Out-shining silicon.
Sivaram, V.; Stranks, S. D.; and Snaith, H. J.
Scientific American, 313(1): 54–59. 2015.
link
bibtex
@article{sivaram_out-shining_2015,
title = {Out-shining silicon},
volume = {313},
number = {1},
journal = {Scientific American},
author = {Sivaram, V. and Stranks, S. D. and Snaith, H. J.},
year = {2015},
pages = {54--59},
}
Active layer control for high efficiency perovskite solar cells.
Eperon, G.
Ph.D. Thesis, University of Oxford, 2015.
link
bibtex
@phdthesis{eperon_active_2015,
title = {Active layer control for high efficiency perovskite solar cells},
school = {University of Oxford},
author = {Eperon, G.},
year = {2015},
}
The Future of Solar Energy: An Interdisciplinary MIT Study.
Schmalensee, R.; Bulovic, V.; Armstrong, R.; Batlle, C.; Brown, P.; Deutch, J.; Jacoby, H.; Jaffe, R.; Jean, J.; Miller, R.; and others
Technical Report Energy Initiative, Massachusetts Institute of Technology, 2015.
link
bibtex
@techreport{schmalensee_future_2015,
title = {The {Future} of {Solar} {Energy}: {An} {Interdisciplinary} {MIT} {Study}},
copyright = {All rights reserved},
institution = {Energy Initiative, Massachusetts Institute of Technology},
author = {Schmalensee, Richard and Bulovic, Vladimir and Armstrong, Robert and Batlle, Carlos and Brown, Patrick and Deutch, John and Jacoby, Henry and Jaffe, Robert and Jean, Joel and Miller, Raanan and {others}},
year = {2015},
}
Technology Improvement and Emissions Reductions as Mutually Reinforcing Efforts: Observations from the Global Development of Solar and Wind Energy.
Trancik, J. E; Jean, J.; Kavlak, G.; Klemun, M. M; Edwards, M. R; McNerney, J.; Miotti, M.; Brown, P. R; Mueller, J. M; and Needell, Z. A
Technical Report MIT, 2015.
link
bibtex
@techreport{trancik_technology_2015,
title = {Technology {Improvement} and {Emissions} {Reductions} as {Mutually} {Reinforcing} {Efforts}: {Observations} from the {Global} {Development} of {Solar} and {Wind} {Energy}},
copyright = {All rights reserved},
institution = {MIT},
author = {Trancik, Jessika E and Jean, Joel and Kavlak, Goksin and Klemun, Magdalena M and Edwards, Morgan R and McNerney, James and Miotti, Marco and Brown, Patrick R and Mueller, Joshua M and Needell, Zachary A},
year = {2015},
}
Quantum funneling in blended multi-band gap core/shell colloidal quantum dot solar cells.
Neo, D. C. J.; Stranks, S. D.; Eperon, G. E.; Snaith, H. J.; Assender, H. E.; and Watt, A. A. R.
Applied Physics Letters, 107(10): 103902–103902. 2015.
link
bibtex
@article{neo_quantum_2015,
title = {Quantum funneling in blended multi-band gap core/shell colloidal quantum dot solar cells},
volume = {107},
number = {10},
journal = {Applied Physics Letters},
author = {Neo, D. C. J. and Stranks, S. D. and Eperon, G. E. and Snaith, H. J. and Assender, H. E. and Watt, A. A. R.},
year = {2015},
pages = {103902--103902},
}
Perovskite crystals for tunable white light emission.
Pathak, S.; Sakai, N.; Rivarola, F. W. R.; Stranks, S. D.; Liu, J.; and ...
Chemistry of Materials, 27(23): 8066–8075. 2015.
link
bibtex
@article{pathak_perovskite_2015,
title = {Perovskite crystals for tunable white light emission},
volume = {27},
number = {23},
journal = {Chemistry of Materials},
author = {Pathak, S. and Sakai, N. and Rivarola, F. Wisnivesky Rocca and Stranks, S. D. and Liu, J. and {...}},
year = {2015},
pages = {8066--8075},
}
Pathways for solar photovoltaics.
Jean, J.; Brown, P. R.; Jaffe, R. L.; Buonassisi, T.; and Bulović, V.
