Benefit from Photon Recycling at the Maximum-Power Point of State-of-the-Art Perovskite Solar Cells.
Brenes, R.; Laitz, M.; Jean, J.; deQuilettes , D. W.; and Bulović, V.
Physical Review Applied, 12(1): 014017. 2019.
Paper
doi
link
bibtex
@article{brenes_benefit_2019,
title = {Benefit from {Photon} {Recycling} at the {Maximum}-{Power} {Point} of {State}-of-the-{Art} {Perovskite} {Solar} {Cells}},
volume = {12},
copyright = {All rights reserved},
issn = {2331-7019},
url = {https://link.aps.org/doi/10.1103/PhysRevApplied.12.014017},
doi = {10.1103/PhysRevApplied.12.014017},
language = {en},
number = {1},
urldate = {2019-07-12},
journal = {Physical Review Applied},
author = {Brenes, Roberto and Laitz, Madeleine and Jean, Joel and deQuilettes, Dane W. and Bulović, Vladimir},
year = {2019},
pages = {014017},
}
Radiation Hardness of Perovskite/Silicon and Perovskite/CIGS Tandem Solar Cells under Proton Irradiation.
Lang, F.; Jošt, M.; Frohna, K.; Ashouri, A. A.; Bowman, A. R.; Bertram, T.; and ...
. 2019.
link
bibtex
@article{lang_radiation_2019,
title = {Radiation {Hardness} of {Perovskite}/{Silicon} and {Perovskite}/{CIGS} {Tandem} {Solar} {Cells} under {Proton} {Irradiation}},
author = {Lang, F. and Jošt, M. and Frohna, K. and Ashouri, A. A. and Bowman, A. R. and Bertram, T. and {...}},
year = {2019},
}
Visualizing buried local carrier diffusion in halide perovskite crystals via two-photon microscopy.
Stavrakas, C.; Delport, G.; Zhumekenov, A. A.; Anaya, M.; Chahbazian, R.; and ...
ACS Energy Letters, 5(1): 117–123. 2019.
link
bibtex
@article{stavrakas_visualizing_2019,
title = {Visualizing buried local carrier diffusion in halide perovskite crystals via two-photon microscopy},
volume = {5},
number = {1},
journal = {ACS Energy Letters},
author = {Stavrakas, C. and Delport, G. and Zhumekenov, A. A. and Anaya, M. and Chahbazian, R. and {...}},
year = {2019},
pages = {117--123},
}
Enabling flexible all-perovskite tandem solar cells.
Palmstrom, A. F.; Eperon, G. E.; Leijtens, T.; Prasanna, R.; Habisreutinger, S. N.; and ...
Joule, 3(9): 2193–2204. 2019.
link
bibtex
@article{palmstrom_enabling_2019,
title = {Enabling flexible all-perovskite tandem solar cells},
volume = {3},
number = {9},
journal = {Joule},
author = {Palmstrom, A. F. and Eperon, G. E. and Leijtens, T. and Prasanna, R. and Habisreutinger, S. N. and {...}},
year = {2019},
pages = {2193--2204},
}
Design of low bandgap tin–lead halide perovskite solar cells to achieve thermal, atmospheric and operational stability.
Prasanna, R.; Leijtens, T.; Dunfield, S. P.; Raiford, J. A.; Wolf, E. J.; Swifter, S. A.; and ...
Nature Energy, 4(11): 939–947. 2019.
link
bibtex
@article{prasanna_design_2019,
title = {Design of low bandgap tin–lead halide perovskite solar cells to achieve thermal, atmospheric and operational stability},
volume = {4},
number = {11},
journal = {Nature Energy},
author = {Prasanna, R. and Leijtens, T. and Dunfield, S. P. and Raiford, J. A. and Wolf, E. J. and Swifter, S. A. and {...}},
year = {2019},
pages = {939--947},
}
Epitaxial Dimers and Auger-Assisted Detrapping in PbS Quantum Dot Solids.
Gilmore, R. H.; Liu, Y.; Shcherbakov-Wu, W.; Dahod, N. S.; Lee, E. M.; Weidman, M. C.; Li, H.; Jean, J.; Bulović, V.; Willard, A. P.; Grossman, J. C.; and Tisdale, W. A.
Matter, 1(1): 250–265. July 2019.
