generated by bibbase.org
  2023 (11)
Fast evaluation of real spherical harmonics and their derivatives in Cartesian coordinates. Bigi, F.; and Ceriotti, M. ,1-8. 2023.
Fast evaluation of real spherical harmonics and their derivatives in Cartesian coordinates [pdf]Paper   Fast evaluation of real spherical harmonics and their derivatives in Cartesian coordinates [link]Website   link   bibtex   abstract  
Reducing SO(3) Convolutions to SO(2) for Efficient Equivariant GNNs. Passaro, S.; and Zitnick, C., L. , (3). 2023.
Reducing SO(3) Convolutions to SO(2) for Efficient Equivariant GNNs [pdf]Paper   Reducing SO(3) Convolutions to SO(2) for Efficient Equivariant GNNs [link]Website   link   bibtex   abstract  
3D Spectral Domain Registration-Based Visual Servoing. Adjigble, M.; Tamadazte, B.; de Farias, C.; Stolkin, R.; and Marturi, N. . 2023.
3D Spectral Domain Registration-Based Visual Servoing [pdf]Paper   3D Spectral Domain Registration-Based Visual Servoing [link]Website   link   bibtex   abstract  
Evaluate Geometry of Radiance Field with Low-frequency Color Prior. Fang, Q.; Song, Y.; Li, K.; Shen, L.; Wu, H.; Xiong, G.; and Bo, L. . 2023.
Evaluate Geometry of Radiance Field with Low-frequency Color Prior [pdf]Paper   Evaluate Geometry of Radiance Field with Low-frequency Color Prior [link]Website   link   bibtex   abstract  
MACARONS: Mapping And Coverage Anticipation with RGB Online Self-Supervision. Guédon, A.; Monnier, T.; Monasse, P.; and Lepetit, V. ,940-951. 2023.
MACARONS: Mapping And Coverage Anticipation with RGB Online Self-Supervision [pdf]Paper   MACARONS: Mapping And Coverage Anticipation with RGB Online Self-Supervision [link]Website   link   bibtex   abstract  
Change detection of urban objects using 3D point clouds: A review. Stilla, U.; and Xu, Y. ISPRS Journal of Photogrammetry and Remote Sensing, 197(February): 228-255. 2023.
Change detection of urban objects using 3D point clouds: A review [pdf]Paper   Change detection of urban objects using 3D point clouds: A review [link]Website   doi   link   bibtex   abstract  
Make-It-3D: High-Fidelity 3D Creation from A Single Image with Diffusion Prior. Tang, J.; Wang, T.; Zhang, B.; Zhang, T.; Yi, R.; Ma, L.; and Chen, D. . 2023.
Make-It-3D: High-Fidelity 3D Creation from A Single Image with Diffusion Prior [pdf]Paper   Make-It-3D: High-Fidelity 3D Creation from A Single Image with Diffusion Prior [link]Website   link   bibtex   abstract  
A Rapid Water Region Reconstruction Scheme in 3D Watershed Scene Generated by UAV Oblique Photography. Qiu, Y.; Jiao, Y.; Luo, J.; Tan, Z.; Huang, L.; Zhao, J.; Xiao, Q.; and Duan, H. Remote Sensing, 15(5): 1-19. 2023.
A Rapid Water Region Reconstruction Scheme in 3D Watershed Scene Generated by UAV Oblique Photography [pdf]Paper   doi   link   bibtex   abstract  
An FPGA smart camera implementation of segmentation models for drone wildfire imagery. Guarduño-Martinez, E.; Ciprian-Sanchez, J.; Valente, G.; Vazquez-Garcia; Rodriguez-Hernandez, G.; Palacios-Rosas, A.; Rossi-Tisson, L.; and Ochoa-Ruiz, G. . 9 2023.
An FPGA smart camera implementation of segmentation models for drone wildfire imagery [pdf]Paper   An FPGA smart camera implementation of segmentation models for drone wildfire imagery [link]Website   link   bibtex   abstract  
Convolutional Neural Networks on the Edge: A Comparison Between FPGA and GPU. Wei, Y.; Gong, S.; Mei, H.; Shi, L.; and Guo, X. In 2023 China Semiconductor Technology International Conference, CSTIC 2023, 2023. Institute of Electrical and Electronics Engineers Inc.
Convolutional Neural Networks on the Edge: A Comparison Between FPGA and GPU [pdf]Paper   doi   link   bibtex   abstract  
Benchmarking edge computing devices for grape bunches and trunks detection using accelerated object detection single shot multibox deep learning models. Magalhães, S., C.; dos Santos, F., N.; Machado, P.; Moreira, A., P.; and Dias, J. Engineering Applications of Artificial Intelligence, 117. 1 2023.
Benchmarking edge computing devices for grape bunches and trunks detection using accelerated object detection single shot multibox deep learning models [pdf]Paper   doi   link   bibtex   abstract  
  2022 (56)
Graph-based deep learning for communication networks: A survey. Jiang, W. Computer Communications, 185: 40-54. 2022.
Graph-based deep learning for communication networks: A survey [pdf]Paper   doi   link   bibtex   abstract  
Overhead Reduction for Graph-Based Point Cloud Delivery Using Non-Uniform Quantization. Electric, M. . 2022.
Overhead Reduction for Graph-Based Point Cloud Delivery Using Non-Uniform Quantization [pdf]Paper   link   bibtex  
44444 BottleFit : Learning Compressed Representations in Deep Neural Networks for Effective and Efficient Split Computing. Callegaro, D.; and Levorato, M. . 2022.
44444 BottleFit : Learning Compressed Representations in Deep Neural Networks for Effective and Efficient Split Computing [pdf]Paper   link   bibtex  
Unsupervised Learning on 3D Point Clouds by Clustering and Contrasting. Mei, G.; Yu, L.; Wu, Q.; Zhang, J.; and Bennamoun, M. , 14(8): 1-11. 2022.
Unsupervised Learning on 3D Point Clouds by Clustering and Contrasting [pdf]Paper   Unsupervised Learning on 3D Point Clouds by Clustering and Contrasting [link]Website   link   bibtex   abstract  
Anytime 3D Object Reconstruction Using. Yu , 7(2): 2162-2169. 2022.
Anytime 3D Object Reconstruction Using [pdf]Paper   link   bibtex  
Geometric Transformer for Fast and Robust Point Cloud Registration. Qin, Z.; Yu, H.; Wang, C.; Guo, Y.; Peng, Y.; and Xu, K. . 2 2022.
Geometric Transformer for Fast and Robust Point Cloud Registration [pdf]Paper   Geometric Transformer for Fast and Robust Point Cloud Registration [link]Website   doi   link   bibtex   abstract  
Geometric Transformer for Fast and Robust Point Cloud Registration. Qin, Z.; Yu, H.; Wang, C.; Guo, Y.; Peng, Y.; and Xu, K. . 2 2022.
Geometric Transformer for Fast and Robust Point Cloud Registration [pdf]Paper   Geometric Transformer for Fast and Robust Point Cloud Registration [link]Website   doi   link   bibtex   abstract  
Anytime 3D Object Reconstruction Using Multi-Modal Variational Autoencoder. Yu, H.; and Oh, J. IEEE Robotics and Automation Letters, 7(2): 2162-2169. 4 2022.
Anytime 3D Object Reconstruction Using Multi-Modal Variational Autoencoder [pdf]Paper   doi   link   bibtex   abstract  
Hierarchical Graph-Convolutional Variational AutoEncoding for Generative Modelling of Human Motion. Bourached, A.; Gray, R.; Griffiths, R.; Jha, A.; and Nachev, P. arXiv:2111.12602 [cs, math]. 1 2022.
Hierarchical Graph-Convolutional Variational AutoEncoding for Generative Modelling of Human Motion [pdf]Paper   Hierarchical Graph-Convolutional Variational AutoEncoding for Generative Modelling of Human Motion [link]Website   link   bibtex   abstract  
A proposal of edge detection in images with multiplicative noise using the Ant Colony System algorithm. Baltierra, S.; Valdebenito, J.; and Mora, M. Engineering Applications of Artificial Intelligence, 110(February): 104715. 2022.
A proposal of edge detection in images with multiplicative noise using the Ant Colony System algorithm [link]Website   doi   link   bibtex   abstract  
Deep Architectures for Image Compression: A Critical Review. Mishra, D.; Singh, S., K.; and Singh, R., K. Signal Processing, 191: 108346. 2022.
Deep Architectures for Image Compression: A Critical Review [pdf]Paper   Deep Architectures for Image Compression: A Critical Review [link]Website   doi   link   bibtex   abstract  
A comprehensive survey of clustering algorithms: State-of-the-art machine learning applications, taxonomy, challenges, and future research prospects. Ezugwu, A., E.; Ikotun, A., M.; Oyelade, O., O.; Abualigah, L.; Agushaka, J., O.; Eke, C., I.; and Akinyelu, A., A. Engineering Applications of Artificial Intelligence, 110(February): 104743. 2022.
