generated by bibbase.org
  2023 (6)
CohortFinder: An open-source tool for data-driven partitioning of biomedical image cohorts to yield robust machine learning models. Fan, F.; Martinez, G.; Desilvio, T.; Shin, J.; Chen, Y.; Wang, B.; Ozeki, T.; Lafarge, M.; Koelzer, V.; Barisoni, L.; Madabhushi, A.; Viswanath, S.; and Janowczyk, A. 2023.
link   bibtex   abstract  
Deep learning of renal scans in children with antenatal hydronephrosis. Weaver, J.; Logan, J.; Broms, R.; Antony, M.; Rickard, M.; Erdman, L.; Edwins, R.; Pominville, R.; Hannick, J.; Woo, L.; Viteri, B.; D'Souza, N.; Viswanath, S.; Flask, C.; Lorenzo, A.; Fan, Y.; and Tasian, G. Journal of Pediatric Urology, 19(5). 2023.
doi   link   bibtex   abstract  
Integrating Radiomics with Clinicoradiological Scoring Can Predict High-Risk Patients Who Need Surgery in Crohn’s Disease: A Pilot Study. Chirra, P.; Sharma, A.; Bera, K.; Cohn, H.; Kurowski, J.; Amann, K.; Rivero, M.; Madabhushi, A.; Lu, C.; Paspulati, R.; Stein, S.; Katz, J.; Viswanath, S.; and Dave, M. Inflammatory Bowel Diseases, 29(3). 2023.
doi   link   bibtex   abstract  
Mesenchymal stem cells ameliorate inflammation in an experimental model of Crohn's disease via the mesentery. Dave, M.; Dev, A.; Somoza, R.; Zhao, N.; Viswanath, S.; Mina, P.; Chirra, P.; Obmann, V.; Mahabeleshwar, G.; Menghini, P.; Johnson, B.; Nolta, J.; Soto, C.; Osme, A.; Khuat, L.; Murphy, W.; Caplan, A.; and Cominelli, F. 2023.
doi   link   bibtex   abstract  
Region-specific deep learning models for accurate segmentation of rectal structures on post-chemoradiation T2w MRI: a multi-institutional, multi-reader study. DeSilvio, T.; Antunes, J.; Bera, K.; Chirra, P.; Le, H.; Liska, D.; Stein, S.; Marderstein, E.; Hall, W.; Paspulati, R.; Gollamudi, J.; Purysko, A.; and Viswanath, S. Frontiers in Medicine, 10. 2023.
doi   link   bibtex   abstract  
Integrating Multi-Plane and Multi-Region Radiomic Features to Predict Pathologic Response to Neoadjuvant Chemoradiation in Rectal Cancers via Pre-Treatment MRI. DeSilvio, T.; Bao, L.; Seth, D.; Chirra, P.; Singh, S.; Sridharan, A.; Labbad, M.; Bingmer, K.; Jodeh, D.; Marderstein, E.; Paspulati, R.; Liska, D.; Friedman, K.; Krishnamurthi, S.; Stein, S.; Purysko, A.; and Viswanath, S. In Progress in Biomedical Optics and Imaging - Proceedings of SPIE, volume 12466, 2023.
doi   link   bibtex   abstract  
  2022 (8)
Crohn's disease related strictures in cross-sectional imaging: More than meets the eye?. Sleiman, J.; Chirra, P.; Gandhi, N.; Baker, M.; Lu, C.; Gordon, I.; Viswanath, S.; and Rieder, F. United European Gastroenterology Journal, 10(10). 2022.
doi   link   bibtex   abstract  
Staging and Restaging of Rectal Cancer with MRI: A Pictorial Review. Wetzel, A.; Viswanath, S.; Gorgun, E.; Ozgur, I.; Allende, D.; Liska, D.; and Purysko, A. Seminars in Ultrasound, CT and MRI, 43(6). 2022.
doi   link   bibtex   abstract  
Editorial for “Selecting Candidates for Organ-Preserving Strategies After Neoadjuvant Chemoradiotherapy for Rectal Cancer: Development and Validation of a Model Integrating MRI Radiomics and Pathomics”. Viswanath, S. Journal of Magnetic Resonance Imaging, 56(4). 2022.