Paper
doi
link
bibtex
abstract
@article{gilmore_epitaxial_2019,
title = {Epitaxial {Dimers} and {Auger}-{Assisted} {Detrapping} in {PbS} {Quantum} {Dot} {Solids}},
volume = {1},
copyright = {All rights reserved},
issn = {25902385},
url = {https://linkinghub.elsevier.com/retrieve/pii/S2590238519300402},
doi = {10.1016/j.matt.2019.05.015},
abstract = {We explore the dynamic interaction of charge carriers between band-edge states and sub-band trap states in PbS quantum dot (QD) solids using timeresolved spectroscopy. In monodisperse arrays of 4- to 5-nm diameter PbS QDs, we observe an optically active trap state \$100–200 meV below the band edge that occurs at a frequency of 1 in \$2,500 QDs. Uncoupled QD solids with oleic acid ligands show trap-to-ground-state recombination that resembles Auger recombination. In electronically coupled QD solids, we observe entropically driven uphill thermalization of trapped charge carriers from the trap state to the band edge via two distinct mechanisms: Auger-assisted charge transfer (\$35 ps) and thermally activated hopping (\$500 ps). Photophysical characterization combined with atomistic simulations and high-resolution electron microscopy suggest that these states arise from epitaxially fused pairs of QDs rather than electron or hole traps at the QD surface, offering new strategies for improving the optoelectronic performance of QD materials.},
language = {en},
number = {1},
urldate = {2019-07-12},
journal = {Matter},
author = {Gilmore, Rachel H. and Liu, Yun and Shcherbakov-Wu, Wenbi and Dahod, Nabeel S. and Lee, Elizabeth M.Y. and Weidman, Mark C. and Li, Huashan and Jean, Joel and Bulović, Vladimir and Willard, Adam P. and Grossman, Jeffrey C. and Tisdale, William A.},
month = jul,
year = {2019},
pages = {250--265},
}
We explore the dynamic interaction of charge carriers between band-edge states and sub-band trap states in PbS quantum dot (QD) solids using timeresolved spectroscopy. In monodisperse arrays of 4- to 5-nm diameter PbS QDs, we observe an optically active trap state $100–200 meV below the band edge that occurs at a frequency of 1 in $2,500 QDs. Uncoupled QD solids with oleic acid ligands show trap-to-ground-state recombination that resembles Auger recombination. In electronically coupled QD solids, we observe entropically driven uphill thermalization of trapped charge carriers from the trap state to the band edge via two distinct mechanisms: Auger-assisted charge transfer ($35 ps) and thermally activated hopping ($500 ps). Photophysical characterization combined with atomistic simulations and high-resolution electron microscopy suggest that these states arise from epitaxially fused pairs of QDs rather than electron or hole traps at the QD surface, offering new strategies for improving the optoelectronic performance of QD materials.
State-of-the-Art Perovskite Solar Cells Benefit from Photon Recycling at Maximum Power Point.
Brenes, R.; Laitz, M.; Jean, J.; deQuilettes , D. W; and Bulovic, V.
arXiv preprint arXiv:1901.08637. 2019.
link
bibtex
@article{brenes_state---art_2019,
title = {State-of-the-{Art} {Perovskite} {Solar} {Cells} {Benefit} from {Photon} {Recycling} at {Maximum} {Power} {Point}},
copyright = {All rights reserved},
journal = {arXiv preprint arXiv:1901.08637},
author = {Brenes, Roberto and Laitz, Madeleine and Jean, Joel and deQuilettes, Dane W and Bulovic, Vladimir},
year = {2019},
}
Guaranteed global optimization of thin-film optical systems.
Azunre, P.; Jean, J.; Rotschild, C.; Bulovic, V.; Johnson, S. G.; and Baldo, M. A.
New Journal of Physics. 2019.