A comprehensive survey of clustering algorithms: State-of-the-art machine learning applications, taxonomy, challenges, and future research prospects [pdf]Paper   A comprehensive survey of clustering algorithms: State-of-the-art machine learning applications, taxonomy, challenges, and future research prospects [link]Website   doi   link   bibtex   abstract  
IntroVAC: Introspective Variational Classifiers for learning interpretable latent subspaces. Maggipinto, M.; Terzi, M.; and Susto, G., A. Engineering Applications of Artificial Intelligence, 109(April 2021): 104658. 2022.
IntroVAC: Introspective Variational Classifiers for learning interpretable latent subspaces [pdf]Paper   IntroVAC: Introspective Variational Classifiers for learning interpretable latent subspaces [link]Website   doi   link   bibtex   abstract  
A comprehensive survey on 3D face recognition methods. Li, M.; Huang, B.; and Tian, G. Engineering Applications of Artificial Intelligence, 110(October 2021): 104669. 2022.
A comprehensive survey on 3D face recognition methods [pdf]Paper   A comprehensive survey on 3D face recognition methods [link]Website   doi   link   bibtex   abstract  
A novel vision-based weakly supervised framework for autonomous yield estimation in agricultural applications. Bellocchio, E.; Crocetti, F.; Costante, G.; Fravolini, M., L.; and Valigi, P. Engineering Applications of Artificial Intelligence, 109(April 2021): 104615. 2022.
A novel vision-based weakly supervised framework for autonomous yield estimation in agricultural applications [link]Website   doi   link   bibtex   abstract  
DeltaConv : Anisotropic Geometric Deep Learning with Exterior Calculus. Wiersma, R. , 1(1): 1-12. 2022.
link   bibtex  
OverlapNet: a siamese network for computing LiDAR scan similarity with applications to loop closing and localization. Chen, X.; Läbe, T.; Milioto, A.; Röhling, T.; Behley, J.; and Stachniss, C. Autonomous Robots, 46(1): 61-81. 2022.
OverlapNet: a siamese network for computing LiDAR scan similarity with applications to loop closing and localization [pdf]Paper   OverlapNet: a siamese network for computing LiDAR scan similarity with applications to loop closing and localization [link]Website   doi   link   bibtex   abstract  
Attention, please! A survey of neural attention models in deep learning. de Santana Correia, A.; and Colombini, E., L. Springer Netherlands, 2022.
Attention, please! A survey of neural attention models in deep learning [pdf]Paper   Attention, please! A survey of neural attention models in deep learning [link]Website   doi   link   bibtex   abstract  
Machine Learning in Drug Discovery: A Review. Dara, S.; Dhamercherla, S.; Jadav, S., S.; Babu, C., M.; and Ahsan, M., J. Volume 55 Springer Netherlands, 2022.
Machine Learning in Drug Discovery: A Review [pdf]Paper   Machine Learning in Drug Discovery: A Review [link]Website   doi   link   bibtex   abstract  
3D CAD model retrieval based on sketch and unsupervised variational autoencoder. Qin, F.; Qiu, S.; Gao, S.; and Bai, J. Advanced Engineering Informatics, 51(August 2021): 101427. 2022.
3D CAD model retrieval based on sketch and unsupervised variational autoencoder [pdf]Paper   3D CAD model retrieval based on sketch and unsupervised variational autoencoder [link]Website   doi   link   bibtex   abstract  
Rotation-Invariant Point Cloud Representation for 3-D Model Recognition. Wang, Y.; Zhao, Y.; Ying, S.; Du, S.; and Gao, Y. IEEE Transactions on Cybernetics,1-9. 2022.
Rotation-Invariant Point Cloud Representation for 3-D Model Recognition [pdf]Paper   doi   link   bibtex   abstract  
Rotation invariant point cloud analysis: Where local geometry meets global topology. Zhao, C.; Yang, J.; Xiong, X.; Zhu, A.; Cao, Z.; and Li, X. Pattern Recognition, 127: 108626. 2022.
Rotation invariant point cloud analysis: Where local geometry meets global topology [pdf]Paper   Rotation invariant point cloud analysis: Where local geometry meets global topology [link]Website   doi   link   bibtex   abstract  
AGNet: An Attention-Based Graph Network for Point Cloud Classification and Segmentation. Jing, W.; Zhang, W.; Li, L.; Di, D.; Chen, G.; and Wang, J. Remote Sensing, 14(4): 1-18. 2022.
AGNet: An Attention-Based Graph Network for Point Cloud Classification and Segmentation [pdf]Paper   doi   link   bibtex   abstract  
Enhancing Local Feature Learning Using Diffusion for 3D Point Cloud Understanding. Xiu, H.; Liu, X.; Wang, W.; Kim, K.; Shinohara, T.; Chang, Q.; and Matsuoka, M. . 2022.
Enhancing Local Feature Learning Using Diffusion for 3D Point Cloud Understanding [pdf]Paper   Enhancing Local Feature Learning Using Diffusion for 3D Point Cloud Understanding [link]Website   link   bibtex   abstract  
Point3D: tracking actions as moving points with 3D CNNs. Mo, S.; Xia, J.; Tan, X.; and Raj, B. ,1-14. 2022.
Point3D: tracking actions as moving points with 3D CNNs [pdf]Paper   Point3D: tracking actions as moving points with 3D CNNs [link]Website   link   bibtex   abstract  
LPF-Defense: 3D Adversarial Defense based on Frequency Analysis. Naderi, H.; Etemadi, A.; Noorbakhsh, K.; and Kasaei, S. ,1-19. 2022.
LPF-Defense: 3D Adversarial Defense based on Frequency Analysis [pdf]Paper   LPF-Defense: 3D Adversarial Defense based on Frequency Analysis [link]Website   link   bibtex   abstract  
NormalAttack : Curvature-Aware Shape Deformation along Normals for Imperceptible Point Cloud Attack. Tang, K.; Shi, Y.; Wu, J.; Peng, W.; Khan, A.; Zhu, P.; and Gu, Z. Security and Communication Networks, 2022. 2022.
NormalAttack : Curvature-Aware Shape Deformation along Normals for Imperceptible Point Cloud Attack [pdf]Paper   link   bibtex  
Point Cloud Attacks in Graph Spectral Domain: When 3D Geometry Meets Graph Signal Processing. Liu, D.; Hu, W.; and Li, X. , 14(8): 1-15. 2022.
Point Cloud Attacks in Graph Spectral Domain: When 3D Geometry Meets Graph Signal Processing [pdf]Paper   Point Cloud Attacks in Graph Spectral Domain: When 3D Geometry Meets Graph Signal Processing [link]Website   link   bibtex   abstract  
Geometry-Aware Generation of Adversarial Point Clouds. Wen, Y.; Lin, J.; Chen, K.; Chen, C., L., P.; and Jia, K. , 44(6): 2984-2999. 2022.
Geometry-Aware Generation of Adversarial Point Clouds [pdf]Paper   link   bibtex  
ART-Point : Improving Rotation Robustness of Point Cloud Classifiers via Adversarial Rotation. Wang, R.; Yang, Y.; and Tao, D. ,14371-14380. 2022.
ART-Point : Improving Rotation Robustness of Point Cloud Classifiers via Adversarial Rotation [pdf]Paper   link   bibtex  
SCONE : Surface Coverage Optimization in Unknown Environments by Volumetric Integration. Guédon, A.; and Ponts, E. ,1-24. 2022.
SCONE : Surface Coverage Optimization in Unknown Environments by Volumetric Integration [pdf]Paper   link   bibtex  
Boosting 3D Adversarial Attacks With Attacking on Frequency. Liu, B.; Zhang, J.; and Zhu, J. IEEE Access, 10: 50974-50984. 2022.
Boosting 3D Adversarial Attacks With Attacking on Frequency [pdf]Paper   doi   link   bibtex  
Comprehensive Review of Deep Learning-Based 3D Point Cloud Completion Processing and Analysis. Fei, B.; Yang, W.; Chen, W.; Li, Z.; Li, Y.; Ma, T.; Hu, X.; and Ma, L. IEEE Transactions on Intelligent Transportation Systems,1-22. 2022.
Comprehensive Review of Deep Learning-Based 3D Point Cloud Completion Processing and Analysis [pdf]Paper   doi   link   bibtex   abstract  
PUFA-GAN: A Frequency-Aware Generative Adversarial Network for 3D Point Cloud Upsampling. Liu, H.; Yuan, H.; Hou, J.; Hamzaoui, R.; and Gao, W. ,1-13. 2022.
PUFA-GAN: A Frequency-Aware Generative Adversarial Network for 3D Point Cloud Upsampling [pdf]Paper   PUFA-GAN: A Frequency-Aware Generative Adversarial Network for 3D Point Cloud Upsampling [link]Website   link   bibtex   abstract  
PU-REFINER : A GEOMETRY REFINER WITH ADVERSARIAL LEARNING FOR POINT CLOUD UPSAMPLING 2 . School of Control Science and Engineering , Shandong University , Jinan , China , 3 . School of Engineering and Sustainable Development , De Montfort University , Lei. Liu, H.; Yuan, H.; Hamzaoui, R.; Gao, W.; and Li, S. ,2270-2274. 2022.
