generated by bibbase.org
  2025 (49)
UV Luminosity Functions from HST and JWST: A Possible Resolution to the High-Redshift Galaxy Abundance Puzzle and Implications for Cosmic Strings. Blamart, M.; Liu, A.; Brandenberger, R.; Muñoz, J. B.; and Cyr, B. December 2025. arXiv:2512.09980 [astro-ph]
UV Luminosity Functions from HST and JWST: A Possible Resolution to the High-Redshift Galaxy Abundance Puzzle and Implications for Cosmic Strings [link]Paper   doi   link   bibtex   abstract   1 download  
SkillFactory: Self-Distillation For Learning Cognitive Behaviors. Sprague, Z.; Lu, J.; Wadhwa, M.; Keh, S.; Ren, M.; and Durrett, G. December 2025. arXiv:2512.04072 [cs]
SkillFactory: Self-Distillation For Learning Cognitive Behaviors [link]Paper   doi   link   bibtex   abstract  
Signatures of Black Hole Seeding on the M$_{\textrm{•}}$ – σ Relation: Predictions from the BRAHMA Simulations. Kho, J.; Bhowmick, A. K.; Torrey, P.; Garcia, A. M.; Ahvazi, N.; Blecha, L.; and Vogelsberger, M. The Astrophysical Journal, 994(2): 172. December 2025.
Signatures of Black Hole Seeding on the <i>M</i>$_{\textrm{•}}$ – <i>σ</i> Relation: Predictions from the BRAHMA Simulations [link]Paper   doi   link   bibtex   abstract  
Combining Serverless and High-Performance Computing Paradigms to support ML Data-Intensive Applications. Staylor, M.; Sarker, A. K.; Laszewski, G. v.; Fox, G.; Cheng, Y.; and Fox, J. December 2025. arXiv:2511.12185 [cs]
Combining Serverless and High-Performance Computing Paradigms to support ML Data-Intensive Applications [link]Paper   doi   link   bibtex   abstract  
The DREAMS Project: Disentangling the Impact of Halo-to-Halo Variance and Baryonic Feedback on Milky Way Satellite Galaxies. Rose, J. C.; Lisanti, M.; Torrey, P.; Villaescusa-Navarro, F.; Garcia, A. M.; Farahi, A.; Filion, C.; Brooks, A. M.; Kallivayalil, N.; Kollmann, K. E.; Lilie, E.; Li, J.; Mostow, O.; Cruz, A.; Nguyen, T.; Roy, S.; Pace, A. B.; Ahvazi, N.; O'Neil, S.; Shen, X.; Cyr-Racine, F.; Price-Whelan, A. M.; Geha, M.; Necib, L.; Vogelsberger, M.; Muñoz, J. B.; and Dalcanton, J. J. 2025. Version Number: 1
The DREAMS Project: Disentangling the Impact of Halo-to-Halo Variance and Baryonic Feedback on Milky Way Satellite Galaxies [link]Paper   doi   link   bibtex   abstract  
The DREAMS Project: Disentangling the Impact of Halo-to-Halo Variance and Baryonic Feedback on Milky Way Dark Matter Speed Distributions. Lilie, E.; Rose, J. C.; Lisanti, M.; Garcia, A. M.; Torrey, P.; Kollmann, K. E.; Li, J.; Mostow, O.; Wang, B. Y.; O'Neil, S.; Shen, X.; Brooks, A. M.; Farahi, A.; Kallivayalil, N.; Necib, L.; Pace, A. B.; and Vogelsberger, M. 2025. Version Number: 1
The DREAMS Project: Disentangling the Impact of Halo-to-Halo Variance and Baryonic Feedback on Milky Way Dark Matter Speed Distributions [link]Paper   doi   link   bibtex   abstract  
The DREAMS Project: Disentangling the Impact of Halo-to-Halo Variance and Baryonic Feedback on Milky Way Dark Matter Density Profiles. Garcia, A. M.; Rose, J. C.; Torrey, P.; Caputo, A.; Lisanti, M.; Pace, A. B.; Liu, H.; Hussein, A.; Liu, H.; Villaescusa-Navarro, F.; Barry, J.; Leisher, I.; Costanza, B.; Kho, J.; Lilie, E.; Li, J.; Ahvazi, N.; Bhowmick, A.; Nguyen, T.; O'Neil, S.; Ou, X.; Shen, X.; Farahi, A.; Kallivayalil, N.; Necib, L.; and Vogelsberger, M. 2025. Version Number: 1
The DREAMS Project: Disentangling the Impact of Halo-to-Halo Variance and Baryonic Feedback on Milky Way Dark Matter Density Profiles [link]Paper   doi   link   bibtex   abstract  