Paper
doi
link
bibtex
abstract
@article{azunre_guaranteed_2019,
title = {Guaranteed global optimization of thin-film optical systems},
copyright = {All rights reserved},
issn = {1367-2630},
url = {http://iopscience.iop.org/10.1088/1367-2630/ab2e19},
doi = {10.1088/1367-2630/ab2e19},
abstract = {A parallel deterministic global optimization algorithm for thin-film multilayer optical coatings is developed. This algorithm enables locating a global solution to an optimization problem in this class to within a user-specified tolerance. More specifically, the algorithm is a parallel branch-and-bound method with applicable bounds on the merit function computed using Taylor models. This study is the first one, to the best of our knowledge, to attempt guaranteed global optimization of this important class of problems, thereby providing an overview and an assessment of the current state of such techniques in this domain. As a proof of concept on a small scale, the method is illustrated numerically and experimentally in the context of antireflection coatings for silicon solar cells—we design and fabricate a three-layer dielectric stack on silicon that exhibits an average reflectance of (2.53±0.10) \%, weighted over a broad range of incident angles and the solar spectrum. The practicality of our approach is assessed by comparing its computational cost relative to traditional stochastic global optimization techniques which provide no guarantees on their solutions. While our method is observed to be significantly more computationally expensive, we demonstrate via our proof of concept that it is already feasible to optimize sufficiently simple practical problems at a reasonable cost, given the current accessibility of cloud computing resources. Ongoing advances in distributed computing are likely to bring more design problems within the reach of deterministic global optimization methods, yielding rigorous guaranteed solutions in the presence of practical manufacturing constraints.},
language = {en},
urldate = {2019-07-12},
journal = {New Journal of Physics},
author = {Azunre, Paul and Jean, Joel and Rotschild, Carmel and Bulovic, Vladimir and Johnson, Steven G. and Baldo, Marc A.},
year = {2019},
}
A parallel deterministic global optimization algorithm for thin-film multilayer optical coatings is developed. This algorithm enables locating a global solution to an optimization problem in this class to within a user-specified tolerance. More specifically, the algorithm is a parallel branch-and-bound method with applicable bounds on the merit function computed using Taylor models. This study is the first one, to the best of our knowledge, to attempt guaranteed global optimization of this important class of problems, thereby providing an overview and an assessment of the current state of such techniques in this domain. As a proof of concept on a small scale, the method is illustrated numerically and experimentally in the context of antireflection coatings for silicon solar cells—we design and fabricate a three-layer dielectric stack on silicon that exhibits an average reflectance of (2.53±0.10) %, weighted over a broad range of incident angles and the solar spectrum. The practicality of our approach is assessed by comparing its computational cost relative to traditional stochastic global optimization techniques which provide no guarantees on their solutions. While our method is observed to be significantly more computationally expensive, we demonstrate via our proof of concept that it is already feasible to optimize sufficiently simple practical problems at a reasonable cost, given the current accessibility of cloud computing resources. Ongoing advances in distributed computing are likely to bring more design problems within the reach of deterministic global optimization methods, yielding rigorous guaranteed solutions in the presence of practical manufacturing constraints.
High-Speed Vapor Transport Deposition of Perovskite Thin Films.
Hoerantner, M. T.; Wassweiler, E. L.; Zhang, H.; Panda, A.; Nasilowski, M.; and ...
ACS applied materials & interfaces, 11(36): 32928–32936. 2019.
link
bibtex
@article{hoerantner_high-speed_2019,
title = {High-{Speed} {Vapor} {Transport} {Deposition} of {Perovskite} {Thin} {Films}},
volume = {11},
number = {36},
journal = {ACS applied materials \& interfaces},
author = {Hoerantner, M. T. and Wassweiler, E. L. and Zhang, H. and Panda, A. and Nasilowski, M. and {...}},
year = {2019},
pages = {32928--32936},
}
Scalable Deposition Methods for Large‐area Production of Perovskite Thin Films.
Swartwout, R.; Hoerantner, M. T.; and Bulović, V.
Energy & Environmental Materials, 2(2): 119–145. 2019.
link
bibtex
@article{swartwout_scalable_2019,
title = {Scalable {Deposition} {Methods} for {Large}‐area {Production} of {Perovskite} {Thin} {Films}},
volume = {2},
number = {2},
journal = {Energy \& Environmental Materials},
author = {Swartwout, R. and Hoerantner, M. T. and Bulović, V.},
year = {2019},
pages = {119--145},
}
Highly Efficient and Stable Perovskite-Silicon Tandem Solar Cells.
Boyd, C. C.; Xu, J.; Bush, K. A.; Raiford, J. A.; Cheacharoen, R.; and McGehee, M. D.
Optical Devices and Materials for Solar Energy and Solid-state Lighting, PM4C., 1. 2019.
link
bibtex
@article{boyd_highly_2019,
title = {Highly {Efficient} and {Stable} {Perovskite}-{Silicon} {Tandem} {Solar} {Cells}},
volume = {1},
journal = {Optical Devices and Materials for Solar Energy and Solid-state Lighting, PM4C.},
author = {Boyd, C. C. and Xu, J. and Bush, K. A. and Raiford, J. A. and Cheacharoen, R. and McGehee, M. D.},
year = {2019},
}
Series Resistance Measurements of Perovskite Solar Cells Using Jsc–Voc Measurements.