PU-REFINER : A GEOMETRY REFINER WITH ADVERSARIAL LEARNING FOR POINT CLOUD UPSAMPLING 2 . School of Control Science and Engineering , Shandong University , Jinan , China , 3 . School of Engineering and Sustainable Development , De Montfort University , Lei [pdf]Paper   link   bibtex  
Geometry-Aware Generation of Adversarial Point Clouds. Wen, Y.; Lin, J.; Chen, K.; Chen, C., L.; and Jia, K. IEEE Transactions on Pattern Analysis and Machine Intelligence, 44(6): 2984-2999. 2022.
Geometry-Aware Generation of Adversarial Point Clouds [pdf]Paper   doi   link   bibtex   abstract  
Robust Object Classification Approach Using Spherical Harmonics. Mukhaimar, A.; Tennakoon, R.; Lai, C., Y.; Hoseinnezhad, R.; and Bab-Hadiashar, A. IEEE Access, 10: 21541-21553. 2022.
doi   link   bibtex   abstract  
Rotation-Invariant Point Cloud Representation for 3-D Model Recognition. Wang, Y.; Zhao, Y.; Ying, S.; Du, S.; and Gao, Y. IEEE Transactions on Cybernetics, 52(10): 10948-10956. 2022.
Rotation-Invariant Point Cloud Representation for 3-D Model Recognition [pdf]Paper   doi   link   bibtex   abstract  
Z2P: Instant Visualization of Point Clouds. Metzer, G.; Hanocka, R.; Giryes, R.; Mitra, N., J.; and Cohen-Or, D. Computer Graphics Forum, 41(2): 461-471. 2022.
Z2P: Instant Visualization of Point Clouds [pdf]Paper   doi   link   bibtex   abstract  
Using Spherical Harmonics for Navigating in Dynamic and Uncertain Environments. Patrick, S., D.; and Bakolas, E. IFAC-PapersOnLine, 55(37): 567-572. 2022.
Using Spherical Harmonics for Navigating in Dynamic and Uncertain Environments [pdf]Paper   Using Spherical Harmonics for Navigating in Dynamic and Uncertain Environments [link]Website   doi   link   bibtex   abstract  
Equivalence Between SE(3) Equivariant Networks via Steerable Kernels and Group Convolution. Poulenard, A.; Ovsjanikov, M.; and Guibas, L., J. , (3): 1-23. 2022.
Equivalence Between SE(3) Equivariant Networks via Steerable Kernels and Group Convolution [pdf]Paper   Equivalence Between SE(3) Equivariant Networks via Steerable Kernels and Group Convolution [link]Website   link   bibtex   abstract  
Solid waste shape description and generation based on spherical harmonics and probability density function. Li, Y.; Qin, X.; Zhang, Z.; and Dong, H. . 2022.
Solid waste shape description and generation based on spherical harmonics and probability density function [pdf]Paper   doi   link   bibtex  
PSE-Match: A Viewpoint-Free Place Recognition Method With Parallel Semantic Embedding. Yin, P.; Xu, L.; Feng, Z.; Egorov, A.; and Li, B. IEEE Transactions on Intelligent Transportation Systems, 23(8): 11249-11260. 2022.
PSE-Match: A Viewpoint-Free Place Recognition Method With Parallel Semantic Embedding [pdf]Paper   doi   link   bibtex   abstract  
Spherical harmonics to quantify cranial asymmetry in deformational plagiocephaly. Grieb, J.; Barbero-García, I.; and Lerma, J., L. Scientific Reports, 12(1): 1-10. 2022.
Spherical harmonics to quantify cranial asymmetry in deformational plagiocephaly [pdf]Paper   Spherical harmonics to quantify cranial asymmetry in deformational plagiocephaly [link]Website   doi   link   bibtex   abstract  
NPBG++: Accelerating Neural Point-Based Graphics. Rakhimov, R.; Ardelean, A., T.; Lempitsky, V.; and Burnaev, E. Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, 2022-June: 15948-15958. 2022.
NPBG++: Accelerating Neural Point-Based Graphics [pdf]Paper   doi   link   bibtex   abstract  
Equivariant Point Cloud Analysis via Learning Orientations for Message Passing. Luo, S.; Li, J.; Guan, J.; Su, Y.; Cheng, C.; Peng, J.; and Ma, J. Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, 2022-June: 18910-18919. 2022.
Equivariant Point Cloud Analysis via Learning Orientations for Message Passing [pdf]Paper   doi   link   bibtex   abstract  
Differentiable Point-Based Radiance Fields for Efficient View Synthesis. Zhang, Q.; Baek, S., H.; Rusinkiewicz, S.; and Heide, F. Volume 41 Association for Computing Machinery, 2022.
Differentiable Point-Based Radiance Fields for Efficient View Synthesis [pdf]Paper   doi   link   bibtex   abstract  
Fast Sequence-Matching Enhanced. Recognition, V., P.; Yin, P.; Wang, F.; Egorov, A.; Hou, J.; and Jia, Z. , 69(2): 2127-2135. 2022.
Fast Sequence-Matching Enhanced [pdf]Paper   link   bibtex  
Surface Eigenvalues with Lattice-Based Approximation In comparison with analytical solution. Wu, Y.; Wu, T.; and Yau, S. ,1-28. 2022.
Surface Eigenvalues with Lattice-Based Approximation In comparison with analytical solution [pdf]Paper   Surface Eigenvalues with Lattice-Based Approximation In comparison with analytical solution [link]Website   link   bibtex   abstract  
e3nn: Euclidean Neural Networks. Geiger, M.; and Smidt, T. , (3): 1-22. 2022.
e3nn: Euclidean Neural Networks [pdf]Paper   e3nn: Euclidean Neural Networks [link]Website   link   bibtex   abstract  
SCONE: Surface Coverage Optimization in Unknown Environments by Volumetric Integration. Guédon, A.; Monasse, P.; and Lepetit, V. , (NeurIPS). 2022.
SCONE: Surface Coverage Optimization in Unknown Environments by Volumetric Integration [pdf]Paper   SCONE: Surface Coverage Optimization in Unknown Environments by Volumetric Integration [link]Website   link   bibtex   abstract  
A Survey on Convolutional Neural Network Accelerators: GPU, FPGA and ASIC. Hu, Y.; Liu, Y.; and Liu, Z. In 2022 IEEE 14th International Conference on Computer Research and Development, ICCRD 2022, pages 100-107, 2022. Institute of Electrical and Electronics Engineers Inc.
A Survey on Convolutional Neural Network Accelerators: GPU, FPGA and ASIC [pdf]Paper   doi   link   bibtex   abstract  
State of Art IoT and Edge Embedded Systems for Real-Time Machine Vision Applications. Meribout, M.; Baobaid, A.; Khaoua, M., O.; Tiwari, V., K.; and Pena, J., P. IEEE Access, 10: 58287-58301. 2022.
State of Art IoT and Edge Embedded Systems for Real-Time Machine Vision Applications [pdf]Paper   doi   link   bibtex   abstract  
Efficient Edge-AI Application Deployment for FPGAs†. Kalapothas, S.; Flamis, G.; and Kitsos, P. Information (Switzerland), 13(6). 6 2022.
Efficient Edge-AI Application Deployment for FPGAs† [pdf]Paper   doi   link   bibtex   abstract  
Semantic Similarity Metrics for Evaluating Source Code Summarization. Haque, S.; Eberhart, Z.; Bansal, A.; and McMillan, C. In IEEE International Conference on Program Comprehension, volume 2022-March, pages 36-47, 2022. IEEE Computer Society
Semantic Similarity Metrics for Evaluating Source Code Summarization [pdf]Paper   doi   link   bibtex   abstract  
Real-time semantic segmentation on FPGAs for autonomous vehicles with hls4ml. Ghielmetti, N.; Loncar, V.; Pierini, M.; Roed, M.; Summers, S.; Aarrestad, T.; Petersson, C.; Linander, H.; Ngadiuba, J.; Lin, K.; and Harris, P. Machine Learning: Science and Technology, 3(4). 12 2022.
Real-time semantic segmentation on FPGAs for autonomous vehicles with hls4ml [pdf]Paper   doi   link   bibtex   abstract  
  2021 (293)
Estimation of 2D Bounding Box Orientation with Convex-Hull Points - A Quantitative Evaluation on Accuracy and Efficiency. Liu, Y.; Liu, B.; and Zhang, H. , (Iv): 945-950. 2021.
Estimation of 2D Bounding Box Orientation with Convex-Hull Points - A Quantitative Evaluation on Accuracy and Efficiency [pdf]Paper   doi   link   bibtex  
PV-RCNN++: Point-Voxel Feature Set Abstraction With Local Vector Representation for 3D Object Detection. Shi, S.; Jiang, L.; Deng, J.; Wang, Z.; Guo, C.; Shi, J.; Wang, X.; and Li, H. ,1-17. 2021.
PV-RCNN++: Point-Voxel Feature Set Abstraction With Local Vector Representation for 3D Object Detection [pdf]Paper   PV-RCNN++: Point-Voxel Feature Set Abstraction With Local Vector Representation for 3D Object Detection [link]Website   link   bibtex   abstract  
FPS-Net: A Convolutional Fusion Network for Large-Scale LiDAR Point Cloud Segmentation. Xiao, A.; Yang, X.; Lu, S.; Guan, D.; and Huang, J. . 2021.