Energy & Environmental Science, 8(4): 1200–1219. 2015.
Paper
doi
link
bibtex
abstract
@article{jean_pathways_2015,
title = {Pathways for solar photovoltaics},
volume = {8},
copyright = {All rights reserved},
issn = {1754-5692, 1754-5706},
url = {http://xlink.rsc.org/?DOI=C4EE04073B},
doi = {10.1039/C4EE04073B},
abstract = {This perspective identifies future technological directions for solar photovoltaics and examines potential limits to terawatt-scale PV deployment.
,
Solar energy is one of the few renewable, low-carbon resources with both the scalability and the technological maturity to meet ever-growing global demand for electricity. Among solar power technologies, solar photovoltaics (PV) are the most widely deployed, providing 0.87\% of the world's electricity in 2013 and sustaining a compound annual growth rate in cumulative installed capacity of 43\% since 2000. Given the massive scale of deployment needed, this article examines potential limits to PV deployment at the terawatt scale, emphasizing constraints on the use of commodity and PV-critical materials. We propose material complexity as a guiding framework for classifying PV technologies, and we analyze three core themes that focus future research and development: efficiency, materials use, and manufacturing complexity and cost.},
language = {en},
number = {4},
urldate = {2019-07-12},
journal = {Energy \& Environmental Science},
author = {Jean, Joel and Brown, Patrick R. and Jaffe, Robert L. and Buonassisi, Tonio and Bulović, Vladimir},
year = {2015},
pages = {1200--1219},
}
This perspective identifies future technological directions for solar photovoltaics and examines potential limits to terawatt-scale PV deployment. , Solar energy is one of the few renewable, low-carbon resources with both the scalability and the technological maturity to meet ever-growing global demand for electricity. Among solar power technologies, solar photovoltaics (PV) are the most widely deployed, providing 0.87% of the world's electricity in 2013 and sustaining a compound annual growth rate in cumulative installed capacity of 43% since 2000. Given the massive scale of deployment needed, this article examines potential limits to PV deployment at the terawatt scale, emphasizing constraints on the use of commodity and PV-critical materials. We propose material complexity as a guiding framework for classifying PV technologies, and we analyze three core themes that focus future research and development: efficiency, materials use, and manufacturing complexity and cost.
Modulating the electron–hole interaction in a hybrid lead halide perovskite with an electric field.
Leijtens, T.; Kandada, A. S.; Eperon, G. E.; Grancini, G.; D’Innocenzo, V.; and ...
Journal of the American Chemical Society, 137(49): 15451–15459. 2015.
link
bibtex
@article{leijtens_modulating_2015,
title = {Modulating the electron–hole interaction in a hybrid lead halide perovskite with an electric field},
volume = {137},
number = {49},
journal = {Journal of the American Chemical Society},
author = {Leijtens, T. and Kandada, AR Srimath and Eperon, G. E. and Grancini, G. and D’Innocenzo, V. and {...}},
year = {2015},
pages = {15451--15459},
}
Mapping Electric Field‐Induced Switchable Poling and Structural Degradation in Hybrid Lead Halide Perovskite Thin Films.
Leijtens, T.; Hoke, E. T.; Grancini, G.; Slotcavage, D. J.; Eperon, G. E.; Ball, J. M.; and ...
Advanced Energy Materials, 5(20): 1500962–1500962. 2015.
link
bibtex
@article{leijtens_mapping_2015,
title = {Mapping {Electric} {Field}‐{Induced} {Switchable} {Poling} and {Structural} {Degradation} in {Hybrid} {Lead} {Halide} {Perovskite} {Thin} {Films}},
volume = {5},
number = {20},
journal = {Advanced Energy Materials},
author = {Leijtens, T. and Hoke, E. T. and Grancini, G. and Slotcavage, D. J. and Eperon, G. E. and Ball, J. M. and {...}},
year = {2015},
pages = {1500962--1500962},
}
C60 as an Efficient n-Type Compact Layer in Perovskite Solar Cells.
Wojciechowski, K.; Leijtens, T.; Siprova, S.; Schlueter, C.; Hörantner, M. T.; and ...