Mundhaas, N.; Yu, Z. J.; Bush, K. A.; Wang, H. P.; Häusele, J.; Kavadiya, S.; and ...
Solar RRL, 3(4): 1800378–1800378. 2019.
link
bibtex
@article{mundhaas_series_2019,
title = {Series {Resistance} {Measurements} of {Perovskite} {Solar} {Cells} {Using} {Jsc}–{Voc} {Measurements}},
volume = {3},
number = {4},
journal = {Solar RRL},
author = {Mundhaas, N. and Yu, Z. J. and Bush, K. A. and Wang, H. P. and Häusele, J. and Kavadiya, S. and {...}},
year = {2019},
pages = {1800378--1800378},
}
Atomic layer deposition of vanadium oxide to reduce parasitic absorption and improve stability in n–i–p perovskite solar cells for tandems.
Raiford, J. A.; Belisle, R. A.; Bush, K. A.; Prasanna, R.; Palmstrom, A. F.; and ...
Sustainable Energy & Fuels, 3(6): 1517–1525. 2019.
link
bibtex
@article{raiford_atomic_2019,
title = {Atomic layer deposition of vanadium oxide to reduce parasitic absorption and improve stability in n–i–p perovskite solar cells for tandems},
volume = {3},
number = {6},
journal = {Sustainable Energy \& Fuels},
author = {Raiford, J. A. and Belisle, R. A. and Bush, K. A. and Prasanna, R. and Palmstrom, A. F. and {...}},
year = {2019},
pages = {1517--1525},
}
Photoactive layer production process.
Snaith, H.; Burlakov, V.; Ball, J.; Eperon, G.; and Goriely, A.
US Patent 10,374,181. 2019.
link
bibtex
@article{snaith_photoactive_2019,
title = {Photoactive layer production process},
journal = {US Patent 10,374,181},
author = {Snaith, H. and Burlakov, V. and Ball, J. and Eperon, G. and Goriely, A.},
year = {2019},
}
Correlative AFM-FLIM Measurements in Living Cells, Tissues and in Solar Cell Materials.
Poudel, C.; Mela, I.; Anaya, M.; Delport, G.; Stranks, S. D.; and Kaminski, C. F.
Biophysical Journal 116 (3), 327a. 2019.
link
bibtex
@article{poudel_correlative_2019,
title = {Correlative {AFM}-{FLIM} {Measurements} in {Living} {Cells}, {Tissues} and in {Solar} {Cell} {Materials}},
journal = {Biophysical Journal 116 (3), 327a},
author = {Poudel, C. and Mela, I. and Anaya, M. and Delport, G. and Stranks, S. D. and Kaminski, C. F.},
year = {2019},
}
Visualizing the Creation and Healing of Traps in Perovskite Photovoltaic Films by Light Soaking and Passivation Treatments.
Winchester, A. J.; Macpherson, S.; Pareek, V.; Abdi-Jalebi, M.; and ...
CLEO: Science and Innovations, SF1O., 3. 2019.
link
bibtex
@article{winchester_visualizing_2019,
title = {Visualizing the {Creation} and {Healing} of {Traps} in {Perovskite} {Photovoltaic} {Films} by {Light} {Soaking} and {Passivation} {Treatments}},
volume = {3},
journal = {CLEO: Science and Innovations, SF1O.},
author = {Winchester, A. J. and Macpherson, S. and Pareek, V. and Abdi-Jalebi, M. and {...}},
year = {2019},
}
The impact of oxygen on the electronic structure of mixed-cation halide perovskites.
Szemjonov, A.; Galkowski, K.; Anaya, M.; Andaji-Garmaroudi, Z.; Baikie, T. K.; and ...
American Chemical Society (ACS). 2019.
link
bibtex
@article{szemjonov_impact_2019,
title = {The impact of oxygen on the electronic structure of mixed-cation halide perovskites},
journal = {American Chemical Society (ACS)},
author = {Szemjonov, A. and Galkowski, K. and Anaya, M. and Andaji-Garmaroudi, Z. and Baikie, T. K. and {...}},
year = {2019},
}
Data supporting" Enhancing Photoluminescence and Mobilities in WS2 Monolayers with Oleic Acid Ligands".