The DREAMS Project: A New Suite of 1,024 Simulations to Contextualize the Milky Way and Assess Physics Uncertainties. Rose, J. C.; Lisanti, M.; Torrey, P.; Villaescusa-Navarro, F.; Garcia, A. M.; Farahi, A.; Filion, C.; Brooks, A. M.; Kallivayalil, N.; Kollmann, K. E.; Lilie, E.; Wang, B. Y.; Cruz, A.; Roy, S.; Pace, A. B.; Ahvazi, N.; O'Neil, S.; Roche, C.; Shen, X.; and Vogelsberger, M. 2025. Version Number: 1
The DREAMS Project: A New Suite of 1,024 Simulations to Contextualize the Milky Way and Assess Physics Uncertainties [link]Paper   doi   link   bibtex   abstract  
Linking Warm Dark Matter to Merger Tree Histories via Deep Learning Networks. Leisher, I.; Torrey, P.; Garcia, A. M.; Rose, J. C.; Villaescusa-Navarro, F.; Lubberts, Z.; Farahi, A.; O'Neil, S.; Shen, X.; Mostow, O.; Kallivayalil, N.; Zimmerman, D.; Narayanan, D.; and Vogelsberger, M. 2025. Version Number: 1
Linking Warm Dark Matter to Merger Tree Histories via Deep Learning Networks [link]Paper   doi   link   bibtex   abstract  
APP: Accelerated Path Patching with Task-Specific Pruning. Andersen, F.; Rudman, W.; Zhang, R.; and Eickhoff, C. 2025. Version Number: 1
APP: Accelerated Path Patching with Task-Specific Pruning [link]Paper   doi   link   bibtex   abstract  
Scalable cosmic AI inference using cloud serverless computing. Staylor, M.; Dolatpour Fathkouhi, A.; Islam, M. K.; O’Hara, K.; Goudjil, R. G.; Fox, G.; and Fox, J. The International Journal of High Performance Computing Applications,10943420251399942. November 2025.
Scalable cosmic AI inference using cloud serverless computing [link]Paper   doi   link   bibtex   abstract  
Impact of follicle size before luteal progesterone supplementation on clinical outcomes of modified natural cycle single frozen embryo transfer. Kavoussi, S. K.; Chen, S.; Farzaneh, N.; Farahi, A.; Mehrabani-Farsi, R.; Aston, K. I.; Chen, J.; and Kavoussi, P. K. F&S Reports, 6(1): 47–51. March 2025.
Impact of follicle size before luteal progesterone supplementation on clinical outcomes of modified natural cycle single frozen embryo transfer [link]Paper   doi   link   bibtex   abstract  
How Many Bursts Does it Take to Form a Core at the Center of a Galaxy?. Mostow, O.; Torrey, P.; Rose, J. C.; Garcia, A. M.; Ahvazi, N.; Lisanti, M.; and Kallivayalil, N. October 2025. arXiv:2412.09566 [astro-ph]
How Many Bursts Does it Take to Form a Core at the Center of a Galaxy? [link]Paper   doi   link   bibtex   abstract  
Linking Warm Dark Matter to Merger Tree Histories via Deep Learning Networks. Leisher, I.; Torrey, P.; Garcia, A. M.; Rose, J. C.; Villaescusa-Navarro, F.; Lubberts, Z.; Farahi, A.; O'Neil, S.; Shen, X.; Mostow, O.; Kallivayalil, N.; Zimmerman, D.; Narayanan, D.; and Vogelsberger, M. November 2025. arXiv:2511.05367 [astro-ph]
Linking Warm Dark Matter to Merger Tree Histories via Deep Learning Networks [link]Paper   doi   link   bibtex   abstract  
Dynamics of low-mass black hole seeds in the BRAHMA simulations using subgrid-dynamical friction: Impact on merger-driven black hole growth in the high redshift Universe. Bhowmick, A. K.; Blecha, L.; Kelley, L. Z.; Sivasankaran, A.; Torrey, P.; Weinberger, R.; Chen, N.; Vogelsberger, M.; Hernquist, L.; and Natarajan, P. June 2025. arXiv:2506.09184 [astro-ph]
Dynamics of low-mass black hole seeds in the BRAHMA simulations using subgrid-dynamical friction: Impact on merger-driven black hole growth in the high redshift Universe [link]Paper   doi   link   bibtex   abstract  
Effective model for line intensity mapping: Auto- and cross-power spectra in the cosmic dawn and reionization. Libanore, S.; Muñoz, J. B.; and Kovetz, E. D. Physical Review D, 112(8): 083552. October 2025.