FPS-Net: A Convolutional Fusion Network for Large-Scale LiDAR Point Cloud Segmentation [pdf]Paper   FPS-Net: A Convolutional Fusion Network for Large-Scale LiDAR Point Cloud Segmentation [link]Website   link   bibtex   abstract  
Pruning and Quantization for Deep Neural Network Acceleration: A Survey. Liang, T.; Glossner, J.; Wang, L.; and Shi, S. . 1 2021.
Pruning and Quantization for Deep Neural Network Acceleration: A Survey [pdf]Paper   Pruning and Quantization for Deep Neural Network Acceleration: A Survey [link]Website   link   bibtex   abstract  
Point Cloud Learning with Transformer. Han, X.; Kuang, Y.; and Xiao, G. , (3). 2021.
Point Cloud Learning with Transformer [pdf]Paper   Point Cloud Learning with Transformer [link]Website   link   bibtex   abstract  
PCT: Point cloud transformer. Guo, M., H.; Cai, J., X.; Liu, Z., N.; Mu, T., J.; Martin, R., R.; and Hu, S., M. Computational Visual Media, 7(2): 187-199. 2021.
PCT: Point cloud transformer [pdf]Paper   doi   link   bibtex   abstract  
Geometric Deep Learning: Grids, Groups, Graphs, Geodesics, and Gauges. Bronstein, M., M.; Bruna, J.; Cohen, T.; and Veličković, P. . 2021.
Geometric Deep Learning: Grids, Groups, Graphs, Geodesics, and Gauges [pdf]Paper   Geometric Deep Learning: Grids, Groups, Graphs, Geodesics, and Gauges [link]Website   link   bibtex   abstract  
Random Features Strengthen Graph Neural Networks. Sato, R.; Yamada, M.; and Kashima, H. Proceedings of the 2021 SIAM International Conference on Data Mining (SDM),333-341. 2021.
Random Features Strengthen Graph Neural Networks [pdf]Paper   doi   link   bibtex   abstract  
Spectral Normalisation for Deep Reinforcement Learning: an Optimisation Perspective. Gogianu, F.; Berariu, T.; Rosca, M.; Clopath, C.; Busoniu, L.; and Pascanu, R. . 2021.
Spectral Normalisation for Deep Reinforcement Learning: an Optimisation Perspective [pdf]Paper   Spectral Normalisation for Deep Reinforcement Learning: an Optimisation Perspective [link]Website   link   bibtex   abstract  
Drawing Multiple Augmentation Samples Per Image During Training Efficiently Decreases Test Error. Fort, S.; Brock, A.; Pascanu, R.; De, S.; and Smith, S., L. . 2021.
Drawing Multiple Augmentation Samples Per Image During Training Efficiently Decreases Test Error [pdf]Paper   Drawing Multiple Augmentation Samples Per Image During Training Efficiently Decreases Test Error [link]Website   link   bibtex   abstract  
Transformers for Computer Vision. Dosovitskiy, A. . 2021.
Transformers for Computer Vision [pdf]Paper   link   bibtex  
Tutorial on Variational Autoencoders Why are VAEs interesting ?. Nagy, D.; and Szepesvari, D. . 2021.
Tutorial on Variational Autoencoders Why are VAEs interesting ? [pdf]Paper   link   bibtex  
Analysis of voxel-based 3D object detection methods efficiency for real-time embedded systems. Oleksiienko, I.; and Iosifidis, A. . 2021.
Analysis of voxel-based 3D object detection methods efficiency for real-time embedded systems [pdf]Paper   Analysis of voxel-based 3D object detection methods efficiency for real-time embedded systems [link]Website   link   bibtex   abstract  
SIMPLE SPECTRAL GRAPH CONVOLUTION. Zhu, H.; and Koniusz, P. ,1-15. 2021.
SIMPLE SPECTRAL GRAPH CONVOLUTION [pdf]Paper   link   bibtex  
A Comprehensive Survey on Graph Neural Networks. Wu, Z.; Pan, S.; Chen, F.; Long, G.; Zhang, C.; and Yu, P., S. IEEE Transactions on Neural Networks and Learning Systems, 32(1): 4-24. 2021.
A Comprehensive Survey on Graph Neural Networks [pdf]Paper   doi   link   bibtex   abstract  
Dynamic Convolution for 3D Point Cloud Instance Segmentation. He, T.; Shen, C.; and Hengel, A., v., d. . 7 2021.
Dynamic Convolution for 3D Point Cloud Instance Segmentation [pdf]Paper   Dynamic Convolution for 3D Point Cloud Instance Segmentation [link]Website   link   bibtex   abstract  
Tutorial on Variational Autoencoders. Mellon, C.; and Berkeley, U., C. ,1-23. 2021.
Tutorial on Variational Autoencoders [pdf]Paper   link   bibtex  
AutoFormer: Searching Transformers for Visual Recognition. Chen, M.; Peng, H.; Fu, J.; and Ling, H. . 7 2021.
AutoFormer: Searching Transformers for Visual Recognition [pdf]Paper   AutoFormer: Searching Transformers for Visual Recognition [link]Website   link   bibtex   abstract  
Improving 3D Object Detection with Channel-wise Transformer. Sheng, H.; Cai, S.; Liu, Y.; Deng, B.; Huang, J.; Hua, X.; and Zhao, M. . 8 2021.
Improving 3D Object Detection with Channel-wise Transformer [pdf]Paper   Improving 3D Object Detection with Channel-wise Transformer [link]Website   link   bibtex   abstract  
Bottleneck Transformers for Visual Recognition. Srinivas, A.; Lin, T.; Parmar, N.; Shlens, J.; Abbeel, P.; and Vaswani, A. . 1 2021.
Bottleneck Transformers for Visual Recognition [pdf]Paper   Bottleneck Transformers for Visual Recognition [link]Website   link   bibtex   abstract  
An Attention Free Transformer. Zhai, S.; Talbott, W.; Srivastava, N.; Huang, C.; Goh, H.; Zhang, R.; and Susskind, J. . 5 2021.
An Attention Free Transformer [pdf]Paper   An Attention Free Transformer [link]Website   link   bibtex   abstract  
Tokens-to-Token ViT: Training Vision Transformers from Scratch on ImageNet. Yuan, L.; Chen, Y.; Wang, T.; Yu, W.; Shi, Y.; Tay, F., E.; Feng, J.; and Yan, S. . 1 2021.
Tokens-to-Token ViT: Training Vision Transformers from Scratch on ImageNet [pdf]Paper   Tokens-to-Token ViT: Training Vision Transformers from Scratch on ImageNet [link]Website   link   bibtex   abstract  
Recent Advances in Variational Autoencoders with Representation Learning for Biomedical Informatics: A Survey. Wei, R.; and Mahmood, A. IEEE Access, 9: 4939-4956. 2021.
Recent Advances in Variational Autoencoders with Representation Learning for Biomedical Informatics: A Survey [pdf]Paper   doi   link   bibtex   abstract  
A comprehensive study of autoencoders' applications related to images. Kovenko, V.; and Bogach, I. CEUR Workshop Proceedings, 2845: 43-54. 2021.
A comprehensive study of autoencoders' applications related to images [pdf]Paper   link   bibtex   abstract  
A Survey on Variational Autoencoders from a Green AI Perspective. Asperti, A.; Evangelista, D.; and Loli Piccolomini, E. SN Computer Science, 2(4). 2021.
A Survey on Variational Autoencoders from a Green AI Perspective [pdf]Paper   doi   link   bibtex   abstract  
Random Feature Attention. Peng, H.; Pappas, N.; Yogatama, D.; Schwartz, R.; Smith, N., A.; and Kong, L. . 3 2021.
Random Feature Attention [pdf]Paper   Random Feature Attention [link]Website   link   bibtex   abstract  
LambdaNetworks: Modeling Long-Range Interactions Without Attention. Bello, I. . 2 2021.
LambdaNetworks: Modeling Long-Range Interactions Without Attention [pdf]Paper   LambdaNetworks: Modeling Long-Range Interactions Without Attention [link]Website   link   bibtex   abstract  
Cross-Modal Center Loss for 3D Cross-Modal Retrieval. Jing, L.; Vahdani, E.; Tan, J.; and Tian, Y. ,3142-3151. 2021.
Cross-Modal Center Loss for 3D Cross-Modal Retrieval [pdf]Paper   link   bibtex   abstract  
Toward Unsupervised 3d Point Cloud Anomaly Detection Using Variational Autoencoder. Masuda, M.; Hachiuma, R.; Fujii, R.; Saito, H.; and Sekikawa, Y. ,3118-3122. 2021.
Toward Unsupervised 3d Point Cloud Anomaly Detection Using Variational Autoencoder [pdf]Paper   doi   link   bibtex  
Advances in agriculture robotics: A state-of-the-art review and challenges ahead. Oliveira, L., F.; Moreira, A., P.; and Silva, M., F. Robotics, 10(2): 1-31. 2021.
Advances in agriculture robotics: A state-of-the-art review and challenges ahead [pdf]Paper   doi   link   bibtex   abstract  
Transformers in Vision: A Survey. Khan, S.; Naseer, M.; Hayat, M.; Zamir, S., W.; Khan, F., S.; and Shah, M. ,1-28. 2021.
