abstract   1 download  
  2014 (1)
The world according to zebrafish: How neural circuits generate behavior. Sumbre, G.; and de Polavieja, G., G. Frontiers in Neural Circuits, 8(JULY): 91. 7 2014.
The world according to zebrafish: How neural circuits generate behavior [link]Website   doi   link   bibtex   abstract  
  2013 (3)
Monitoring tectal neuronal activities and motor behavior in zebrafish larvae. Sumbre, G.; and Poo, M. Cold Spring Harbor protocols, 2013(9): 873-9. 9 2013.
Monitoring tectal neuronal activities and motor behavior in zebrafish larvae. [link]Website   doi   link   bibtex   abstract   1 download  
The first mecp2-null zebrafish model shows altered motor behaviors. Pietri, T.; Roman, A.; Guyon, N.; Romano, S., A.; Washbourne, P.; Moens, C., B.; de Polavieja, G., G.; and Sumbre, G. Frontiers in Neural Circuits, 7(July): 118. 2013.
The first mecp2-null zebrafish model shows altered motor behaviors [link]Website   doi   link   bibtex   abstract  
Fast functional imaging of multiple brain regions in intact zebrafish larvae using selective plane illumination microscopy. Panier, T.; Romano, S., A.; Olive, R.; Pietri, T.; Sumbre, G.; Candelier, R.; and Debrégeas, G. Frontiers in neural circuits, 7: 65. 4 2013.
Fast functional imaging of multiple brain regions in intact zebrafish larvae using selective plane illumination microscopy. [link]Website   doi   link   bibtex   abstract  
  2010 (1)
Region-Specific Contribution of Ephrin-B and Wnt Signaling to Receptive Field Plasticity in Developing Optic Tectum. Lim, B., K.; Cho, S., j.; Sumbre, G.; and Poo, M., m. Neuron, 65(6): 899-911. 3 2010.
Region-Specific Contribution of Ephrin-B and Wnt Signaling to Receptive Field Plasticity in Developing Optic Tectum [link]Website   doi   link   bibtex   abstract  
  2009 (1)
Nonsomatotopic Organization of the Higher Motor Centers in Octopus. Zullo, L.; Sumbre, G.; Agnisola, C.; Flash, T.; and Hochner, B. Current Biology, 19(19): 1632-1636. 10 2009.
Nonsomatotopic Organization of the Higher Motor Centers in Octopus [link]Website   doi   link   bibtex   abstract  
  2008 (1)
Entrained rhythmic activities of neuronal ensembles as perceptual memory of time interval. Sumbre, G.; Muto, A.; Baier, H.; and Poo, M. Nature, 456(7218): 102-6. 11 2008.
Entrained rhythmic activities of neuronal ensembles as perceptual memory of time interval. [link]Website   doi   link   bibtex   abstract   3 downloads  
  2007 (1)
LKB1/STRAD Promotes Axon Initiation During Neuronal Polarization. Shelly, M.; Cancedda, L.; Heilshorn, S.; Sumbre, G.; and Poo, M. Cell, 129(3): 565-577. 5 2007.
LKB1/STRAD Promotes Axon Initiation During Neuronal Polarization [link]Website   doi   link   bibtex   abstract  
  2006 (1)
Octopuses Use a Human-like Strategy to Control Precise Point-to-Point Arm Movements. Sumbre, G.; Fiorito, G.; Flash, T.; and Hochner, B. Current Biology, 16(8): 767-772. 4 2006.
Octopuses Use a Human-like Strategy to Control Precise Point-to-Point Arm Movements [link]Website   doi   link   bibtex   abstract   1 download  
  2005 (1)
Neurobiology: motor control of flexible octopus arms. Sumbre, G.; Fiorito, G.; Flash, T.; and Hochner, B. Nature, 433(7026): 595-6. 2 2005.
Neurobiology: motor control of flexible octopus arms. [link]Website   doi   link   bibtex   abstract  
  2002 (1)
How to move with no rigid skeleton? The octopus has the answers. Yekutieli, Y.; Sumbre, G.; Flash, T.; and Hochner, B. Biologist, 49(6): 250-4. 12 2002.
How to move with no rigid skeleton? The octopus has the answers. [link]Website   link   bibtex   abstract  
  2001 (1)
Control of octopus arm extension by a peripheral motor program. Sumbre, G.; Gutfreund, Y.; Fiorito, G.; Flash, T.; and Hochner, B. Science, 293(5536): 1845-8. 9 2001.
Control of octopus arm extension by a peripheral motor program. [link]Website   doi   link   bibtex   abstract  
  1995 (1)
Wing-beat coupling between flying locust pairs: preferred phase and lift enhancement. Camhi; Sumbre; and Wendler The Journal of Experimental Biology, 198(Pt 4): 1051-63. 1 1995.
Wing-beat coupling between flying locust pairs: preferred phase and lift enhancement [link]Website   link   bibtex   abstract   1 download  
  1994 (1)
Close encounters among flying locusts produce wing-beat coupling. Kutsch, W.; Camhi, J.; and Sumbre, G. Journal of Comparative Physiology A, 174(5): 643-649. 5 1994.
Close encounters among flying locusts produce wing-beat coupling [link]Website   doi   link   bibtex   abstract   1 download