doi   link   bibtex  
RADIomic Spatial TexturAl Descriptor (RADISTAT): Quantifying Spatial Organization of Imaging Heterogeneity Associated With Tumor Response to Treatment. Antunes, J.; Ismail, M.; Hossain, I.; Wang, Z.; Prasanna, P.; Madabhushi, A.; Tiwari, P.; and Viswanath, S. IEEE Journal of Biomedical and Health Informatics, 26(6). 2022.
doi   link   bibtex   abstract  
Challenges in ensuring the generalizability of image quantitation methods for MRI. Keenan, K.; Delfino, J.; Jordanova, K.; Poorman, M.; Chirra, P.; Chaudhari, A.; Baessler, B.; Winfield, J.; Viswanath, S.; and deSouza, N. Medical Physics, 49(4). 2022.
doi   link   bibtex   abstract  
Residual Wavelon Convolutional Networks for Characterization of Disease Response on MRI. Sadri, A.; DeSilvio, T.; Chirra, P.; Singh, S.; and Viswanath, S. Volume 13433 LNCS 2022.
doi   link   bibtex   abstract  
Deep hybrid convolutional wavelet networks: Application to predicting response to chemoradiation in rectal cancers via MRI. Sadri, A.; Desilvio, T.; Chirra, P.; Purysko, A.; Paspulati, R.; Friedman, K.; Krishnamurthi, S.; Liska, D.; Stein, S.; and Viswanath, S. In Progress in Biomedical Optics and Imaging - Proceedings of SPIE, volume 12033, 2022.
doi   link   bibtex   abstract  
Identifying radiomic features associated with disease activity, patient outcomes, and serum phenotypes in pediatric Crohn's disease via MRI. Chirra, P.; Muchhala, A.; Amann, K.; Krishnan, K.; Kurowski, J.; and Viswanath, S. In Progress in Biomedical Optics and Imaging - Proceedings of SPIE, volume 12034, 2022.
doi   link   bibtex   abstract  
  2021 (4)
Correlation between image quality metrics of magnetic resonance images and the neural network segmentation accuracy. Muthusivarajan, R.; Celaya, A.; Yung, J.; Viswanath, S.; Marcus, D.; Chung, C.; and Fuentes, D. 2021.
doi   link   bibtex   abstract  
Prospective Evaluation of Repeatability and Robustness of Radiomic Descriptors in Healthy Brain Tissue Regions In Vivo Across Systematic Variations in T2-Weighted Magnetic Resonance Imaging Acquisition Parameters. Eck, B.; Chirra, P.; Muchhala, A.; Hall, S.; Bera, K.; Tiwari, P.; Madabhushi, A.; Seiberlich, N.; and Viswanath, S. Journal of Magnetic Resonance Imaging, 54(3). 2021.
doi   link   bibtex   abstract  
Adipokine Resistin Levels at Time of Pediatric Crohn Disease Diagnosis Predict Escalation to Biologic Therapy. Kurowski, J.; Achkar, J.; Gupta, R.; Barbur, I.; Bonfield, T.; Worley, S.; Remer, E.; Fiocchi, C.; Viswanath, S.; and Kay, M. Inflammatory Bowel Diseases, 27(7). 2021.
doi   link   bibtex   abstract  
SPARTA: An Integrated Stability, Discriminability, and Sparsity Based Radiomic Feature Selection Approach. Sadri, A.; Azarianpour Esfahani, S.; Chirra, P.; Antunes, J.; Pattiam Giriprakash, P.; Leo, P.; Madabhushi, A.; and Viswanath, S. Volume 12903 LNCS 2021.
doi   link   bibtex   abstract  
  2020 (10)
Identifying cross-scale associations between radiomic and pathomic signatures of non-small cell lung cancer subtypes: Preliminary results. Alvarez-Jimenez, C.; Sandino, A.; Prasanna, P.; Gupta, A.; Viswanath, S.; and Romero, E. Cancers, 12(12). 2020.
doi   link   bibtex   abstract  
Technical Note: MRQy — An open-source tool for quality control of MR imaging data. Sadri, A.; Janowczyk, A.; Zhou, R.; Verma, R.; Beig, N.; Antunes, J.; Madabhushi, A.; Tiwari, P.; and Viswanath, S. Medical Physics, 47(12). 2020.