Transformers in Vision: A Survey [pdf]Paper   Transformers in Vision: A Survey [link]Website   link   bibtex   abstract  
Attention Models for Point Clouds in Deep Learning: A Survey. Wang, X.; Jin, Y.; Cen, Y.; Wang, T.; and Li, Y. . 2021.
Attention Models for Point Clouds in Deep Learning: A Survey [pdf]Paper   Attention Models for Point Clouds in Deep Learning: A Survey [link]Website   link   bibtex   abstract  
GCN-Denoiser: Mesh Denoising with Graph Convolutional Networks. Shen, Y.; Fu, H.; Du, Z.; Chen, X.; Burnaev, E.; Zorin, D.; Zhou, K.; and Zheng, Y. ACM Transactions on Graphics, 40(4). 2021.
GCN-Denoiser: Mesh Denoising with Graph Convolutional Networks [pdf]Paper   GCN-Denoiser: Mesh Denoising with Graph Convolutional Networks [link]Website   doi   link   bibtex   abstract  
GAPointNet: Graph attention based point neural network for exploiting local feature of point cloud. Chen, C.; Fragonara, L., Z.; and Tsourdos, A. Neurocomputing, 438: 122-132. 2021.
GAPointNet: Graph attention based point neural network for exploiting local feature of point cloud [pdf]Paper   doi   link   bibtex   abstract  
Graph Attention Networks for Point Cloud Processing. Thakur, S.; Scotia, N.; Scotia, N.; Thakur, C., S.; and Examiner, E. , (July). 2021.
Graph Attention Networks for Point Cloud Processing [pdf]Paper   link   bibtex  
GAPointNet: Graph attention based point neural network for exploiting local feature of point cloud. Chen, C.; Fragonara, L., Z.; and Tsourdos, A. Neurocomputing, 438: 122-132. 2021.
GAPointNet: Graph attention based point neural network for exploiting local feature of point cloud [pdf]Paper   doi   link   bibtex   abstract  
View-Aware Geometry-Structure Joint Learning for Single-View 3D Shape Reconstruction. Zhang, X.; Ma, R.; Zou, C.; Zhang, M.; Zhao, X.; and Gao, Y. IEEE Transactions on Pattern Analysis and Machine Intelligence, 8828(c): 1-16. 2021.
View-Aware Geometry-Structure Joint Learning for Single-View 3D Shape Reconstruction [pdf]Paper   doi   link   bibtex   abstract  
Graph Spectral Point Cloud Processing. Electric, M. . 2021.
Graph Spectral Point Cloud Processing [pdf]Paper   link   bibtex  
Walk in the Cloud: Learning Curves for Point Clouds Shape Analysis. Xiang, T.; Zhang, C.; Song, Y.; Yu, J.; and Cai, W. . 2021.
Walk in the Cloud: Learning Curves for Point Clouds Shape Analysis [pdf]Paper   Walk in the Cloud: Learning Curves for Point Clouds Shape Analysis [link]Website   link   bibtex   abstract  
Residual Attention: A Simple but Effective Method for Multi-Label Recognition. Zhu, K.; and Wu, J. ,184-193. 2021.
Residual Attention: A Simple but Effective Method for Multi-Label Recognition [pdf]Paper   Residual Attention: A Simple but Effective Method for Multi-Label Recognition [link]Website   link   bibtex   abstract  
CvT: Introducing Convolutions to Vision Transformers. Wu, H.; Xiao, B.; Codella, N.; Liu, M.; Dai, X.; Yuan, L.; and Zhang, L. . 2021.
CvT: Introducing Convolutions to Vision Transformers [pdf]Paper   CvT: Introducing Convolutions to Vision Transformers [link]Website   link   bibtex   abstract  
Unsupervised Learning of Fine Structure Generation for 3D Point Clouds by 2D Projection Matching. Chao, C.; Han, Z.; Liu, Y.; and Zwicker, M. , (62072268). 2021.
Unsupervised Learning of Fine Structure Generation for 3D Point Clouds by 2D Projection Matching [pdf]Paper   Unsupervised Learning of Fine Structure Generation for 3D Point Clouds by 2D Projection Matching [link]Website   link   bibtex   abstract  
Going deeper with Image Transformers. Touvron, H.; Cord, M.; Sablayrolles, A.; Synnaeve, G.; and Jégou, H. . 2021.
Going deeper with Image Transformers [pdf]Paper   Going deeper with Image Transformers [link]Website   link   bibtex   abstract  
Spatial-Temporal Transformer for Dynamic Scene Graph Generation. Cong, Y.; Liao, W.; Ackermann, H.; Rosenhahn, B.; and Yang, M., Y. ,16372-16382. 2021.
Spatial-Temporal Transformer for Dynamic Scene Graph Generation [pdf]Paper   Spatial-Temporal Transformer for Dynamic Scene Graph Generation [link]Website   link   bibtex   abstract  
PointBA: Towards Backdoor Attacks in 3D Point Cloud. Li, X.; Chen, Z.; Zhao, Y.; Tong, Z.; Zhao, Y.; Lim, A.; and Zhou, J., T. . 2021.
PointBA: Towards Backdoor Attacks in 3D Point Cloud [pdf]Paper   PointBA: Towards Backdoor Attacks in 3D Point Cloud [link]Website   link   bibtex   abstract  
Graph-to-3D: End-to-End Generation and Manipulation of 3D Scenes Using Scene Graphs. Dhamo, H.; Manhardt, F.; Navab, N.; and Tombari, F. ,16352-16361. 2021.
Graph-to-3D: End-to-End Generation and Manipulation of 3D Scenes Using Scene Graphs [pdf]Paper   Graph-to-3D: End-to-End Generation and Manipulation of 3D Scenes Using Scene Graphs [link]Website   link   bibtex   abstract  
Segmentation-grounded Scene Graph Generation. Khandelwal, S.; Suhail, M.; and Sigal, L. . 2021.
Segmentation-grounded Scene Graph Generation [pdf]Paper   Segmentation-grounded Scene Graph Generation [link]Website   link   bibtex   abstract  
Unconditional Scene Graph Generation. Garg, S.; Dhamo, H.; Farshad, A.; Musatian, S.; Navab, N.; and Tombari, F. ,16362-16371. 2021.
Unconditional Scene Graph Generation [pdf]Paper   Unconditional Scene Graph Generation [link]Website   link   bibtex   abstract  
GANcraft: Unsupervised 3D Neural Rendering of Minecraft Worlds. Hao, Z.; Mallya, A.; Belongie, S.; and Liu, M. . 2021.
GANcraft: Unsupervised 3D Neural Rendering of Minecraft Worlds [pdf]Paper   GANcraft: Unsupervised 3D Neural Rendering of Minecraft Worlds [link]Website   link   bibtex   abstract  
Planar Surface Reconstruction from Sparse Views. Jin, L.; Qian, S.; Owens, A.; and Fouhey, D., F. . 2021.
Planar Surface Reconstruction from Sparse Views [pdf]Paper   Planar Surface Reconstruction from Sparse Views [link]Website   link   bibtex   abstract  
Sketch Your Own GAN. Wang, S.; Bau, D.; and Zhu, J. . 2021.
Sketch Your Own GAN [pdf]Paper   Sketch Your Own GAN [link]Website   link   bibtex   abstract  
Adaptive Surface Normal Constraint for Depth Estimation. Long, X.; Lin, C.; Liu, L.; Li, W.; Theobalt, C.; Yang, R.; and Wang, W. . 2021.
Adaptive Surface Normal Constraint for Depth Estimation [pdf]Paper   Adaptive Surface Normal Constraint for Depth Estimation [link]Website   link   bibtex   abstract  
Mesh Graphormer. Lin, K.; Wang, L.; and Liu, Z. . 2021.
Mesh Graphormer [pdf]Paper   Mesh Graphormer [link]Website   link   bibtex   abstract  
PoinTr: Diverse Point Cloud Completion with Geometry-Aware Transformers. Yu, X.; Rao, Y.; Wang, Z.; Liu, Z.; Lu, J.; and Zhou, J. ,12498-12507. 2021.
PoinTr: Diverse Point Cloud Completion with Geometry-Aware Transformers [pdf]Paper   PoinTr: Diverse Point Cloud Completion with Geometry-Aware Transformers [link]Website   link   bibtex   abstract  
3DStyleNet: Creating 3D Shapes with Geometric and Texture Style Variations. Yin, K.; Gao, J.; Shugrina, M.; Khamis, S.; and Fidler, S. ,12456-12465. 2021.
3DStyleNet: Creating 3D Shapes with Geometric and Texture Style Variations [pdf]Paper   3DStyleNet: Creating 3D Shapes with Geometric and Texture Style Variations [link]Website   link   bibtex   abstract  
3DIAS: 3D Shape Reconstruction with Implicit Algebraic Surfaces. Yavartanoo, M.; Chung, J.; Neshatavar, R.; and Lee, K., M. ,12446-12455. 2021.
3DIAS: 3D Shape Reconstruction with Implicit Algebraic Surfaces [pdf]Paper   3DIAS: 3D Shape Reconstruction with Implicit Algebraic Surfaces [link]Website   link   bibtex   abstract  
Unsupervised Point Cloud Object Co-segmentation by Co-contrastive Learning and Mutual Attention Sampling. Cvpr, A.; and Id, P. ,1-10. 2021.