The journal of physical chemistry letters, 6(12): 2399–2405. 2015.
link
bibtex
@article{wojciechowski_c60_2015,
title = {C60 as an {Efficient} n-{Type} {Compact} {Layer} in {Perovskite} {Solar} {Cells}},
volume = {6},
number = {12},
journal = {The journal of physical chemistry letters},
author = {Wojciechowski, K. and Leijtens, T. and Siprova, S. and Schlueter, C. and Hörantner, M. T. and {...}},
year = {2015},
pages = {2399--2405},
}
Charge carriers in planar and meso-structured organic–inorganic perovskites: mobilities, lifetimes, and concentrations of trap states.
Hutter, E. M.; Eperon, G. E.; Stranks, S. D.; and Savenije, T. J.
The journal of physical chemistry letters, 6(15): 3082–3090. 2015.
link
bibtex
@article{hutter_charge_2015,
title = {Charge carriers in planar and meso-structured organic–inorganic perovskites: mobilities, lifetimes, and concentrations of trap states},
volume = {6},
number = {15},
journal = {The journal of physical chemistry letters},
author = {Hutter, E. M. and Eperon, G. E. and Stranks, S. D. and Savenije, T. J.},
year = {2015},
pages = {3082--3090},
}
The importance of moisture in hybrid lead halide perovskite thin film fabrication.
Eperon, G. E.; Habisreutinger, S. N.; Leijtens, T.; Bruijnaers, B. J.; Franeker, J. v.; and ...
ACS nano, 9(9): 9380–9393. 2015.
link
bibtex
@article{eperon_importance_2015,
title = {The importance of moisture in hybrid lead halide perovskite thin film fabrication},
volume = {9},
number = {9},
journal = {ACS nano},
author = {Eperon, G. E. and Habisreutinger, S. N. and Leijtens, T. and Bruijnaers, B. J. and Franeker, JJ van and {...}},
year = {2015},
pages = {9380--9393},
}
Impact of microstructure on local carrier lifetime in perovskite solar cells.
deQuilettes , D. W.; Vorpahl, S. M.; Stranks, S. D.; Nagaoka, H.; Eperon, G. E.; and ...
Science, 348(6235): 683–686. 2015.
link
bibtex
@article{dequilettes_impact_2015,
title = {Impact of microstructure on local carrier lifetime in perovskite solar cells},
volume = {348},
number = {6235},
journal = {Science},
author = {deQuilettes, D. W. and Vorpahl, S. M. and Stranks, S. D. and Nagaoka, H. and Eperon, G. E. and {...}},
year = {2015},
pages = {683--686},
}
Open-Circuit Voltage Deficit, Radiative Sub-Bandgap States, and Prospects in Quantum Dot Solar Cells.
Chuang, C. M.; Maurano, A.; Brandt, R. E.; Hwang, G. W.; Jean, J.; Buonassisi, T.; Bulović, V.; and Bawendi, M. G.
Nano Letters, 15(5): 3286–3294. May 2015.