doi   link   bibtex   abstract  
Radiomic Features of Primary Rectal Cancers on Baseline T2-Weighted MRI Are Associated With Pathologic Complete Response to Neoadjuvant Chemoradiation: A Multisite Study. Antunes, J.; Ofshteyn, A.; Bera, K.; Wang, E.; Brady, J.; Willis, J.; Friedman, K.; Marderstein, E.; Kalady, M.; Stein, S.; Purysko, A.; Paspulati, R.; Gollamudi, J.; Madabhushi, A.; and Viswanath, S. Journal of Magnetic Resonance Imaging, 52(5). 2020.
doi   link   bibtex   abstract  
Radiomic texture and shape descriptors of the rectal environment on post-chemoradiation T2-weighted MRI are associated with pathologic tumor stage regression in rectal cancers: A retrospective, multi-institution study. Alvarez-Jimenez, C.; Antunes, J.; Talasila, N.; Bera, K.; Brady, J.; Gollamudi, J.; Marderstein, E.; Kalady, M.; Purysko, A.; Willis, J.; Stein, S.; Friedman, K.; Paspulati, R.; Delaney, C.; Romero, E.; Madabhushi, A.; and Viswanath, S. Cancers, 12(8). 2020.
doi   link   bibtex   abstract  
MRQy: An open-source tool for quality control of MR imaging data. Sadri, A.; Janowczyk, A.; Zhou, R.; Verma, R.; Beig, N.; Antunes, J.; Madabhushi, A.; Tiwari, P.; and Viswanath, S. 2020.
doi   link   bibtex   abstract  
Quality assessment of brain MRI scans using a dense neural network model and image metrics. Gupta, A.; Sadri, A.; Viswanath, S.; and Tiwari, P. In Progress in Biomedical Optics and Imaging - Proceedings of SPIE, volume 11312, 2020.
doi   link   bibtex   abstract  
Texture kinetic features from pre-treatment DCE MRI for predicting pathologic tumor stage regression after neoadjuvant chemoradiation in rectal cancers. Nanda, S.; Antunes, J.; Bera, K.; Brady, J.; Friedman, K.; Willis, J.; Paspulati, R.; and Viswanath, S. In Proceedings of SPIE - The International Society for Optical Engineering, volume 11315, 2020.
doi   link   bibtex   abstract  
Multi-site evaluation of stable radiomic features for more accurate evaluation of pathologic downstaging on MRI after chemoradiation for rectal cancers. Selvam, A.; Antunes, J.; Bera, K.; Ofshteyn, A.; Brady, J.; Bingmer, K.; Friedman, K.; Stein, S.; Paspulati, R.; Purysko, A.; Kalady, M.; Madabhushi, A.; and Viswanath, S. In Progress in Biomedical Optics and Imaging - Proceedings of SPIE, volume 11314, 2020.
doi   link   bibtex   abstract  
Cell density features from histopathological images to differentiate non-small cell lung cancer subtypes. Sandino, A.; Alvarez-Jimenez, C.; Mosquera-Zamudio, A.; Viswanath, S.; and Romero, E. In Proceedings of SPIE - The International Society for Optical Engineering, volume 11330, 2020.
doi   link   bibtex   abstract  
Sparse Wavelet Networks. Sadri, A.; Celebi, M.; Rahnavard, N.; and Viswanath, S. IEEE Signal Processing Letters, 27. 2020.
doi   link   bibtex   abstract  
  2019 (8)
Differentiating Cancerous and Non-cancerous Prostate Tissue Using Multi-scale Texture Analysis on MRI. Alvarez-Jimenez, C.; Barrera, C.; Munera, N.; Viswanath, S.; and Romero, E. In Proceedings of the Annual International Conference of the IEEE Engineering in Medicine and Biology Society, EMBS, 2019.
doi   link   bibtex   abstract  
Multisite evaluation of radiomic feature reproducibility and discriminability for identifying peripheral zone prostate tumors on MRI. Chirra, P.; Leo, P.; Yim, M.; Bloch, B.; Rastinehad, A.; Purysko, A.; Rosen, M.; Madabhushi, A.; and Viswanath, S. Journal of Medical Imaging, 6(2). 2019.
doi   link   bibtex   abstract  
Comparing radiomic classifiers and classifier ensembles for detection of peripheral zone prostate tumors on T2-weighted MRI: A multi-site study. Viswanath, S.; Chirra, P.; Yim, M.; Rofsky, N.; Purysko, A.; Rosen, M.; Bloch, B.; and Madabhushi, A. BMC Medical Imaging, 19(1). 2019.