Unsupervised Point Cloud Object Co-segmentation by Co-contrastive Learning and Mutual Attention Sampling [pdf]Paper   link   bibtex  
Manifold Matching via Deep Metric Learning for Generative Modeling. Dai, M.; and Hang, H. ,6587-6597. 2021.
Manifold Matching via Deep Metric Learning for Generative Modeling [pdf]Paper   Manifold Matching via Deep Metric Learning for Generative Modeling [link]Website   link   bibtex   abstract  
When do GANs replicate ? On the choice of dataset size. Feng, Q.; and Benitez-quiroz, C., G., F. ,6701-6710. 2021.
When do GANs replicate ? On the choice of dataset size [pdf]Paper   link   bibtex  
Spatio-temporal Self-Supervised Representation Learning for 3D Point Clouds. Huang, S.; Xie, Y.; Zhu, S.; and Zhu, Y. . 2021.
Spatio-temporal Self-Supervised Representation Learning for 3D Point Clouds [pdf]Paper   Spatio-temporal Self-Supervised Representation Learning for 3D Point Clouds [link]Website   link   bibtex   abstract  
Vis2Mesh: Efficient Mesh Reconstruction from Unstructured Point Clouds of Large Scenes with Learned Virtual View Visibility. Song, S.; Cui, Z.; and Qin, R. ,6514-6524. 2021.
Vis2Mesh: Efficient Mesh Reconstruction from Unstructured Point Clouds of Large Scenes with Learned Virtual View Visibility [pdf]Paper   Vis2Mesh: Efficient Mesh Reconstruction from Unstructured Point Clouds of Large Scenes with Learned Virtual View Visibility [link]Website   link   bibtex   abstract  
Learning Signed Distance Field for Multi-view Surface Reconstruction. Zhang, J.; Yao, Y.; and Quan, L. ,6525-6534. 2021.
Learning Signed Distance Field for Multi-view Surface Reconstruction [pdf]Paper   Learning Signed Distance Field for Multi-view Surface Reconstruction [link]Website   link   bibtex   abstract  
Multi-view 3D Reconstruction with Transformer. Wang, D.; Cui, X.; Chen, X.; Zou, Z.; Shi, T.; Salcudean, S.; Wang, Z., J.; and Ward, R. ,1-14. 2021.
Multi-view 3D Reconstruction with Transformer [pdf]Paper   Multi-view 3D Reconstruction with Transformer [link]Website   link   bibtex   abstract  
Adaptive Graph Convolution for Point Cloud Analysis. Zhou, H.; Feng, Y.; Fang, M.; Wei, M.; Qin, J.; and Lu, T. ,4965-4974. 2021.
Adaptive Graph Convolution for Point Cloud Analysis [pdf]Paper   Adaptive Graph Convolution for Point Cloud Analysis [link]Website   link   bibtex   abstract  
Deep Structured Instance Graph for Distilling Object Detectors. Chen, Y.; Chen, P.; Liu, S.; Wang, L.; and Jia, J. ,4359-4368. 2021.
Deep Structured Instance Graph for Distilling Object Detectors [pdf]Paper   Deep Structured Instance Graph for Distilling Object Detectors [link]Website   link   bibtex   abstract  
Dynamic Attentive Graph Learning for Image Restoration. Mou, C.; Zhang, J.; and Wu, Z. ,4328-4337. 2021.
Dynamic Attentive Graph Learning for Image Restoration [pdf]Paper   Dynamic Attentive Graph Learning for Image Restoration [link]Website   link   bibtex   abstract  
RGB-D Saliency Detection via Cascaded Mutual Information Minimization. Zhang, J.; Fan, D.; Dai, Y.; Yu, X.; Zhong, Y.; Barnes, N.; and Shao, L. ,4338-4347. 2021.
RGB-D Saliency Detection via Cascaded Mutual Information Minimization [pdf]Paper   RGB-D Saliency Detection via Cascaded Mutual Information Minimization [link]Website   link   bibtex   abstract  
Topologically Consistent Multi-View Face Inference Using Volumetric Sampling. Iccv, A.; and Id, P. ,3824-3834. 2021.
Topologically Consistent Multi-View Face Inference Using Volumetric Sampling [pdf]Paper   link   bibtex   abstract  
Point-set Distances for Learning Representations of 3D Point Clouds. Nguyen, T.; Pham, Q.; Le, T.; Pham, T.; Ho, N.; and Hua, B. , (Section 4). 2021.
Point-set Distances for Learning Representations of 3D Point Clouds [pdf]Paper   Point-set Distances for Learning Representations of 3D Point Clouds [link]Website   link   bibtex   abstract  
Self-Supervised Pretraining of 3D Features on any Point-Cloud. Zhang, Z.; Girdhar, R.; Joulin, A.; and Misra, I. . 2021.
Self-Supervised Pretraining of 3D Features on any Point-Cloud [pdf]Paper   Self-Supervised Pretraining of 3D Features on any Point-Cloud [link]Website   link   bibtex   abstract  
Active Learning for Deep Object Detection via Probabilistic Modeling. Choi, J.; Elezi, I.; Lee, H.; Farabet, C.; and Alvarez, J., M. . 2021.
Active Learning for Deep Object Detection via Probabilistic Modeling [pdf]Paper   Active Learning for Deep Object Detection via Probabilistic Modeling [link]Website   link   bibtex   abstract  
Common Objects in 3D: Large-Scale Learning and Evaluation of Real-life 3D Category Reconstruction. Reizenstein, J.; Shapovalov, R.; Henzler, P.; Sbordone, L.; Labatut, P.; and Novotny, D. . 2021.
Common Objects in 3D: Large-Scale Learning and Evaluation of Real-life 3D Category Reconstruction [pdf]Paper   Common Objects in 3D: Large-Scale Learning and Evaluation of Real-life 3D Category Reconstruction [link]Website   link   bibtex   abstract  
Exploiting a Joint Embedding Space for Generalized Zero-Shot Semantic Segmentation. Baek, D.; Oh, Y.; and Ham, B. ,9536-9545. 2021.
Exploiting a Joint Embedding Space for Generalized Zero-Shot Semantic Segmentation [pdf]Paper   Exploiting a Joint Embedding Space for Generalized Zero-Shot Semantic Segmentation [link]Website   link   bibtex   abstract  
Adaptive Adversarial Network for Source-free Domain Adaptation. Iccv, A.; and Id, P. ,9010-9019. 2021.
Adaptive Adversarial Network for Source-free Domain Adaptation [pdf]Paper   link   bibtex  
Simpler is Better: Few-shot Semantic Segmentation with Classifier Weight Transformer. Lu, Z.; He, S.; Zhu, X.; Zhang, L.; Song, Y.; and Xiang, T. ,8741-8750. 2021.
Simpler is Better: Few-shot Semantic Segmentation with Classifier Weight Transformer [pdf]Paper   Simpler is Better: Few-shot Semantic Segmentation with Classifier Weight Transformer [link]Website   link   bibtex   abstract  
DeFRCN: Decoupled Faster R-CNN for Few-Shot Object Detection. Qiao, L.; Zhao, Y.; Li, Z.; Qiu, X.; Wu, J.; and Zhang, C. ,8681-8690. 2021.
DeFRCN: Decoupled Faster R-CNN for Few-Shot Object Detection [pdf]Paper   DeFRCN: Decoupled Faster R-CNN for Few-Shot Object Detection [link]Website   link   bibtex   abstract  
Fooling LiDAR Perception via Adversarial Trajectory Perturbation. Li, Y.; Wen, C.; Juefei-Xu, F.; and Feng, C. . 2021.
Fooling LiDAR Perception via Adversarial Trajectory Perturbation [pdf]Paper   Fooling LiDAR Perception via Adversarial Trajectory Perturbation [link]Website   link   bibtex   abstract  
Differentiable Convolution Search for Point Cloud Processing. Nie, X.; Liu, Y.; Chen, S.; Chang, J.; Huo, C.; Meng, G.; Tian, Q.; Hu, W.; and Pan, C. ,7437-7446. 2021.
Differentiable Convolution Search for Point Cloud Processing [pdf]Paper   Differentiable Convolution Search for Point Cloud Processing [link]Website   link   bibtex   abstract  
PR-GCN: A Deep Graph Convolutional Network with Point Refinement for 6D Pose Estimation. Zhou, G.; Wang, H.; Chen, J.; and Huang, D. ,2793-2802. 2021.
PR-GCN: A Deep Graph Convolutional Network with Point Refinement for 6D Pose Estimation [pdf]Paper   PR-GCN: A Deep Graph Convolutional Network with Point Refinement for 6D Pose Estimation [link]Website   link   bibtex   abstract  
Weakly Supervised 3D Semantic Segmentation Using Cross-Image Consensus and Inter-Voxel Affinity Relations. Cvpr, A.; and Id, P. ,2834-2844. 2021.
Weakly Supervised 3D Semantic Segmentation Using Cross-Image Consensus and Inter-Voxel Affinity Relations [pdf]Paper   link   bibtex  
SGPA : Structure-Guided Prior Adaptation for Category-Level 6D Object Pose Estimation. Iccv, I. ,2773-2782. 2021.