Paper
doi
link
bibtex
abstract
@article{chuang_open-circuit_2015,
title = {Open-{Circuit} {Voltage} {Deficit}, {Radiative} {Sub}-{Bandgap} {States}, and {Prospects} in {Quantum} {Dot} {Solar} {Cells}},
volume = {15},
copyright = {All rights reserved},
issn = {1530-6984, 1530-6992},
url = {http://pubs.acs.org/doi/10.1021/acs.nanolett.5b00513},
doi = {10.1021/acs.nanolett.5b00513},
abstract = {Quantum dot photovoltaics (QDPV) offer the potential for low-cost solar cells. To develop strategies for continued improvement in QDPVs, a better understanding of the factors that limit their performance is essential. Here, we study carrier recombination processes that limit the power conversion efficiency of PbS QDPVs. We demonstrate the presence of radiative sub-bandgap states and sub-bandgap state filling in operating devices by using photoluminescence (PL) and electroluminescence (EL) spectroscopy. These subbandgap states are most likely the origin of the high opencircuit-voltage (VOC) deficit and relatively limited carrier collection that have thus far been observed in QDPVs. Combining these results with our perspectives on recent progress in QDPV, we conclude that eliminating sub-bandgap states in PbS QD films has the potential to show a greater gain than may be attainable by optimization of interfaces between QDs and other materials. We suggest possible future directions that could guide the design of high-performance QDPVs.},
language = {en},
number = {5},
urldate = {2019-07-12},
journal = {Nano Letters},
author = {Chuang, Chia-Hao Marcus and Maurano, Andrea and Brandt, Riley E. and Hwang, Gyu Weon and Jean, Joel and Buonassisi, Tonio and Bulović, Vladimir and Bawendi, Moungi G.},
month = may,
year = {2015},
pages = {3286--3294},
}
Quantum dot photovoltaics (QDPV) offer the potential for low-cost solar cells. To develop strategies for continued improvement in QDPVs, a better understanding of the factors that limit their performance is essential. Here, we study carrier recombination processes that limit the power conversion efficiency of PbS QDPVs. We demonstrate the presence of radiative sub-bandgap states and sub-bandgap state filling in operating devices by using photoluminescence (PL) and electroluminescence (EL) spectroscopy. These subbandgap states are most likely the origin of the high opencircuit-voltage (VOC) deficit and relatively limited carrier collection that have thus far been observed in QDPVs. Combining these results with our perspectives on recent progress in QDPV, we conclude that eliminating sub-bandgap states in PbS QD films has the potential to show a greater gain than may be attainable by optimization of interfaces between QDs and other materials. We suggest possible future directions that could guide the design of high-performance QDPVs.
Optical properties and limiting photocurrent of thin-film perovskite solar cells.
Ball, J. M.; Stranks, S. D.; Hörantner, M. T.; Hüttner, S.; Zhang, W.; Crossland, E. J. W.; and ...
Energy & Environmental Science, 8(2): 602–609. 2015.
link
bibtex
@article{ball_optical_2015,
title = {Optical properties and limiting photocurrent of thin-film perovskite solar cells},
volume = {8},
number = {2},
journal = {Energy \& Environmental Science},
author = {Ball, J. M. and Stranks, S. D. and Hörantner, M. T. and Hüttner, S. and Zhang, W. and Crossland, E. J. W. and {...}},
year = {2015},
pages = {602--609},
}
Templated microstructural growth of perovskite thin films via colloidal monolayer lithography.
Hörantner, M. T.; Zhang, W.; Saliba, M.; Wojciechowski, K.; and Snaith, H. J.
Energy & Environmental Science, 8(7): 2041–2047. 2015.
link
bibtex
@article{horantner_templated_2015,
title = {Templated microstructural growth of perovskite thin films via colloidal monolayer lithography},
volume = {8},
number = {7},
journal = {Energy \& Environmental Science},
author = {Hörantner, M. T. and Zhang, W. and Saliba, M. and Wojciechowski, K. and Snaith, H. J.},
year = {2015},
pages = {2041--2047},
}
Perovskite photovoltachromic cells for building integration.
Cannavale, A.; Eperon, G. E.; Cossari, P.; Abate, A.; Snaith, H. J.; and Gigli, G.
Energy & Environmental Science, 8(5): 1578–1584. 2015.
link
bibtex
@article{cannavale_perovskite_2015,
title = {Perovskite photovoltachromic cells for building integration},
volume = {8},
number = {5},
journal = {Energy \& Environmental Science},
author = {Cannavale, A. and Eperon, G. E. and Cossari, P. and Abate, A. and Snaith, H. J. and Gigli, G.},
year = {2015},
pages = {1578--1584},
}
Non-ferroelectric nature of the conductance hysteresis in CH3NH3PbI3 perovskite-based photovoltaic devices.
Beilsten-Edmands, J.; Eperon, G. E.; Johnson, R. D.; Snaith, H. J.; and Radaelli, P. G.