doi   link   bibtex   abstract  
Radiomics in genitourinary cancers: Prostate cancer. Viswanath, S.; and Madabhushi, A. 2019.
doi   link   bibtex   abstract  
Structural rectal atlas deformation (stRAD) features for characterizing intra- and peri-wall chemoradiation response on MRI. Antunes, J.; Wei, Z.; Alvarez-Jimenez, C.; Romero, E.; Ismail, M.; Madabhushi, A.; Tiwari, P.; and Viswanath, S. Volume 11767 LNCS 2019.
doi   link   bibtex   abstract  
Region-specific fully convolutional networks for segmentation of the rectal wall on post-chemoradiation T2w MRI. Desilvio, T.; Antunes, J.; Chirra, P.; Bera, K.; Gollamudi, J.; Paspulati, R.; Delaney, C.; and Viswanath, S. In Progress in Biomedical Optics and Imaging - Proceedings of SPIE, volume 10951, 2019.
doi   link   bibtex   abstract  
Radiomic characterization of perirectal fat on MRI enables accurate assessment of tumor regression and lymph node metastasis in rectal cancers after chemoradiation. Yim, M.; Wei, Z.; Antunes, J.; Sehgal, N.; Bera, K.; Brady, J.; Friedman, K.; Willis, J.; Purysko, A.; Paspulati, R.; Madabhushi, A.; and Viswanath, S. In Progress in Biomedical Optics and Imaging - Proceedings of SPIE, volume 10951, 2019.
doi   link   bibtex   abstract  
Integrating radiomic features from T2-weighted and contrast-enhanced MRI to evaluate pathologic rectal tumor regression after chemoradiation. Nanda, S.; Antunes, J.; Selvam, A.; Bera, K.; Brady, J.; Gollamudi, J.; Friedman, K.; Willis, J.; Delaney, C.; Paspulati, R.; Madabhushi, A.; and Viswanath, S. In Progress in Biomedical Optics and Imaging - Proceedings of SPIE, volume 10951, 2019.
doi   link   bibtex   abstract  
  2018 (6)
Radiomic features on MRI enable risk categorization of prostate cancer patients on active surveillance: Preliminary findings. Algohary, A.; Viswanath, S.; Shiradkar, R.; Ghose, S.; Pahwa, S.; Moses, D.; Jambor, I.; Shnier, R.; Böhm, M.; Haynes, A.; Brenner, P.; Delprado, W.; Thompson, J.; Pulbrock, M.; Purysko, A.; Verma, S.; Ponsky, L.; Stricker, P.; and Madabhushi, A. Journal of Magnetic Resonance Imaging, 48(3). 2018.
doi   link   bibtex   abstract  
Identifying the morphologic basis for radiomic features in distinguishing different Gleason grades of prostate cancer on MRI: Preliminary findings. Penzias, G.; Singanamalli, A.; Elliott, R.; Gollamudi, J.; Shih, N.; Feldman, M.; Stricker, P.; Delprado, W.; Tiwari, S.; Böhm, M.; Haynes, A.; Ponsky, L.; Fu, P.; Tiwari, P.; Viswanath, S.; and Madabhushi, A. PLoS ONE, 13(8). 2018.
doi   link   bibtex   abstract  
Coregistration of Preoperative MRI with Ex Vivo Mesorectal Pathology Specimens to Spatially Map Post-treatment Changes in Rectal Cancer Onto In Vivo Imaging: Preliminary Findings. Antunes, J.; Viswanath, S.; Brady, J.; Crawshaw, B.; Ros, P.; Steele, S.; Delaney, C.; Paspulati, R.; Willis, J.; and Madabhushi, A. Academic Radiology, 25(7). 2018.
doi   link   bibtex   abstract  
A review of machine learning in obesity. DeGregory, K.; Kuiper, P.; DeSilvio, T.; Pleuss, J.; Miller, R.; Roginski, J.; Fisher, C.; Harness, D.; Viswanath, S.; Heymsfield, S.; Dungan, I.; and Thomas, D. Obesity Reviews, 19(5). 2018.
doi   link   bibtex   abstract  
Automated segmentation and radiomic characterization of visceral fat on bowel MRIs for Crohn's disease. Barbur, I.; Kurowski, J.; Bera, K.; Thawani, R.; Achkar, J.; Fiocchi, C.; Kay, M.; Gupta, R.; and Viswanath, S. In Progress in Biomedical Optics and Imaging - Proceedings of SPIE, volume 10576, 2018.