SGPA : Structure-Guided Prior Adaptation for Category-Level 6D Object Pose Estimation [pdf]Paper   link   bibtex  
HPNet: Deep Primitive Segmentation Using Hybrid Representations. Yan, S.; Yang, Z.; Ma, C.; Huang, H.; Vouga, E.; and Huang, Q. . 2021.
HPNet: Deep Primitive Segmentation Using Hybrid Representations [pdf]Paper   HPNet: Deep Primitive Segmentation Using Hybrid Representations [link]Website   link   bibtex   abstract  
Instance Segmentation in 3D Scenes using Semantic Superpoint Tree Networks. Liang, Z.; Li, Z.; Xu, S.; Tan, M.; and Jia, K. ,2783-2792. 2021.
Instance Segmentation in 3D Scenes using Semantic Superpoint Tree Networks [pdf]Paper   Instance Segmentation in 3D Scenes using Semantic Superpoint Tree Networks [link]Website   link   bibtex   abstract  
Learning Multi-Scene Absolute Pose Regression with Transformers. Shavit, Y.; Ferens, R.; and Keller, Y. ,4-7. 2021.
Learning Multi-Scene Absolute Pose Regression with Transformers [pdf]Paper   Learning Multi-Scene Absolute Pose Regression with Transformers [link]Website   link   bibtex   abstract  
Improving 3D Object Detection with Channel-wise Transformer. Sheng, H.; Cai, S.; Liu, Y.; Deng, B.; Huang, J.; Hua, X.; and Zhao, M. ,2743-2752. 2021.
Improving 3D Object Detection with Channel-wise Transformer [pdf]Paper   Improving 3D Object Detection with Channel-wise Transformer [link]Website   link   bibtex   abstract  
SAT: 2D Semantics Assisted Training for 3D Visual Grounding. Yang, Z.; Zhang, S.; Wang, L.; and Luo, J. . 2021.
SAT: 2D Semantics Assisted Training for 3D Visual Grounding [pdf]Paper   SAT: 2D Semantics Assisted Training for 3D Visual Grounding [link]Website   link   bibtex   abstract  
GraphFPN: Graph Feature Pyramid Network for Object Detection. Zhao, G.; Ge, W.; and Yu, Y. ,2763-2772. 2021.
GraphFPN: Graph Feature Pyramid Network for Object Detection [pdf]Paper   GraphFPN: Graph Feature Pyramid Network for Object Detection [link]Website   link   bibtex   abstract  
Pyramid R-CNN: Towards Better Performance and Adaptability for 3D Object Detection. Mao, J.; Niu, M.; Bai, H.; Liang, X.; Xu, H.; and Xu, C. ,2723-2732. 2021.
Pyramid R-CNN: Towards Better Performance and Adaptability for 3D Object Detection [pdf]Paper   Pyramid R-CNN: Towards Better Performance and Adaptability for 3D Object Detection [link]Website   link   bibtex   abstract  
Graph Constrained Data Representation Learning for Human Motion Segmentation. Dimiccoli, M.; Garrido, L.; Rodriguez-Corominas, G.; and Wendt, H. . 2021.
Graph Constrained Data Representation Learning for Human Motion Segmentation [pdf]Paper   Graph Constrained Data Representation Learning for Human Motion Segmentation [link]Website   link   bibtex   abstract  
Deep 3D Mask Volume for View Synthesis of Dynamic Scenes. Lin, K.; Xiao, L.; Liu, F.; Yang, G.; and Ramamoorthi, R. Iccv,1749-1758. 2021.
Deep 3D Mask Volume for View Synthesis of Dynamic Scenes [pdf]Paper   Deep 3D Mask Volume for View Synthesis of Dynamic Scenes [link]Website   link   bibtex   abstract  
Learning Canonical 3D Object Representation for Fine-Grained Recognition. Joung, S.; Kim, S.; Kim, M.; Kim, I.; and Sohn, K. , (c): 1035-1045. 2021.
Learning Canonical 3D Object Representation for Fine-Grained Recognition [pdf]Paper   Learning Canonical 3D Object Representation for Fine-Grained Recognition [link]Website   link   bibtex   abstract  
PICCOLO: Point Cloud-Centric Omnidirectional Localization. Kim, J.; Choi, C.; Jang, H.; and Kim, Y., M. ,3313-3323. 2021.
PICCOLO: Point Cloud-Centric Omnidirectional Localization [pdf]Paper   PICCOLO: Point Cloud-Centric Omnidirectional Localization [link]Website   link   bibtex   abstract  
Exploring Geometry-aware Contrast and Clustering Harmonization for Self-supervised 3D Object Detection. Iccv, A.; and Id, P. ,3293-3302. 2021.
Exploring Geometry-aware Contrast and Clustering Harmonization for Self-supervised 3D Object Detection [pdf]Paper   link   bibtex   abstract  
Long-Term Temporally Consistent Unpaired Video Translation from Simulated Surgical 3D Data. Rivoir, D.; Pfeiffer, M.; Docea, R.; Kolbinger, F.; Riediger, C.; Weitz, J.; and Speidel, S. . 2021.
Long-Term Temporally Consistent Unpaired Video Translation from Simulated Surgical 3D Data [pdf]Paper   Long-Term Temporally Consistent Unpaired Video Translation from Simulated Surgical 3D Data [link]Website   link   bibtex   abstract  
RePOSE: Fast 6D Object Pose Refinement via Deep Texture Rendering. Iwase, S.; Liu, X.; Khirodkar, R.; Yokota, R.; and Kitani, K., M. ,3303-3312. 2021.
RePOSE: Fast 6D Object Pose Refinement via Deep Texture Rendering [pdf]Paper   RePOSE: Fast 6D Object Pose Refinement via Deep Texture Rendering [link]Website   link   bibtex   abstract  
Voxel Transformer for 3D Object Detection. Mao, J.; Xue, Y.; Niu, M.; Bai, H.; Feng, J.; Liang, X.; Xu, H.; and Xu, C. ,3164-3173. 2021.
Voxel Transformer for 3D Object Detection [pdf]Paper   Voxel Transformer for 3D Object Detection [link]Website   link   bibtex   abstract  
Geometry Uncertainty Projection Network for Monocular 3D Object Detection. Lu, Y.; Ma, X.; Yang, L.; Zhang, T.; Liu, Y.; Chu, Q.; Yan, J.; and Ouyang, W. ,3111-3121. 2021.
Geometry Uncertainty Projection Network for Monocular 3D Object Detection [pdf]Paper   Geometry Uncertainty Projection Network for Monocular 3D Object Detection [link]Website   link   bibtex   abstract  
Group-Free 3D Object Detection via Transformers. Liu, Z.; Zhang, Z.; Cao, Y.; Hu, H.; and Tong, X. . 2021.
Group-Free 3D Object Detection via Transformers [pdf]Paper   Group-Free 3D Object Detection via Transformers [link]Website   link   bibtex   abstract  
End-to-End Semi-Supervised Object Detection with Soft Teacher. Xu, M.; Zhang, Z.; Hu, H.; Wang, J.; Wang, L.; Wei, F.; Bai, X.; and Liu, Z. . 2021.
End-to-End Semi-Supervised Object Detection with Soft Teacher [pdf]Paper   End-to-End Semi-Supervised Object Detection with Soft Teacher [link]Website   link   bibtex   abstract  
An End-to-End Transformer Model for 3D Object Detection. Misra, I.; Girdhar, R.; and Joulin, A. ,2906-2917. 2021.
An End-to-End Transformer Model for 3D Object Detection [pdf]Paper   An End-to-End Transformer Model for 3D Object Detection [link]Website   link   bibtex   abstract  
MLVSNet : Multi-level Voting Siamese Network for 3D Visual Tracking. Area, S. . 2021.
MLVSNet : Multi-level Voting Siamese Network for 3D Visual Tracking [pdf]Paper   link   bibtex  
CvT: Introducing Convolutions to Vision Transformers. Wu, H.; Xiao, B.; Codella, N.; Liu, M.; Dai, X.; Yuan, L.; and Zhang, L. . 3 2021.
CvT: Introducing Convolutions to Vision Transformers [pdf]Paper   CvT: Introducing Convolutions to Vision Transformers [link]Website   link   bibtex   abstract  
CrossViT: Cross-Attention Multi-Scale Vision Transformer for Image Classification. Chen, C.; Fan, Q.; and Panda, R. . 2021.
CrossViT: Cross-Attention Multi-Scale Vision Transformer for Image Classification [pdf]Paper   CrossViT: Cross-Attention Multi-Scale Vision Transformer for Image Classification [link]Website   link   bibtex   abstract  
Learning Spatio-Temporal Transformer for Visual Tracking. Yan, B.; Peng, H.; Fu, J.; Wang, D.; and Lu, H. . 2021.
Learning Spatio-Temporal Transformer for Visual Tracking [link]Website   link   bibtex   abstract  
An Empirical Study of Training Self-Supervised Vision Transformers. Chen, X.; Xie, S.; and He, K. . 2021.