Applied Physics Letters, 106(17): 173502–173502. 2015.
link
bibtex
@article{beilsten-edmands_non-ferroelectric_2015,
title = {Non-ferroelectric nature of the conductance hysteresis in {CH3NH3PbI3} perovskite-based photovoltaic devices},
volume = {106},
number = {17},
journal = {Applied Physics Letters},
author = {Beilsten-Edmands, J. and Eperon, G. E. and Johnson, R. D. and Snaith, H. J. and Radaelli, P. G.},
year = {2015},
pages = {173502--173502},
}
Characterization of planar lead halide perovskite solar cells by impedance spectroscopy, open-circuit photovoltage decay, and intensity-modulated photovoltage/photocurrent ….
Pockett, A.; Eperon, G. E.; Peltola, T.; Snaith, H. J.; Walker, A.; Peter, L. M.; and ...
The Journal of Physical Chemistry C, 119(7): 3456–3465. 2015.
link
bibtex
@article{pockett_characterization_2015,
title = {Characterization of planar lead halide perovskite solar cells by impedance spectroscopy, open-circuit photovoltage decay, and intensity-modulated photovoltage/photocurrent …},
volume = {119},
number = {7},
journal = {The Journal of Physical Chemistry C},
author = {Pockett, A. and Eperon, G. E. and Peltola, T. and Snaith, H. J. and Walker, A. and Peter, L. M. and {...}},
year = {2015},
pages = {3456--3465},
}
Temperature‐Dependent Charge‐Carrier Dynamics in CH3NH3PbI3 Perovskite Thin Films.
Milot, R. L.; Eperon, G. E.; Snaith, H. J.; Johnston, M. B.; and Herz, L. M.
Advanced Functional Materials, 25(39): 6218–6227. 2015.
link
bibtex
@article{milot_temperaturedependent_2015,
title = {Temperature‐{Dependent} {Charge}‐{Carrier} {Dynamics} in {CH3NH3PbI3} {Perovskite} {Thin} {Films}},
volume = {25},
number = {39},
journal = {Advanced Functional Materials},
author = {Milot, R. L. and Eperon, G. E. and Snaith, H. J. and Johnston, M. B. and Herz, L. M.},
year = {2015},
pages = {6218--6227},
}
Inorganic caesium lead iodide perovskite solar cells.
Eperon, G. E.; Paternò, G. M.; Sutton, R. J.; Zampetti, A.; Haghighirad, A. A.; and ...
Journal of Materials Chemistry A, 3(39): 19688–19695. 2015.
link
bibtex
@article{eperon_inorganic_2015,
title = {Inorganic caesium lead iodide perovskite solar cells},
volume = {3},
number = {39},
journal = {Journal of Materials Chemistry A},
author = {Eperon, G. E. and Paternò, G. M. and Sutton, R. J. and Zampetti, A. and Haghighirad, A. A. and {...}},
year = {2015},
pages = {19688--19695},
}
Placas solares de perovskita.
Sivaram, V.; Stranks, S. D.; and Snaith, H. J.
Investigación y ciencia,36–41. 2015.
link
bibtex
@article{sivaram_placas_2015,
title = {Placas solares de perovskita},
journal = {Investigación y ciencia},
author = {Sivaram, V. and Stranks, S. D. and Snaith, H. J.},
year = {2015},
pages = {36--41},
}
Exciton Binding energies and effective masses in Organo-lead Tri-Halide Perovskites.
Portugall, O.; Miyata, A.; Mitioglu, A.; Plochocka, P.; Wang, J. T. W.; Stranks, S.; and ...
APS 2015, L34., 8. 2015.
link
bibtex
@article{portugall_exciton_2015,
title = {Exciton {Binding} energies and effective masses in {Organo}-lead {Tri}-{Halide} {Perovskites}},
volume = {8},
journal = {APS 2015, L34.},
author = {Portugall, O. and Miyata, A. and Mitioglu, A. and Plochocka, P. and Wang, J. T. W. and Stranks, S. and {...}},
year = {2015},
}
Organisch‐anorganische Perowskit‐Dünnfilme für hocheffiziente Solarzellen.
Stranks, S. D.; Nayak, P. K.; Zhang, W.; Stergiopoulos, T.; and Snaith, H. J.