Effective model for line intensity mapping: Auto- and cross-power spectra in the cosmic dawn and reionization [link]Paper   doi   link   bibtex  
Environmental versus intrinsic quenching at cosmic noon: predictions from cosmological hydrodynamical simulations for VLT-MOONRISE. Goubert, P. H; Bluck, A. F L; Piotrowska, J. M; Torrey, P.; Maiolino, R.; Franco, T. P.; Casimiro, C.; and Cea, N. Monthly Notices of the Royal Astronomical Society, 543(3): 2006–2034. October 2025.
Environmental versus intrinsic quenching at cosmic noon: predictions from cosmological hydrodynamical simulations for VLT-MOONRISE [link]Paper   doi   link   bibtex   abstract  
Weak lensing mass-richness relation of redMaPPer clusters in LSST DESC DC2 simulations. Payerne, C.; Zhang, Z.; Aguena, M.; Combet, C.; Guillemin, T.; Ricci, M.; Amouroux, N.; Avestruz, C.; Barroso, E. J.; Farahi, A.; Kovacs, E.; Murray, C.; Rau, M. M.; Rykoff, E. S.; and Schmidt, S. J. Astronomy & Astrophysics, 700: A34. August 2025.
Weak lensing mass-richness relation of redMaPPer clusters in LSST DESC DC2 simulations [link]Paper   doi   link   bibtex   abstract  
Metallicity Gradients in Modern Cosmological Simulations II: The Role of Bursty Versus Smooth Feedback at High-Redshift. Garcia, A. M.; Torrey, P.; Bhagwat, A.; Shen, X.; Vogelsberger, M.; McClymont, W.; Nagarajan-Swenson, J.; Ridolfo, S. G.; Zhu, P.; Zimmerman, D. T.; Zier, O.; Biddle, S.; Sarkar, A.; Chakraborty, P.; Wright, R. J.; Grasha, K.; Costa, T.; Keating, L.; Kannan, R.; Smith, A.; Garaldi, E.; Puchwein, E.; Ciardi, B.; Hernquist, L.; and Kewley, L. J. November 2025. arXiv:2510.26877 [astro-ph]
Metallicity Gradients in Modern Cosmological Simulations II: The Role of Bursty Versus Smooth Feedback at High-Redshift [link]Paper   doi   link   bibtex   abstract  
Star Formation Rates, Metallicities, and Stellar Masses on Kiloparsec Scales in TNG50. Qi, J.; Garcia, A. M.; Robinson, D.; Torrey, P.; Moreno, J.; Green, K. N.; Evans, A. S.; Hemler, Z. S.; Hernquist, L.; and Ellison, S. L. The Astrophysical Journal, 993(1): 32. November 2025.
Star Formation Rates, Metallicities, and Stellar Masses on Kiloparsec Scales in TNG50 [link]Paper   doi   link   bibtex   abstract  
A New Boundary Condition on Reionization. Libanore, S.; Kovetz, E. D.; Munoz, J. B.; Sklansky, Y.; and Thélie, E. September 2025. arXiv:2509.08886 [astro-ph]
A New Boundary Condition on Reionization [link]Paper   doi   link   bibtex   abstract  
First galaxy ultraviolet luminosity function limits on dark matter-proton scattering. Lazare, H.; Kovetz, E. D.; Boddy, K. K.; and Munoz, J. B. October 2025. arXiv:2510.10757 [astro-ph]
First galaxy ultraviolet luminosity function limits on dark matter-proton scattering [link]Paper   doi   link   bibtex   abstract  
Association between optically identified galaxy clusters and the underlying dark matter halos. Cao, S.; Wu, H.; Costanzi, M.; Farahi, A.; Grandis, S.; Weinberg, D. H; Evrard, A. E; Rozo, E.; Salcedo, A. N; To, C.; Yang, L.; and Zhou, C. PHYS. REV. D. 2025.