doi   link   bibtex   abstract  
Empirical evaluation of cross-site reproducibility in radiomic features for characterizing prostate MRI. Chirra, P.; Leo, P.; Yim, M.; Bloch, B.; Rastinehad, A.; Purysko, A.; Rosen, M.; Madabhushi, A.; and Viswanath, S. In Progress in Biomedical Optics and Imaging - Proceedings of SPIE, volume 10575, 2018.
doi   link   bibtex   abstract  
  2017 (5)
Discriminative scale learning (DiScrn): Applications to prostate cancer detection from MRI and needle biopsies. Wang, H.; Viswanath, S.; and Madabhushi, A. Scientific Reports, 7(1). 2017.
doi   link   bibtex   abstract  
Co-Registration of ex vivo Surgical Histopathology and in vivo T2 weighted MRI of the Prostate via multi-scale spectral embedding representation. Li, L.; Pahwa, S.; Penzias, G.; Rusu, M.; Gollamudi, J.; Viswanath, S.; and Madabhushi, A. Scientific Reports, 7(1). 2017.
doi   link   bibtex   abstract  
Dimensionality reduction-based fusion approaches for imaging and non-imaging biomedical data: Concepts, workflow, and use-cases. Viswanath, S.; Tiwari, P.; Lee, G.; and Madabhushi, A. BMC Medical Imaging, 17(1). 2017.
doi   link   bibtex   abstract  
Optical high content nanoscopy of epigenetic marks decodes phenotypic divergence in stem cells. Kim, J.; Bennett, N.; Devita, M.; Chahar, S.; Viswanath, S.; Lee, E.; Jung, G.; Shao, P.; Childers, E.; Liu, S.; Kulesa, A.; Garcia, B.; Becker, M.; Hwang, N.; Madabhushi, A.; Verzi, M.; and Moghe, P. Scientific Reports, 7. 2017.
doi   link   bibtex   abstract  
RADIomic spatial textural descriptor (RADISTAT): Characterizing intra-tumoral heterogeneity for response and outcome prediction. Antunes, J.; Prasanna, P.; Madabhushi, A.; Tiwari, P.; and Viswanath, S. Volume 10434 LNCS 2017.
doi   link   bibtex   abstract  
  2016 (4)
Radiomics based targeted radiotherapy planning (Rad-TRaP): A computational framework for prostate cancer treatment planning with MRI. Shiradkar, R.; Podder, T.; Algohary, A.; Viswanath, S.; Ellis, R.; and Madabhushi, A. Radiation Oncology, 11(1). 2016.
doi   link   bibtex   abstract  
AutoStitcher: An Automated Program for Efficient and Robust Reconstruction of Digitized Whole Histological Sections from Tissue Fragments. Penzias, G.; Janowczyk, A.; Singanamalli, A.; Rusu, M.; Shih, N.; Feldman, M.; Stricker, P.; Delprado, W.; Tiwari, S.; Böhm, M.; Haynes, A.; Ponsky, L.; Viswanath, S.; and Madabhushi, A. Scientific Reports, 6. 2016.
doi   link   bibtex   abstract  
Radiomics analysis on FLT-PET/MRI for characterization of early treatment response in renal cell carcinoma: A proof-of-concept study. Antunes, J.; Viswanath, S.; Rusu, M.; Valls, L.; Hoimes, C.; Avril, N.; and Madabhushi, A. Translational Oncology, 9(2). 2016.
doi   link   bibtex   abstract  
Multi-modality registration via multi-scale textural and spectral embedding representations. Li, L.; Rusu, M.; Viswanath, S.; Penzias, G.; Pahwa, S.; Gollamudi, J.; and Madabhushi, A. In Progress in Biomedical Optics and Imaging - Proceedings of SPIE, volume 9784, 2016.
doi   link   bibtex   abstract  
  2015 (2)
Predicting classifier performance with limited training data: Applications to computer-aided diagnosis in breast and prostate cancer. Basavanhally, A.; Viswanath, S.; and Madabhushi, A. PLoS ONE, 10(5). 2015.