Angewandte Chemie, 127(11): 3288–3297. 2015.
link
bibtex
@article{stranks_organischanorganische_2015,
title = {Organisch‐anorganische {Perowskit}‐{Dünnfilme} für hocheffiziente {Solarzellen}},
volume = {127},
number = {11},
journal = {Angewandte Chemie},
author = {Stranks, S. D. and Nayak, P. K. and Zhang, W. and Stergiopoulos, T. and Snaith, H. J.},
year = {2015},
pages = {3288--3297},
}
Thiophene-based dyes for probing membranes.
López-Duarte, I.; Chairatana, P.; Wu, Y.; Pérez-Moreno, J.; Bennett, P. M.; and ...
Organic & biomolecular chemistry, 13(12): 3792–3802. 2015.
link
bibtex
@article{lopez-duarte_thiophene-based_2015,
title = {Thiophene-based dyes for probing membranes},
volume = {13},
number = {12},
journal = {Organic \& biomolecular chemistry},
author = {López-Duarte, I. and Chairatana, P. and Wu, Y. and Pérez-Moreno, J. and Bennett, P. M. and {...}},
year = {2015},
pages = {3792--3802},
}
Enhanced amplified spontaneous emission in perovskites using a flexible cholesteric liquid crystal reflector.
Stranks, S. D.; Wood, S. M.; Wojciechowski, K.; Deschler, F.; Saliba, M.; and ...
Nano letters, 15(8): 4935–4941. 2015.
link
bibtex
@article{stranks_enhanced_2015,
title = {Enhanced amplified spontaneous emission in perovskites using a flexible cholesteric liquid crystal reflector},
volume = {15},
number = {8},
journal = {Nano letters},
author = {Stranks, S. D. and Wood, S. M. and Wojciechowski, K. and Deschler, F. and Saliba, M. and {...}},
year = {2015},
pages = {4935--4941},
}
Ultrasensitive and label-free molecular-level detection enabled by light phase control in magnetoplasmonic nanoantennas.
Maccaferri, N.; Gregorczyk, K. E.; Oliveira, T. D.; Kataja, M.; Dijken, S. V.; and ...
Nature communications, 6(1): 1–9. 2015.
link
bibtex
@article{maccaferri_ultrasensitive_2015,
title = {Ultrasensitive and label-free molecular-level detection enabled by light phase control in magnetoplasmonic nanoantennas},
volume = {6},
number = {1},
journal = {Nature communications},
author = {Maccaferri, N. and Gregorczyk, K. E. and Oliveira, TVAG De and Kataja, M. and Dijken, S. Van and {...}},
year = {2015},
pages = {1--9},
}
Atmospheric influence upon crystallization and electronic disorder and its impact on the photophysical properties of organic–inorganic perovskite solar cells.
Pathak, S.; Sepe, A.; Sadhanala, A.; Deschler, F.; Haghighirad, A.; Sakai, N.; and ...
ACS nano, 9(3): 2311–2320. 2015.
link
bibtex
@article{pathak_atmospheric_2015,
title = {Atmospheric influence upon crystallization and electronic disorder and its impact on the photophysical properties of organic–inorganic perovskite solar cells},
volume = {9},
number = {3},
journal = {ACS nano},
author = {Pathak, S. and Sepe, A. and Sadhanala, A. and Deschler, F. and Haghighirad, A. and Sakai, N. and {...}},
year = {2015},
pages = {2311--2320},
}
Direct measurement of the exciton binding energy and effective masses for charge carriers in organic–inorganic tri-halide perovskites.
Miyata, A.; Mitioglu, A.; Plochocka, P.; Portugall, O.; Wang, J. T. W.; Stranks, S. D.; and ...
Nature Physics, 11(7): 582–587. 2015.
link
bibtex
@article{miyata_direct_2015,
title = {Direct measurement of the exciton binding energy and effective masses for charge carriers in organic–inorganic tri-halide perovskites},
volume = {11},
number = {7},
journal = {Nature Physics},
author = {Miyata, A. and Mitioglu, A. and Plochocka, P. and Portugall, O. and Wang, J. T. W. and Stranks, S. D. and {...}},
year = {2015},
pages = {582--587},
}
Bottom-up ultra-thin functional optoelectronic films and devices.
Bulovic, V.; Jean, J.; and Wang, A. I. J.