link   bibtex  
The General Expiration Streaming Model: Diameter, $k$-Center, Counting, Sampling, and Friends. Blank, L.; Cabello, S.; Hajiaghayi, M.; Krauthgamer, R.; Mahabadi, S.; Nusser, A.; Phillips, J. M.; and Sauer, J. 2025. Version Number: 1
The General Expiration Streaming Model: Diameter, $k$-Center, Counting, Sampling, and Friends [link]Paper   doi   link   bibtex   abstract  
On the sensitivity of different galaxy properties to warm dark matter. Costanza, B.; Wang, B. Y.; Villaescusa-Navarro, F.; Garcia, A. M.; Rose, J. C.; Vogelsberger, M.; Torrey, P.; Farahi, A.; Shen, X.; and Leisher, I. October 2025. arXiv:2510.05037 [astro-ph]
On the sensitivity of different galaxy properties to warm dark matter [link]Paper   doi   link   bibtex   abstract  
Heavy seeds and the first black holes: Insights from the BRAHMA simulations. Bhowmick, A. K.; Blecha, L.; Torrey, P.; Kelley, L. Z.; Natarajan, P.; Somerville, R. S.; Weinberger, R.; Garcia, A. M.; Hernquist, L.; Matteo, T. D.; Kho, J.; and Vogelsberger, M. October 2025. arXiv:2510.01322 [astro-ph]
Heavy seeds and the first black holes: Insights from the BRAHMA simulations [link]Paper   doi   link   bibtex   abstract  
Instance-level Performance Prediction for Long-form Generation Tasks. Hsu, C.; Braylan, A.; Su, Y.; Alonso, O.; and Lease, M. September 2025. arXiv:2509.07309 [cs]
Instance-level Performance Prediction for Long-form Generation Tasks [link]Paper   doi   link   bibtex   abstract  
The first radio view of a type Ibn supernova in SN 2023fyq: Understanding the mass-loss history in the last decade before the explosion. Baer-Way, R.; Nayana, A. J.; Jacobson-Galan, W.; Chandra, P.; Modjaz, M.; Wu, S. C.; Tsuna, D.; Margutti, R.; Chornock, R.; Pellegrino, C.; Dong, Y.; Drout, M. R.; Kilpatrick, C. D.; Milisavljevic, D.; Patnaude, D.; and Stauffer, C. September 2025. arXiv:2509.07080 [astro-ph]
The first radio view of a type Ibn supernova in SN 2023fyq: Understanding the mass-loss history in the last decade before the explosion [link]Paper   doi   link   bibtex   abstract  
The Future of Artificial Intelligence and the Mathematical and Physical Sciences (AI+MPS). Ferguson, A.; LaFleur, M.; Ruthotto, L.; Thaler, J.; Ting, Y.; Tiwary, P.; Villar, S.; Alves, E. P.; Avigad, J.; Billinge, S.; Bilodeau, C.; Brown, K.; Candes, E.; Chattopadhyay, A.; Cheng, B.; Clausen, J.; Coley, C.; Connolly, A.; Daum, F.; Dong, S.; Du, C. X.; Dvorkin, C.; Fanelli, C.; Ford, E. B.; Frutos, L. M.; Trillos, N. G.; Garraffo, C.; Ghrist, R.; Gomez-Bombarelli, R.; Guadagni, G.; Guggilam, S.; Gukov, S.; Gutiérrez, J. B.; Habib, S.; Hachmann, J.; Hanin, B.; Harris, P.; Holland, M.; Holm, E.; Huang, H.; Hsu, S.; Jackson, N.; Isayev, O.; Ji, H.; Katsaggelos, A.; Kepner, J.; Kevrekidis, Y.; Kuchera, M.; Kutz, J. N.; Lalic, B.; Lee, A.; LeBlanc, M.; Lim, J.; Lindsey, R.; Liu, Y.; Lu, P. Y.; Malik, S.; Mandic, V.; Manian, V.; Mazi, E. P.; Mehta, P.; Melchior, P.; Ménard, B.; Ngadiuba, J.; Offner, S.; Olivetti, E.; Ong, S. P.; Rackauckas, C.; Rigollet, P.; Risko, C.; Romero, P.; Rotskoff, G.; Savoie, B.; Seljak, U.; Shih, D.; Shiu, G.; Shlyakhtenko, D.; Silverstein, E.; Sparks, T.; Strohmer, T.; Stubbs, C.; Thomas, S.; Vaikuntanathan, S.; Vidal, R.; Villaescusa-Navarro, F.; Voth, G.; Wandelt, B.; Ward, R.; Weber, M.; Wechsler, R.; Whitelam, S.; Wiest, O.; Williams, M.; Yang, Z.; Yingling, Y. G.; Yu, B.; Yue, S.; Zabludoff, A.; Zhao, H.; and Zhang, T. September 2025. arXiv:2509.02661 [cs]