Tanoh, A.; Alexander-Webber, J.; Xiao, J.; Delport, G.; Williams, C. A.; and ...
2019.
link
bibtex
@book{tanoh_data_2019,
title = {Data supporting" {Enhancing} {Photoluminescence} and {Mobilities} in {WS2} {Monolayers} with {Oleic} {Acid} {Ligands}"},
author = {Tanoh, A. and Alexander-Webber, J. and Xiao, J. and Delport, G. and Williams, C. A. and {...}},
year = {2019},
}
Research data supporting Photo-doping through local charge carrier accumulation in alloyed hybrid perovskites for highly efficient luminescence.
Feldmann, S.; Macpherson, S.; Senanayak, S.; Abdi-Jalebi, M.; Rivett, J.; Nan, G.; and ...
2019.
link
bibtex
@book{feldmann_research_2019,
title = {Research data supporting {Photo}-doping through local charge carrier accumulation in alloyed hybrid perovskites for highly efficient luminescence},
author = {Feldmann, S. and Macpherson, S. and Senanayak, S. and Abdi-Jalebi, M. and Rivett, J. and Nan, G. and {...}},
year = {2019},
}
Halide Perovskites: Low Dimensions for Devices.
Ruggeri, E.; Stranks, S. D.; Manidakis, E.; Stoumpos, C. C.; and Katan, C.
ACS Energy Letters, 4(12): 2902–2904. 2019.
link
bibtex
@article{ruggeri_halide_2019,
title = {Halide {Perovskites}: {Low} {Dimensions} for {Devices}},
volume = {4},
number = {12},
journal = {ACS Energy Letters},
author = {Ruggeri, E. and Stranks, S. D. and Manidakis, E. and Stoumpos, C. C. and Katan, C.},
year = {2019},
pages = {2902--2904},
}
Synthesis of Polycrystalline Ruddlesden–Popper Organic Lead Halides and Their Growth Dynamics.
Moral, R. F.; Bonato, L. G.; Germino, J. C.; Oliveira, W. C.; Kamat, R.; Xu, J.; and ...
Chemistry of Materials, 31(22): 9472–9479. 2019.
link
bibtex
@article{moral_synthesis_2019,
title = {Synthesis of {Polycrystalline} {Ruddlesden}–{Popper} {Organic} {Lead} {Halides} and {Their} {Growth} {Dynamics}},
volume = {31},
number = {22},
journal = {Chemistry of Materials},
author = {Moral, R. F. and Bonato, L. G. and Germino, J. C. and Oliveira, WX Coelho and Kamat, R. and Xu, J. and {...}},
year = {2019},
pages = {9472--9479},
}
Hybrid perovskites for device applications.
Frohna, K.; and Stranks, S. D.
Handbook of Organic Materials for Electronic and Photonic Devices,211–256. 2019.
link
bibtex
@article{frohna_hybrid_2019,
title = {Hybrid perovskites for device applications},
journal = {Handbook of Organic Materials for Electronic and Photonic Devices},
author = {Frohna, K. and Stranks, S. D.},
year = {2019},
pages = {211--256},
}
Influence of Grain Size on Phase Transitions in Halide Perovskite Films.
Stavrakas, C.; Zelewski, S. J.; Frohna, K.; Booker, E. P.; Galkowski, K.; Ji, K.; and ...
Advanced Energy Materials, 9(35): 1901883–1901883. 2019.
link
bibtex
@article{stavrakas_influence_2019,
title = {Influence of {Grain} {Size} on {Phase} {Transitions} in {Halide} {Perovskite} {Films}},
volume = {9},
number = {35},
journal = {Advanced Energy Materials},
author = {Stavrakas, C. and Zelewski, S. J. and Frohna, K. and Booker, E. P. and Galkowski, K. and Ji, K. and {...}},
year = {2019},
pages = {1901883--1901883},
}
Runoff on rooted trees.
Jones, O. D.
Journal of Applied Probability, 56(4): 1065–1085. 2019.
link
bibtex
@article{jones_runoff_2019,
title = {Runoff on rooted trees},
volume = {56},
number = {4},
journal = {Journal of Applied Probability},
author = {Jones, O. D.},
year = {2019},
pages = {1065--1085},
}
Impact of Oxygen on the Electronic Structure of Triple-Cation Halide Perovskites.
