generated by bibbase.org
  2018 (2)
2D granular flows with the $\mu(I)$ rheology and side walls friction: A well-balanced multilayer discretization. Fernández-Nieto, E.; Garres-Díaz, J.; Mangeney, A.; and Narbona-Reina, G. Journal of Computational Physics, 356: 192 - 219. 2018.
2D granular flows with the $\mu(I)$ rheology and side walls friction: A well-balanced multilayer discretization [pdf] paper   doi   link   bibtex  
Multilayer shallow water models with locally variable number of layers and semi-implicit time discretization. Bonaventura, L.; Fernández-Nieto, E. D.; Garres-Díaz, J.; and Narbona-Reina, G. Journal of Computational Physics, 364: 209 - 234. 2018.
Multilayer shallow water models with locally variable number of layers and semi-implicit time discretization [pdf] paper   doi   link   bibtex  
  2017 (2)
Formal deduction of the Saint-Venant-Exner model including arbitrarily sloping sediment beds and associated energy. Fernández-Nieto, E. D.; Morales de Luna, T.; Narbona-Reina, G.; and Zabsonré, J. D. D. ESAIM: M2AN, 51(1): 115-145. 2017.
Formal deduction of the Saint-Venant-Exner model including arbitrarily sloping sediment beds and associated energy [link] paper   doi   link   bibtex   1 download  
A two-phase solid-fluid model for dense granular flows including dilatancy effects: comparison with submarine granular collapse experiments. Bouchut, F.; Fernández-Nieto, E. D.; Koné, E. H.; Mangeney, A.; and Narbona-Reina, G. EPJ Web Conf., 140: 09039. 2017.
A two-phase solid-fluid model for dense granular flows including dilatancy effects: comparison with submarine granular collapse experiments [link]Paper   doi   link   bibtex  
  2016 (2)
A two-phase two-layer model for fluidized granular flows with dilatancy effects. Bouchut, F.; Fernández-Nieto, E. D.; Mangeney, A.; and Narbona-Reina, G. Journal of Fluid Mechanics, 801: 166-221. 2016.
A two-phase two-layer model for fluidized granular flows with dilatancy effects [link] paper   doi   link   bibtex  
A multilayer shallow model for dry granular flows with the ${\it\mu}(I)$ -rheology: application to granular collapse on erodible beds. Fernández-Nieto, E. D.; Garres-D ́iaz, J.; Mangeney, A.; and Narbona-Reina, G. Journal of Fluid Mechanics, 798: 643-681. 2016.
A multilayer shallow model for dry granular flows with the ${\it\mu}(I)$ -rheology: application to granular collapse on erodible beds [link] paper   doi   link   bibtex  
  2015 (2)
Numerical simulation of the temperature evolution in a room with a mur neutralisant. Application to "The City of Refuge" by Le Corbusier. Ramírez-Balas, C.; Fernández-Nieto, E. D.; Narbona-Reina, G.; Sendra, J.; and Suárez, R. Energy and Buildings, 86: 708-722. 2015. cited By 2
Numerical simulation of the temperature evolution in a room with a mur neutralisant. Application to "The City of Refuge" by Le Corbusier [link] paper   doi   link   bibtex  
A two-phase shallow debris flow model with energy balance. Bouchut, F.; Fernández-Nieto, E. D.; Mangeney, A.; and Narbona-Reina, G. ESAIM: Mathematical Modelling and Numerical Analysis, 49(1): 101 - 140. 2015.
A two-phase shallow debris flow model with energy balance [link] paper   doi   link   bibtex  
  2014 (1)
A second order PVM flux limiter method. Application to magnetohydrodynamics and shallow stratified flows. Castro Díaz, M. J.; Fernández-Nieto, E. D.; Narbona-Reina, G.; and de la Asunción, M. Journal of Computational Physics, 262: 172-193. 2014. cited By 3
A second order PVM flux limiter method. Application to magnetohydrodynamics and shallow stratified flows [link] paper   doi   link   bibtex  
  2013 (2)
Formal derivation of a bilayer model coupling shallow water and Reynolds lubrication equations: evolution of a thin pollutant layer over water. Fernández-Nieto, E. D.; Narbona-Reina, G.; and Zabsonré, J. D. D. European Journal of Applied Mathematics, 24(6): 803-833. 2013.
Formal derivation of a bilayer model coupling shallow water and Reynolds lubrication equations: evolution of a thin pollutant layer over water [link] paper   doi   link   bibtex  
Two shallow-water type models for viscoelastic flows from kinetic theory for polymers solutions. Narbona-Reina, G.; and Bresch, D. ESAIM: Mathematical Modelling and Numerical Analysis, 47(6): 1627-1655. 2013.
Two shallow-water type models for viscoelastic flows from kinetic theory for polymers solutions [link] paper   doi   link   bibtex  
  2012 (2)
A HLLC scheme for nonconservative hyperbolic problems. Application to turbidity currents with sediment transport. Castro Díaz, M. J.; Fernández-Nieto, E. D.; Morales de Luna, T.; Narbona-Reina, G.; and Parés, C. ESAIM: Mathematical Modelling and Numerical Analysis, 47(1): 1-32. 7 2012.
A HLLC scheme for nonconservative hyperbolic problems. Application to turbidity currents with sediment transport [link] paper   link   bibtex   abstract  
A well-balanced finite volume-augmented Lagrangian method for an integrated Herschel-Bulkley model. Acary-Robert, C.; Fernández-Nieto, E. D.; Narbona-Reina, G.; and Vigneaux, P. Journal of Scientific Computing, 53(3): 608-641. 2012. 40 pages. 12 figures.
A well-balanced finite volume-augmented Lagrangian method for an integrated Herschel-Bulkley model [link] paper   doi   link   bibtex  
  2011 (1)
Existence of global weak solutions for a viscous 2D bilayer Shallow Water model. Narbona-Reina, G.; and Zabsonré, J. D. D. Comptes Rendus Mathematique, 349(5): 285 - 289. 2011.
Existence of global weak solutions for a viscous 2D bilayer Shallow Water model [link] paper   doi   link   bibtex  
  2009 (2)
Existence of a global weak solution for a 2D viscous bi-layer Shallow Water model. Zabsonré, J. D. D.; and Narbona-Reina, G. Nonlinear Analysis: Real World Applications, 10(5): 2971-2984. 2009. cited By 17
Existence of a global weak solution for a 2D viscous bi-layer Shallow Water model [link] paper   doi   link   bibtex  
Derivation of a bilayer model for Shallow Water equations with viscosity. Numerical validation. Narbona-Reina, G.; Zabsonré, J. D. D.; Fernández-Nieto, E. D.; and Bresch, D. Computer modeling in engineering & sciences, 43 (1), 27-71. 2009.
Derivation of a bilayer model for Shallow Water equations with viscosity. Numerical validation [link] paper   doi   link   bibtex  
  2008 (1)
Extension of WAF type methods to non-homogeneous shallow water equations with pollutant. Fernández-Nieto, E. D.; and Narbona-Reina, G. Journal of Scientific Computing, 36(2): 193-217. 2008. cited By 14
Extension of WAF type methods to non-homogeneous shallow water equations with pollutant [link] paper   doi   link   bibtex   1 download  
  2007 (1)
Numerical analysis of the PSI solution of advection-diffusion problems through a Petrov-galerkin formulation. Rebollo, T.; Mármol, M.; and Narbona-Reina, G. Mathematical Models and Methods in Applied Sciences, 17(11): 1905-1936. 2007. cited By 3
Numerical analysis of the PSI solution of advection-diffusion problems through a Petrov-galerkin formulation [link] paper   doi   link   bibtex