The Future of Artificial Intelligence and the Mathematical and Physical Sciences (AI+MPS) [link]Paper   doi   link   bibtex   abstract  
A Late-time Radio Search for Highly Off-axis Jets from PTF Broad-lined Ic Supernovae in GRB-like Host Galaxy Environments. Schroeder, G.; Ho, A. Y. Q.; Dastidar, R. G.; Modjaz, M.; Corsi, A.; and Duffell, P. C. July 2025. arXiv:2507.15928 [astro-ph]
A Late-time Radio Search for Highly Off-axis Jets from PTF Broad-lined Ic Supernovae in GRB-like Host Galaxy Environments [link]Paper   doi   link   bibtex   abstract  
Learning Composable Chains-of-Thought. Yin, F.; Liu, Z. L.; Leqi, L.; Ye, X.; and Durrett, G. May 2025. arXiv:2505.22635 [cs]
Learning Composable Chains-of-Thought [link]Paper   doi   link   bibtex   abstract  
Scalable KNN Graph Construction for Heterogeneous Architectures. Ruys, W.; Ghafouri, A.; Chen, C.; and Biros, G. ACM Transactions on Parallel Computing, 12(3): 1–35. September 2025.
Scalable KNN Graph Construction for Heterogeneous Architectures [link]Paper   doi   link   bibtex   abstract  
PropMEND: Hypernetworks for Knowledge Propagation in LLMs. Liu, Z. L.; Durrett, G.; and Choi, E. June 2025. arXiv:2506.08920 [cs]
PropMEND: Hypernetworks for Knowledge Propagation in LLMs [link]Paper   doi   link   bibtex   abstract  
A Tool for Generating Exceptional Behavior Tests With Large Language Models. Zhong, L.; Yuan, S.; Zhang, J.; Liu, Y.; Nie, P.; Li, J. J.; and Gligoric, M. In Proceedings of the 33rd ACM International Conference on the Foundations of Software Engineering, pages 1193–1197, Clarion Hotel Trondheim Trondheim Norway, June 2025. ACM
A Tool for Generating Exceptional Behavior Tests With Large Language Models [link]Paper   doi   link   bibtex   abstract  
Modeling turbulent and self-gravitating fluids with Fourier neural operators. Poletti, K.; Offner, S. S. R.; and Ward, R. A. APL Machine Learning, 3(2): 026118. June 2025.
Modeling turbulent and self-gravitating fluids with Fourier neural operators [link]Paper   doi   link   bibtex   abstract  
HACK: Homomorphic Acceleration via Compression of the Key-Value Cache for Disaggregated LLM Inference. Zhang, Z.; Shen, H.; Vargaftik, S.; Basat, R. B.; Mitzenmacher, M.; and Yu, M. In Coimbra, Portugal, September 2025. https://github.com/pcl-projects/HACK
HACK: Homomorphic Acceleration via Compression of the Key-Value Cache for Disaggregated LLM Inference [link]Paper   doi   link   bibtex   abstract  
Revisiting the Straggling Problem in GPU-based Distributed Deep Learning Training. Tairin, S.; Zhang, Z.; and Shen, H. In Proceedings of the 34th International Conference on Computer Communications and Networks (ICCCN 2025), Tokyo, Japan, August 2025. Code: https://github.com/pcl-projects/STRET
link   bibtex   abstract  
Baryon Pasting the Uchuu Lightcone Simulation. Lau, E. T.; Nagai, D.; Farahi, A.; Ishiyama, T.; Miyatake, H.; Osato, K.; and Shirasaki, M. February 2025. arXiv:2411.00108 [astro-ph]
Baryon Pasting the Uchuu Lightcone Simulation [link]Paper   doi   link   bibtex   abstract  
EVALAGENT: Discovering Implicit Evaluation Criteria from the Web. Wadhwa, M.; Sprague, Z.; Malaviya, C.; Laban, P.; Li, J. J.; and Durrett, G. In 2025.