Szemjonov, A.; Galkowski, K.; Anaya, M.; Andaji-Garmaroudi, Z.; Baikie, T. K.; and ...
ACS Materials Letters, 1(5): 506–510. 2019.
link
bibtex
@article{szemjonov_impact_2019,
title = {Impact of {Oxygen} on the {Electronic} {Structure} of {Triple}-{Cation} {Halide} {Perovskites}},
volume = {1},
number = {5},
journal = {ACS Materials Letters},
author = {Szemjonov, A. and Galkowski, K. and Anaya, M. and Andaji-Garmaroudi, Z. and Baikie, T. K. and {...}},
year = {2019},
pages = {506--510},
}
Understanding the Origin of Ultrasharp Sub-bandgap Luminescence from Zero-Dimensional Inorganic Perovskite Cs4PbBr6.
Shin, M.; Nam, S. W.; Sadhanala, A.; Shivanna, R.; Anaya, M.; Jimenez-Solano, A.; and ...
ACS Applied Energy Materials, 3(1): 192–199. 2019.
link
bibtex
@article{shin_understanding_2019,
title = {Understanding the {Origin} of {Ultrasharp} {Sub}-bandgap {Luminescence} from {Zero}-{Dimensional} {Inorganic} {Perovskite} {Cs4PbBr6}},
volume = {3},
number = {1},
journal = {ACS Applied Energy Materials},
author = {Shin, M. and Nam, S. W. and Sadhanala, A. and Shivanna, R. and Anaya, M. and Jimenez-Solano, A. and {...}},
year = {2019},
pages = {192--199},
}
Charge Carriers Are Not Affected by the Relatively Slow-Rotating Methylammonium Cations in Lead Halide Perovskite Thin Films.
Caselli, V. M.; Fischer, M.; Meggiolaro, D.; Mosconi, E.; Angelis, F. D.; and ...
The journal of physical chemistry letters, 10(17): 5128–5134. 2019.
link
bibtex
@article{caselli_charge_2019,
title = {Charge {Carriers} {Are} {Not} {Affected} by the {Relatively} {Slow}-{Rotating} {Methylammonium} {Cations} in {Lead} {Halide} {Perovskite} {Thin} {Films}},
volume = {10},
number = {17},
journal = {The journal of physical chemistry letters},
author = {Caselli, V. M. and Fischer, M. and Meggiolaro, D. and Mosconi, E. and Angelis, F. De and {...}},
year = {2019},
pages = {5128--5134},
}
Phase-Transition-Induced Carrier Mass Enhancement in 2D Ruddlesden–Popper Perovskites.
Baranowski, M.; Zelewski, S. J.; Kepenekian, M.; Traoré, B.; Urban, J. M.; and ...
ACS Energy Letters, 4(10): 2386–2392. 2019.
link
bibtex
@article{baranowski_phase-transition-induced_2019,
title = {Phase-{Transition}-{Induced} {Carrier} {Mass} {Enhancement} in {2D} {Ruddlesden}–{Popper} {Perovskites}},
volume = {4},
number = {10},
journal = {ACS Energy Letters},
author = {Baranowski, M. and Zelewski, S. J. and Kepenekian, M. and Traoré, B. and Urban, J. M. and {...}},
year = {2019},
pages = {2386--2392},
}
Enhancing Photoluminescence and Mobilities in WS2 Monolayers with Oleic Acid Ligands.
Tanoh, A. O. A.; Alexander-Webber, J.; Xiao, J.; Delport, G.; Williams, C. A.; and ...
Nano letters, 19(9): 6299–6307. 2019.
link
bibtex
@article{tanoh_enhancing_2019,
title = {Enhancing {Photoluminescence} and {Mobilities} in {WS2} {Monolayers} with {Oleic} {Acid} {Ligands}},
volume = {19},
number = {9},
journal = {Nano letters},
author = {Tanoh, A. O. A. and Alexander-Webber, J. and Xiao, J. and Delport, G. and Williams, C. A. and {...}},
year = {2019},
pages = {6299--6307},
}
Controlling the Growth Kinetics and Optoelectronic Properties of 2D/3D Lead–Tin Perovskite Heterojunctions.
Ruggeri, E.; Anaya, M.; Gałkowski, K.; Delport, G.; Kosasih, F. U.; Abfalterer, A.; and ...