doi   link   bibtex   abstract  
Novel PCA-VIP scheme for ranking MRI protocols and identifying computer-extracted MRI measurements associated with central gland and peripheral zone prostate tumors. Ginsburg, S.; Viswanath, S.; Bloch, B.; Rofsky, N.; Genega, E.; Lenkinski, R.; and Madabhushi, A. Journal of Magnetic Resonance Imaging, 41(5). 2015.
doi   link   bibtex   abstract  
  2014 (3)
Identifying quantitative in vivo multi-parametric MRI features for treatment related changes after laser interstitial thermal therapy of prostate cancer. Viswanath, S.; Toth, R.; Rusu, M.; Sperling, D.; Lepor, H.; Futterer, J.; and Madabhushi, A. Neurocomputing, 144. 2014.
doi   link   bibtex   abstract  
Quantitative identification of magnetic resonance imaging features of prostate cancer response following laser ablation and radical prostatectomy. Litjens, G.; Huisman, H.; Elliott, R.; Shih, N.; Feldman, M.; Viswanath, S.; Fütterer, J.; Bomers, J.; and Madabhushi, A. Journal of Medical Imaging, 1(3). 2014.
doi   link   bibtex   abstract  
Distinguishing benign confounding treatment changes from residual prostate cancer on MRI following laser ablation. Litjens, G.; Huisman, H.; Elliott, R.; Shih, N.; Feldman, M.; Viswanath, S.; Fütterer, J.; Bomers, J.; and Madabhushi, A. In Progress in Biomedical Optics and Imaging - Proceedings of SPIE, volume 9036, 2014.
doi   link   bibtex   abstract  
  2013 (2)
Discriminatively weighted multi-scale Local Binary Patterns: Applications in prostate cancer diagnosis on T2W MRI. Wang, H.; Viswanath, S.; and Madabuhshi, A. In Proceedings - International Symposium on Biomedical Imaging, 2013.
doi   link   bibtex   abstract  
Quantitative evaluation of treatment related changes on multi-parametric MRI after laser interstitial thermal therapy of prostate cancer. Viswanath, S.; Toth, R.; Rusu, M.; Sperling, D.; Lepor, H.; Futterer, J.; and Madabhushi, A. In Proceedings of SPIE - The International Society for Optical Engineering, volume 8671, 2013.
doi   link   bibtex   abstract  
  2012 (3)
Central gland and peripheral zone prostate tumors have significantly different quantitative imaging signatures on 3 tesla endorectal, in vivo T2-weighted MR imagery. Viswanath, S.; Bloch, N.; Chappelow, J.; Toth, R.; Rofsky, N.; Genega, E.; Lenkinski, R.; and Madabhushi, A. Journal of Magnetic Resonance Imaging, 36(1). 2012.
doi   link   bibtex   abstract  
Multimodal wavelet embedding representation for data combination (MaWERiC): Integrating magnetic resonance imaging and spectroscopy for prostate cancer detection. Tiwari, P.; Viswanath, S.; Kurhanewicz, J.; Sridhar, A.; and Madabhushi, A. NMR in Biomedicine, 25(4). 2012.
doi   link   bibtex   abstract  
Consensus embedding: Theory, algorithms and application to segmentation and classification of biomedical data. Viswanath, S.; and Madabhushi, A. BMC Bioinformatics, 13(1). 2012.
doi   link   bibtex   abstract  
  2011 (7)
Interplay between bias field correction, intensity standardization, and noise filtering for T2-weighted MRI. Palumbo, D.; Yee, B.; O'Dea, P.; Leedy, S.; Viswanath, S.; and Madabhushi, A. In Proceedings of the Annual International Conference of the IEEE Engineering in Medicine and Biology Society, EMBS, 2011.
doi   link   bibtex   abstract  
Multi-modal data fusion schemes for integrated classification of imaging and non-imaging biomedical data. Tiwari, P.; Viswanath, S.; Lee, G.; and Madabhushi, A. In Proceedings - International Symposium on Biomedical Imaging, 2011.
doi   link   bibtex   abstract  
CADOn©: An integrated toolkit for evaluating radiation therapy related changes in the prostate using multiparametric MRI. Viswanath, S.; Tiwari, P.; Chappelow, J.; Toth, R.; Kurhanewicz, J.; and Madabhushi, A. In Proceedings - International Symposium on Biomedical Imaging, 2011.