link   bibtex  
Introducing the DREAMS Project: DaRk mattEr and Astrophysics with Machine Learning and Simulations. Rose, J. C.; Torrey, P.; Farahi, A.; Kallivayalil, N.; Muñoz, J. B.; Garcia, A. M.; Villaescusa-Navarro, F.; Lisanti, M.; Nguyen, T.; Roy, S.; Kollmann, K. E.; Vogelsberger, M.; Cyr-Racine, F.; Medvedev, M. V.; Genel, S.; Anglés-Alcázar, D.; Wang, B. Y.; Costanza, B.; O’Neil, S.; Roche, C.; Karmakar, S.; Low, R.; Lin, S.; Mostow, O.; Cruz, A.; Caputo, A.; Necib, L.; Teyssier, R.; Dalcanton, J. J.; and Spergel, D. The Astrophysical Journal, 982(2): 68. April 2025.
Introducing the DREAMS Project: DaRk mattEr and Astrophysics with Machine Learning and Simulations [link]Paper   doi   link   bibtex   abstract  
ZACK: Zero-Overhead LLM Inference Acceleration via Dimensionality Compression of the Key-Value Cache. Zhang, Z.; and Shen, H. February 2025. arXiv:2408.04107 [cs]
ZACK: Zero-Overhead LLM Inference Acceleration via Dimensionality Compression of the Key-Value Cache [link]Paper   doi   link   bibtex   abstract  
Efficient and Stable Multi-Dimensional Kolmogorov-Smirnov Distance. Jacobs, P. M.; Namjoo, F.; and Phillips, J. M. April 2025. arXiv:2504.11299 [stat]
Efficient and Stable Multi-Dimensional Kolmogorov-Smirnov Distance [link]Paper   doi   link   bibtex   abstract  
EconoServe: Maximizing Multi-Resource Utilization with SLO Guarantees in LLM Serving. Shen, H.; and Sen, T. March 2025. arXiv:2411.06364 [cs]
EconoServe: Maximizing Multi-Resource Utilization with SLO Guarantees in LLM Serving [link]Paper   doi   link   bibtex   abstract  
ChartMuseum: Testing Visual Reasoning Capabilities of Large Vision-Language Models. Tang, L.; Kim, G.; Zhao, X.; Durrett, G.; Lake, T.; Ding, W.; Yin, F.; Singhal, P.; Wadhwa, M.; Liu, Z. L.; Sprague, Z.; Namuduri, R.; Hu, B.; Rodriguez, J. D.; and Peng, P. May 2025. arXiv:2505.13444 [cs]
ChartMuseum: Testing Visual Reasoning Capabilities of Large Vision-Language Models [link]Paper   doi   link   bibtex   abstract  
EvalAgent: Discovering Implicit Evaluation Criteria from the Web. Wadhwa, M.; Sprague, Z.; Malaviya, C.; Laban, P.; Li, J. J.; and Durrett, G. April 2025. arXiv:2504.15219 [cs]
EvalAgent: Discovering Implicit Evaluation Criteria from the Web [link]Paper   doi   link   bibtex   abstract  
Behavioral Analysis of Information Salience in Large Language Models. Trienes, J.; Schlötterer, J.; Li, J. J.; and Seifert, C. May 2025. arXiv:2502.14613 [cs]
Behavioral Analysis of Information Salience in Large Language Models [link]Paper   doi   link   bibtex   abstract  
Analysis of the weak lensing mass-richness relation of redMaPPer clusters in the LSST DESC DC2 simulations. Payerne, C.; Zhang, Z.; Aguena, M.; Combet, C.; Guillemin, T.; Farahi, A.; Ricci, M.; Amouroux, N.; Avestruz, C.; Barroso, E. J.; Kovacs, E.; Murray, C.; Rau, M. M.; Rykoff, E. S.; Schmidt, S. J.; and Collaboration, t. L. D. E. S. February 2025. arXiv:2502.08444 [astro-ph]
Analysis of the weak lensing mass-richness relation of redMaPPer clusters in the LSST DESC DC2 simulations [link]Paper   doi   link   bibtex   abstract  
Structure Formation under Inelastic Two-Component Dark Matter: Halo Statistics and Matter Power Spectra in the High-$z$ Universe. Low, R.; Adhikari, R.; Rose, J. C.; O'Neil, S.; Medvedev, M. V.; Torrey, P.; and Vogelsberger, M. March 2025. arXiv:2503.05881 [astro-ph]