Advanced Materials, 31(51): 1905247–1905247. 2019.
link
bibtex
@article{ruggeri_controlling_2019,
title = {Controlling the {Growth} {Kinetics} and {Optoelectronic} {Properties} of {2D}/{3D} {Lead}–{Tin} {Perovskite} {Heterojunctions}},
volume = {31},
number = {51},
journal = {Advanced Materials},
author = {Ruggeri, E. and Anaya, M. and Gałkowski, K. and Delport, G. and Kosasih, F. U. and Abfalterer, A. and {...}},
year = {2019},
pages = {1905247--1905247},
}
Reversible removal of intermixed shallow states by light soaking in multication mixed halide perovskite films.
Guo, D.; Garmaroudi, Z. A.; Abdi-Jalebi, M.; Stranks, S. D.; and Savenije, T. J.
ACS energy letters, 4(10): 2360–2367. 2019.
link
bibtex
@article{guo_reversible_2019,
title = {Reversible removal of intermixed shallow states by light soaking in multication mixed halide perovskite films},
volume = {4},
number = {10},
journal = {ACS energy letters},
author = {Guo, D. and Garmaroudi, Z. Andaji and Abdi-Jalebi, M. and Stranks, S. D. and Savenije, T. J.},
year = {2019},
pages = {2360--2367},
}
Excitonic Properties of Low-Band-Gap Lead–Tin Halide Perovskites.
Galkowski, K.; Surrente, A.; Baranowski, M.; Zhao, B.; Yang, Z.; Sadhanala, A.; and ...
ACS Energy Letters, 4(3): 615–621. 2019.
link
bibtex
@article{galkowski_excitonic_2019,
title = {Excitonic {Properties} of {Low}-{Band}-{Gap} {Lead}–{Tin} {Halide} {Perovskites}},
volume = {4},
number = {3},
journal = {ACS Energy Letters},
author = {Galkowski, K. and Surrente, A. and Baranowski, M. and Zhao, B. and Yang, Z. and Sadhanala, A. and {...}},
year = {2019},
pages = {615--621},
}
A Highly Emissive Surface Layer in Mixed‐Halide Multication Perovskites.
Andaji‐Garmaroudi, Z.; Abdi‐Jalebi, M.; Guo, D.; Macpherson, S.; and ...
Advanced Materials, 31(42): 1902374–1902374. 2019.
link
bibtex
@article{andajigarmaroudi_highly_2019,
title = {A {Highly} {Emissive} {Surface} {Layer} in {Mixed}‐{Halide} {Multication} {Perovskites}},
volume = {31},
number = {42},
journal = {Advanced Materials},
author = {Andaji‐Garmaroudi, Z. and Abdi‐Jalebi, M. and Guo, D. and Macpherson, S. and {...}},
year = {2019},
pages = {1902374--1902374},
}
Identifying and reducing interfacial losses to enhance color-pure electroluminescence in blue-emitting perovskite nanoplatelet light-emitting diodes.
Hoye, R. L. Z.; Lai, M. L.; Anaya, M.; Tong, Y.; Gałkowski, K.; Doherty, T.; Li, W.; and ...
ACS Energy Letters, 4(5): 1181–1188. 2019.
link
bibtex
@article{hoye_identifying_2019,
title = {Identifying and reducing interfacial losses to enhance color-pure electroluminescence in blue-emitting perovskite nanoplatelet light-emitting diodes},
volume = {4},
number = {5},
journal = {ACS Energy Letters},
author = {Hoye, R. L. Z. and Lai, M. L. and Anaya, M. and Tong, Y. and Gałkowski, K. and Doherty, T. and Li, W. and {...}},
year = {2019},
pages = {1181--1188},
}
Charge-Carrier Recombination in Halide Perovskites: Focus Review.
deQuilettes , D. W.; Frohna, K.; Emin, D.; Kirchartz, T.; Bulovic, V.; Ginger, D. S.; and ...
Chemical reviews, 119(20): 11007–11019. 2019.
link
bibtex
@article{dequilettes_charge-carrier_2019,
title = {Charge-{Carrier} {Recombination} in {Halide} {Perovskites}: {Focus} {Review}},
volume = {119},
number = {20},
journal = {Chemical reviews},
author = {deQuilettes, D. W. and Frohna, K. and Emin, D. and Kirchartz, T. and Bulovic, V. and Ginger, D. S. and {...}},
year = {2019},
pages = {11007--11019},
}
Heterogeneity at multiple length scales in halide perovskite semiconductors.