doi   link   bibtex   abstract  
Weighted combination of multi-parametric MR imaging markers for evaluating radiation therapy related changes in the prostate. Tiwari, P.; Viswanath, S.; Kurhanewicz, J.; and Madabhushi, A. Volume 6963 LNCS 2011.
doi   link   bibtex   abstract  
A texture-based classifier to discriminate anaplastic from non-anaplastic medulloblastoma. Lai, Y.; Viswanath, S.; Baccon, J.; Ellison, D.; Judkins, A.; and Madabhushi, A. In 2011 IEEE 37th Annual Northeast Bioengineering Conference, NEBEC 2011, 2011.
doi   link   bibtex   abstract  
Empirical evaluation of bias field correction algorithms for computer-aided detection of prostate cancer on T2w MRI. Viswanath, S.; Palumbo, D.; Chappelow, J.; Patel, P.; Bloch, B.; Rofsky, N.; Lenkinski, R.; Genega, E.; and Madabhushi, A. In Progress in Biomedical Optics and Imaging - Proceedings of SPIE, volume 7963, 2011.
doi   link   bibtex   abstract  
Enhanced multi-protocol analysis via intelligent supervised embedding (EMPrAvISE): Detecting prostate cancer on multi-parametric MRI. Viswanath, S.; Bloch, B.; Chappelow, J.; Patel, P.; Rofsky, N.; Lenkinski, R.; Genega, E.; and Madabhushi, A. In Progress in Biomedical Optics and Imaging - Proceedings of SPIE, volume 7963, 2011.
doi   link   bibtex   abstract  
  2010 (1)
Computer-assisted targeted therapy (CATT) for prostate radiotherapy planning by fusion of CT and MRI. Chappelow, J.; Both, S.; Viswanath, S.; Hahn, S.; Feldman, M.; Rosen, M.; Tomaszewski, J.; Vapiwala, N.; Patel, P.; and Madabhushi, A. In Progress in Biomedical Optics and Imaging - Proceedings of SPIE, volume 7625, 2010.
doi   link   bibtex   abstract  
  2009 (2)
COLLINARUS: Collection of image-derived non-linear attributes for registration using splines. Chappelow, J.; Bloch, B.; Rofsky, N.; Genega, E.; Lenkinski, R.; Dewolf, W.; Viswanath, S.; and Madabhushi, A. In Progress in Biomedical Optics and Imaging - Proceedings of SPIE, volume 7259, 2009.
doi   link   bibtex   abstract  
Integrating structural and functional imaging for computer assisted detection of prostate cancer on multi-protocol in vivo 3 tesla MRI. Viswanath, S.; Bloch, B.; Rosen, M.; Chappelow, J.; Toth, R.; Rofsky, N.; Lenkinski, R.; Genega, E.; Kalyanpur, A.; and Madabhushi, A. In Progress in Biomedical Optics and Imaging - Proceedings of SPIE, volume 7260, 2009.
doi   link   bibtex   abstract  
  2008 (4)
A comprehensive segmentation, registration, and cancer detection scheme on 3 tesla in vivo prostate DCE-MRI. Viswanath, S.; Bloch, B.; Genega, E.; Rofsky, N.; Lenkinski, R.; Chappelow, J.; Toth, R.; and Madabhushi, A. Volume 5241 LNCS 2008.
doi   link   bibtex   abstract  
A consensus embedding approach for segmentation of high resolution in vivo prostate magnetic resonance imagery. Viswanath, S.; Rosen, M.; and Madabhushi, A. In Progress in Biomedical Optics and Imaging - Proceedings of SPIE, volume 6915, 2008.
doi   link   bibtex   abstract  
A meta-classifier for detecting prostate cancer by quantitative integration of in vivo magnetic resonance spectroscopy and magnetic resonance imaging. Viswanath, S.; Tiwari, P.; Rosen, M.; and Madabhushi, A. In Progress in Biomedical Optics and Imaging - Proceedings of SPIE, volume 6915, 2008.
doi   link   bibtex   abstract  
Improving supervised classification accuracy using non-rigid multimodal image registration: Detecting prostate cancer. Chappelow, J.; Viswanath, S.; Monaco, J.; Rosen, M.; Tomaszewski, J.; Feldman, M.; and Madabhushi, A. In Progress in Biomedical Optics and Imaging - Proceedings of SPIE, volume 6915, 2008.
doi   link   bibtex   abstract