US Patent App. 14/608,504. 2015.
link
bibtex
@article{bulovic_bottom-up_2015,
title = {Bottom-up ultra-thin functional optoelectronic films and devices},
journal = {US Patent App. 14/608,504},
author = {Bulovic, V. and Jean, J. and Wang, A. I. J.},
year = {2015},
}
Novel low cost hole transporting materials for efficient organic-inorganic perovskite solar cells.
Liu, J.; Pathak, S.; Leijtens, T.; Stergiopoulos, T.; Wojciechowski, K.; and ...
2015 IEEE 42nd Photovoltaic Specialist Conference (PVSC),1–4. 2015.
link
bibtex
@article{liu_novel_2015,
title = {Novel low cost hole transporting materials for efficient organic-inorganic perovskite solar cells},
journal = {2015 IEEE 42nd Photovoltaic Specialist Conference (PVSC)},
author = {Liu, J. and Pathak, S. and Leijtens, T. and Stergiopoulos, T. and Wojciechowski, K. and {...}},
year = {2015},
pages = {1--4},
}
DW de quilettes, S. Pathak, RJ Sutton, G. Grancini, DS Ginger, RAJ Janssen, A. Petrozza, HJ Snaith.
Eperon, G. E.; Habisreutinger, S. N.; Leijtens, T.; Bruijnaers, B. J.; and Franeker, J. V.
Acs Nano, 9: 9380–9380. 2015.
link
bibtex
@article{eperon_dw_2015,
title = {{DW} de quilettes, {S}. {Pathak}, {RJ} {Sutton}, {G}. {Grancini}, {DS} {Ginger}, {RAJ} {Janssen}, {A}. {Petrozza}, {HJ} {Snaith}},
volume = {9},
journal = {Acs Nano},
author = {Eperon, G. E. and Habisreutinger, S. N. and Leijtens, T. and Bruijnaers, B. J. and Franeker, JJ Van},
year = {2015},
pages = {9380--9380},
}
Dye Monolayers Used as the Hole Transporting Medium in Dye‐Sensitized Solar Cells.
Moia, D.; Leijtens, T.; Noel, N.; Snaith, H. J.; Nelson, J.; and Barnes, P. R. F.
Advanced Materials, 27(39): 5889–5894. 2015.
link
bibtex
@article{moia_dye_2015,
title = {Dye {Monolayers} {Used} as the {Hole} {Transporting} {Medium} in {Dye}‐{Sensitized} {Solar} {Cells}},
volume = {27},
number = {39},
journal = {Advanced Materials},
author = {Moia, D. and Leijtens, T. and Noel, N. and Snaith, H. J. and Nelson, J. and Barnes, P. R. F.},
year = {2015},
pages = {5889--5894},
}
The role of hole transport between dyes in solid-state dye-sensitized solar cells.
Moia, D.; Cappel, U. B.; Leijtens, T.; Li, X.; Telford, A. M.; Snaith, H. J.; O’Regan, B. C.; and ...
The Journal of Physical Chemistry C, 119(33): 18975–18985. 2015.
link
bibtex
@article{moia_role_2015,
title = {The role of hole transport between dyes in solid-state dye-sensitized solar cells},
volume = {119},
number = {33},
journal = {The Journal of Physical Chemistry C},
author = {Moia, D. and Cappel, U. B. and Leijtens, T. and Li, X. and Telford, A. M. and Snaith, H. J. and O’Regan, B. C. and {...}},
year = {2015},
pages = {18975--18985},
}
Employing PEDOT as the p-type charge collection layer in regular organic–inorganic perovskite solar cells.
Liu, J.; Pathak, S.; Stergiopoulos, T.; Leijtens, T.; Wojciechowski, K.; and ...
The journal of physical chemistry letters, 6(9): 1666–1673. 2015.
link
bibtex
@article{liu_employing_2015,
title = {Employing {PEDOT} as the p-type charge collection layer in regular organic–inorganic perovskite solar cells},
volume = {6},
number = {9},
journal = {The journal of physical chemistry letters},
author = {Liu, J. and Pathak, S. and Stergiopoulos, T. and Leijtens, T. and Wojciechowski, K. and {...}},
year = {2015},
pages = {1666--1673},
}