Involvement of the N-finger in the self-association of GATA-1. Mackay, J., Kowalski, K., Fox, A., Czolij, R., King, G., & Crossley, M. Journal of Biological Chemistry, 273(46):30560-30567, 1998.
doi  abstract   bibtex   
Zinc fingers are recognized as small protein domains that bind to specific DNA sequences. Recently however, zinc fingers from a number of proteins, in particular the GATA family of transcription factors, have also been implicated in specific protein-protein interactions. The erythroid protein GATA-1 contains two zinc fingers: the C-finger, which is sufficient for sequence-specific DNA-binding, and the N-finger, which appears both to modulate DNA-binding and to interact with other transcription factors. We have expressed and purified the N-finger domain and investigated its involvement in the self-association of GATA-1. We demonstrate that this domain does not homodimerize but instead makes intermolecular contacts with the C-finger, suggesting that GATA dimers are maintained by reciprocal N- finger-C-finger contacts. Deletion analysis identifies a 25-residue region, C-terminal to the core N-finger domain, that is sufficient for interaction with intact GATA-1. A similar subdomain exists C-terminal to the C-finger, and we show that self-association is substantially reduced when both subdomains are disrupted by mutation. Moreover, mutations that impair GATA-1 self-association also interfere with its ability to activate transcription in transfection studies.
@article{
 title = {Involvement of the N-finger in the self-association of GATA-1},
 type = {article},
 year = {1998},
 pages = {30560-30567},
 volume = {273},
 id = {4c338f22-0421-34a2-92f2-d97f844ae7db},
 created = {2023-01-10T01:46:50.749Z},
 file_attached = {false},
 profile_id = {a5a2ab6f-a8b5-3db6-97bc-618752ee4386},
 group_id = {bc1ab1d4-9e57-37e6-9fb5-435fca0ee9d2},
 last_modified = {2023-01-10T01:46:50.749Z},
 read = {false},
 starred = {false},
 authored = {false},
 confirmed = {false},
 hidden = {false},
 private_publication = {false},
 abstract = {Zinc fingers are recognized as small protein domains that bind to specific DNA sequences. Recently however, zinc fingers from a number of proteins, in particular the GATA family of transcription factors, have also been implicated in specific protein-protein interactions. The erythroid protein GATA-1 contains two zinc fingers: the C-finger, which is sufficient for sequence-specific DNA-binding, and the N-finger, which appears both to modulate DNA-binding and to interact with other transcription factors. We have expressed and purified the N-finger domain and investigated its involvement in the self-association of GATA-1. We demonstrate that this domain does not homodimerize but instead makes intermolecular contacts with the C-finger, suggesting that GATA dimers are maintained by reciprocal N- finger-C-finger contacts. Deletion analysis identifies a 25-residue region, C-terminal to the core N-finger domain, that is sufficient for interaction with intact GATA-1. A similar subdomain exists C-terminal to the C-finger, and we show that self-association is substantially reduced when both subdomains are disrupted by mutation. Moreover, mutations that impair GATA-1 self-association also interfere with its ability to activate transcription in transfection studies.},
 bibtype = {article},
 author = {Mackay, J.P. and Kowalski, K. and Fox, A.H. and Czolij, R. and King, G.F. and Crossley, M.},
 doi = {10.1074/jbc.273.46.30560},
 journal = {Journal of Biological Chemistry},
 number = {46}
}

Downloads: 0