Tennyson, E. M.; Doherty, T. A. S.; and Stranks, S. D.
Nature Reviews Materials, 1. 2019.
link
bibtex
@article{tennyson_heterogeneity_2019,
title = {Heterogeneity at multiple length scales in halide perovskite semiconductors},
volume = {1},
journal = {Nature Reviews Materials},
author = {Tennyson, E. M. and Doherty, T. A. S. and Stranks, S. D.},
year = {2019},
}
The physics of light emission in halide perovskite devices.
Stranks, S. D.; Hoye, R. L. Z.; Di, D.; Friend, R. H.; and Deschler, F.
Advanced Materials, 31(47): 1803336–1803336. 2019.
link
bibtex
@article{stranks_physics_2019,
title = {The physics of light emission in halide perovskite devices},
volume = {31},
number = {47},
journal = {Advanced Materials},
author = {Stranks, S. D. and Hoye, R. L. Z. and Di, D. and Friend, R. H. and Deschler, F.},
year = {2019},
pages = {1803336--1803336},
}
Lattice strain causes non-radiative losses in halide perovskites.
Jones, T. W.; Osherov, A.; Alsari, M.; Sponseller, M.; Duck, B. C.; Jung, Y. K.; and ...
Energy & Environmental Science, 12(2): 596–606. 2019.
link
bibtex
@article{jones_lattice_2019,
title = {Lattice strain causes non-radiative losses in halide perovskites},
volume = {12},
number = {2},
journal = {Energy \& Environmental Science},
author = {Jones, T. W. and Osherov, A. and Alsari, M. and Sponseller, M. and Duck, B. C. and Jung, Y. K. and {...}},
year = {2019},
pages = {596--606},
}
Economically sustainable growth of small-scale perovskite manufacturing in alternative PV markets.
Mathews, I.; Sofia, S.; Ma, E.; Jean, J.; Laine, H.; Buonassisi, T.; and Peters, I. M.
2019 IEEE 46th Photovoltaic Specialists Conference (PVSC),480–483. 2019.
link
bibtex
@article{mathews_economically_2019,
title = {Economically sustainable growth of small-scale perovskite manufacturing in alternative {PV} markets},
journal = {2019 IEEE 46th Photovoltaic Specialists Conference (PVSC)},
author = {Mathews, I. and Sofia, S. and Ma, E. and Jean, J. and Laine, H. and Buonassisi, T. and Peters, I. M.},
year = {2019},
pages = {480--483},
}
Lift-off embedded micro and nanostructures.
Swartwout, R.; Niroui, F.; Bulovic, V.; Lang, J. H.; and Jean, J.
US Patent App. 16/107,566. 2019.
link
bibtex
@article{swartwout_lift-off_2019,
title = {Lift-off embedded micro and nanostructures},
journal = {US Patent App. 16/107,566},
author = {Swartwout, R. and Niroui, F. and Bulovic, V. and Lang, J. H. and Jean, J.},
year = {2019},
}
Accelerating Photovoltaic Market Entry with Module Replacement.
Jean, J.; Woodhouse, M.; and Bulović, V.
Joule, 3(11): 2824–2841. 2019.
link
bibtex
@article{jean_accelerating_2019,
title = {Accelerating {Photovoltaic} {Market} {Entry} with {Module} {Replacement}},
volume = {3},
number = {11},
journal = {Joule},
author = {Jean, J. and Woodhouse, M. and Bulović, V.},
year = {2019},
pages = {2824--2841},
}
Stability of Tin-Lead Halide Perovskite Solar Cells.
Prasanna, R.; Leijtens, T.; Dunfield, S. P.; Raiford, J. A.; Wolf, E. J.; Swifter, S. A.; and ...
2019 IEEE 46th Photovoltaic Specialists Conference (PVSC),2359–2361. 2019.
link
bibtex
@article{prasanna_stability_2019,
title = {Stability of {Tin}-{Lead} {Halide} {Perovskite} {Solar} {Cells}},
journal = {2019 IEEE 46th Photovoltaic Specialists Conference (PVSC)},
author = {Prasanna, R. and Leijtens, T. and Dunfield, S. P. and Raiford, J. A. and Wolf, E. J. and Swifter, S. A. and {...}},
year = {2019},
pages = {2359--2361},
}