Structure Formation under Inelastic Two-Component Dark Matter: Halo Statistics and Matter Power Spectra in the High-$z$ Universe [link]Paper   doi   link   bibtex   abstract  
The Life and Times of Star-Forming Cores: an Analysis of Dense Gas in the STARFORGE Simulations. Offner, S. S. R.; Taylor, J.; and Grudic, M. Y. February 2025. arXiv:2502.15057 [astro-ph]
The Life and Times of Star-Forming Cores: an Analysis of Dense Gas in the STARFORGE Simulations [link]Paper   doi   link   bibtex   abstract  
  2024 (2)
How DREAMS are made: Emulating Satellite Galaxy and Subhalo Populations with Diffusion Models and Point Clouds. Nguyen, T.; Villaescusa-Navarro, F.; Mishra-Sharma, S.; Cuesta-Lazaro, C.; Torrey, P.; Farahi, A.; Garcia, A. M.; Rose, J. C.; O'Neil, S.; Vogelsberger, M.; Shen, X.; Roche, C.; Anglés-Alcázar, D.; Kallivayalil, N.; Muñoz, J. B.; Cyr-Racine, F.; Roy, S.; Necib, L.; and Kollmann, K. E. September 2024. arXiv:2409.02980 [astro-ph]
How DREAMS are made: Emulating Satellite Galaxy and Subhalo Populations with Diffusion Models and Point Clouds [link]Paper   doi   link   bibtex   abstract  
SmallToLarge (S2L): Scalable Data Selection for Fine-tuning Large Language Models by Summarizing Training Trajectories of Small Models. Yang, Y.; Mishra, S.; Chiang, J. N.; and Mirzasoleiman, B. December 2024. arXiv:2403.07384 [cs]
SmallToLarge (S2L): Scalable Data Selection for Fine-tuning Large Language Models by Summarizing Training Trajectories of Small Models [link]Paper   doi   link   bibtex   abstract  
  2019 (1)
Minority serving institutions: America's underutilized resource for strengthening the STEM workforce. Jackson, L. M.; McGuire, K.; and Espinosa, L. L. National Academies Press, 2019.
link   bibtex  
  undefined (8)
AGN feedback in merging galaxies with a SMUGGLE multiphase ISM. Sivasankaran, A.; Blecha, L.; Torrey, P.; Kelley, L. Z.; Bhowmick, A.; Vogelsberger, M.; Hernquist, L.; Marinacci, F.; and Sales, L. V . .
link   bibtex   abstract  
MM-Gen: Principled and Generalizable Data Curation for Enhancing Task Performance in VLMs. Joshi, S.; Nushi, B.; Balachandran, V.; Chandrasekaran, V.; Vineet, V.; Joshi, N.; and Mirzasoleiman, B. . .
link   bibtex  
Mass Proxy Quality of Massive Halo Properties in the IllustrisTNG and FLAMINGO Simulations: I. Hot Gas. Aljamal, E.; Evrard, A. E; Farahi, A.; Pillepich, A.; Nelson, D.; Schaye, J.; Schaller, M.; and Braspenning, J. . .
link   bibtex   abstract  
Argumentative Experience: Reducing Confirmation Bias on Controversial Issues through LLM-Generated Multi-Persona Debates. Shi, L.; Liu, H.; Wong, Y.; Mujumdar, U.; Zhang, D.; Gwizdka, J.; and Lease, M. In .
doi   link   bibtex  
Robust High-Dimensional Mean Estimation With Low Data Size, an Empirical Study. Anderson, C.; and Phillips, M . .
link   bibtex   abstract  
I-trustworthy Models. A framework for trustworthiness evaluation of probabilistic classifiers. Vashistha, R.; and Farahi, A.
link   bibtex   abstract  
Changing the Training Data Distribution to Reduce Simplicity Bias Improves In-distribution Generalization. Nguyen, T. H. D.; Haddad, P.; Gan, E.; and Mirzasoleiman, B. In .
link   bibtex   abstract  
ASTROVISBENCH: A Code Benchmark for Scientific Computing and Visualization in Astronomy. Joseph, S.; Husain, S. M.; Offner, S. S R; Juneau, S.; Torrey, P.; Bolton, A. S; Farias, J. P; Gaffney, N.; Durrett, G.; and Li, J. J.
link   bibtex