An Empirical Study of Training Self-Supervised Vision Transformers [pdf]Paper   An Empirical Study of Training Self-Supervised Vision Transformers [link]Website   link   bibtex   abstract  
Understanding Robustness of Transformers for Image Classification. Bhojanapalli, S.; Chakrabarti, A.; Glasner, D.; Li, D.; Unterthiner, T.; and Veit, A. . 2021.
Understanding Robustness of Transformers for Image Classification [pdf]Paper   Understanding Robustness of Transformers for Image Classification [link]Website   link   bibtex   abstract  
Vision Transformers for Dense Prediction. Ranftl, R.; Bochkovskiy, A.; and Koltun, V. . 2021.
Vision Transformers for Dense Prediction [pdf]Paper   Vision Transformers for Dense Prediction [link]Website   link   bibtex   abstract  
CrossViT: Cross-Attention Multi-Scale Vision Transformer for Image Classification. Chen, C.; Fan, Q.; and Panda, R. . 2021.
CrossViT: Cross-Attention Multi-Scale Vision Transformer for Image Classification [pdf]Paper   CrossViT: Cross-Attention Multi-Scale Vision Transformer for Image Classification [link]Website   link   bibtex   abstract  
Point cloud classification with deep normalized Reeb graph convolution. Wang, W.; You, Y.; Liu, W.; and Lu, C. Image and Vision Computing, 106: 104092. 2021.
Point cloud classification with deep normalized Reeb graph convolution [pdf]Paper   Point cloud classification with deep normalized Reeb graph convolution [link]Website   doi   link   bibtex   abstract  
Geometry-Aware Self-Training for Unsupervised Domain Adaptationon Object Point Clouds. Zou, L.; Tang, H.; Chen, K.; and Jia, K. ,6403-6412. 2021.
Geometry-Aware Self-Training for Unsupervised Domain Adaptationon Object Point Clouds [pdf]Paper   Geometry-Aware Self-Training for Unsupervised Domain Adaptationon Object Point Clouds [link]Website   link   bibtex   abstract  
Syncretic Modality Collaborative Learning for Visible Infrared Person. Iccv, A.; and Id, P. ,225-234. 2021.
Syncretic Modality Collaborative Learning for Visible Infrared Person [pdf]Paper   link   bibtex  
Geometry-based Distance Decomposition for Monocular 3D Object Detection. Shi, X.; Ye, Q.; Chen, X.; Chen, C.; Chen, Z.; and Kim, T. ,15172-15181. 2021.
Geometry-based Distance Decomposition for Monocular 3D Object Detection [pdf]Paper   Geometry-based Distance Decomposition for Monocular 3D Object Detection [link]Website   link   bibtex   abstract  
Learning with Noisy Labels for Robust Point Cloud Segmentation. Ye, S.; Chen, D.; Han, S.; and Liao, J. ,6443-6452. 2021.
Learning with Noisy Labels for Robust Point Cloud Segmentation [pdf]Paper   Learning with Noisy Labels for Robust Point Cloud Segmentation [link]Website   link   bibtex   abstract  
DRINet: A Dual-Representation Iterative Learning Network for Point Cloud Segmentation. Ye, M.; Xu, S.; Cao, T.; and Chen, Q. ,7447-7456. 2021.
DRINet: A Dual-Representation Iterative Learning Network for Point Cloud Segmentation [pdf]Paper   DRINet: A Dual-Representation Iterative Learning Network for Point Cloud Segmentation [link]Website   link   bibtex   abstract  
Learning Meta-class Memory for Few-Shot Semantic Segmentation. Wu, Z.; Shi, X.; lin, G.; and Cai, J. ,517-526. 2021.
Learning Meta-class Memory for Few-Shot Semantic Segmentation [pdf]Paper   Learning Meta-class Memory for Few-Shot Semantic Segmentation [link]Website   link   bibtex   abstract  
Towers of Babel: Combining Images, Language, and 3D Geometry for Learning Multimodal Vision. Wu, X.; Averbuch-Elor, H.; Sun, J.; and Snavely, N. ,428-437. 2021.
Towers of Babel: Combining Images, Language, and 3D Geometry for Learning Multimodal Vision [pdf]Paper   Towers of Babel: Combining Images, Language, and 3D Geometry for Learning Multimodal Vision [link]Website   link   bibtex   abstract  
CPFN: Cascaded Primitive Fitting Networks for High-Resolution Point Clouds. Lê, E.; Sung, M.; Ceylan, D.; Mech, R.; Boubekeur, T.; and Mitra, N., J. ,7457-7466. 2021.
CPFN: Cascaded Primitive Fitting Networks for High-Resolution Point Clouds [pdf]Paper   CPFN: Cascaded Primitive Fitting Networks for High-Resolution Point Clouds [link]Website   link   bibtex   abstract  
Joint Representation Learning and Novel Category Discovery on Single- and Multi-modal Data. Jia, X.; Han, K.; Zhu, Y.; and Green, B. ,610-619. 2021.
Joint Representation Learning and Novel Category Discovery on Single- and Multi-modal Data [pdf]Paper   Joint Representation Learning and Novel Category Discovery on Single- and Multi-modal Data [link]Website   link   bibtex   abstract  
Learning Inner-Group Relations on Point Clouds. Ran, H.; Zhuo, W.; Liu, J.; and Lu, L. ,15477-15487. 2021.
Learning Inner-Group Relations on Point Clouds [pdf]Paper   Learning Inner-Group Relations on Point Clouds [link]Website   link   bibtex   abstract  
LSG-CPD: Coherent Point Drift with Local Surface Geometry for Point Cloud Registration. Liu, W.; Wu, H.; and Chirikjian, G. ,15293-15302. 2021.
LSG-CPD: Coherent Point Drift with Local Surface Geometry for Point Cloud Registration [pdf]Paper   LSG-CPD: Coherent Point Drift with Local Surface Geometry for Point Cloud Registration [link]Website   link   bibtex   abstract  
Towards Efficient Graph Convolutional Networks for Point Cloud Handling. Li, Y.; Chen, H.; Cui, Z.; Timofte, R.; Pollefeys, M.; Chirikjian, G.; and Van Gool, L. ,3752-3762. 2021.
Towards Efficient Graph Convolutional Networks for Point Cloud Handling [pdf]Paper   Towards Efficient Graph Convolutional Networks for Point Cloud Handling [link]Website   link   bibtex   abstract  
LIGA-Stereo: Learning LiDAR Geometry Aware Representations for Stereo-based 3D Detector. Guo, X.; Shi, S.; Wang, X.; and Li, H. ,3153-3163. 2021.
LIGA-Stereo: Learning LiDAR Geometry Aware Representations for Stereo-based 3D Detector [pdf]Paper   LIGA-Stereo: Learning LiDAR Geometry Aware Representations for Stereo-based 3D Detector [link]Website   link   bibtex   abstract  
Two Heads are Better than One : Geometric-Latent Attention for Point Cloud Segmentation. Attention, G. ,1-14. 2021.
Two Heads are Better than One : Geometric-Latent Attention for Point Cloud Segmentation [pdf]Paper   link   bibtex   abstract  
Self-Supervised Point Cloud Completion via Inpainting. Mittal, H.; Okorn, B.; Jangid, A.; and Held, D. . 2021.
Self-Supervised Point Cloud Completion via Inpainting [pdf]Paper   Self-Supervised Point Cloud Completion via Inpainting [link]Website   link   bibtex   abstract  
Adversarial Robustness Comparison of Vision Transformer and MLP-Mixer to CNNs. Benz, P.; Ham, S.; Zhang, C.; Karjauv, A.; and Kweon, I., S. ,1-16. 2021.
Adversarial Robustness Comparison of Vision Transformer and MLP-Mixer to CNNs [pdf]Paper   Adversarial Robustness Comparison of Vision Transformer and MLP-Mixer to CNNs [link]Website   link   bibtex   abstract  
Adversarial Graph Convolutional Network for 3D Point Cloud Segmentation. Guidelines, B., A. . 2021.
Adversarial Graph Convolutional Network for 3D Point Cloud Segmentation [pdf]Paper   link   bibtex  
Multi-Modality Task Cascade for 3D Object Detection. Park, J.; Weng, X.; Man, Y.; and Kitani, K. . 2021.
Multi-Modality Task Cascade for 3D Object Detection [pdf]Paper   Multi-Modality Task Cascade for 3D Object Detection [link]Website   link   bibtex   abstract  
Planar Shape Based Registration for Multi-modal Geometry. Li, M.; and Antipolis, S. ,1-15. 2021.
Planar Shape Based Registration for Multi-modal Geometry [pdf]Paper   link   bibtex  
Enhancing Local Feature Learning for 3D Point Cloud Processing using Unary-Pairwise Attention. Xiu, H. ,1-14. 2021.
Enhancing Local Feature Learning for 3D Point Cloud Processing using Unary-Pairwise Attention [pdf]Paper   link   bibtex  
VIN: Voxel-based Implicit Network for Joint 3D Object Detection and Segmentation for Lidars. Zhong, Y.; Zhu, M.; and Peng, H. . 2021.
VIN: Voxel-based Implicit Network for Joint 3D Object Detection and Segmentation for Lidars [pdf]Paper   VIN: Voxel-based Implicit Network for Joint 3D Object Detection and Segmentation for Lidars [link]Website   link   bibtex   abstract  
2 . 5D-VoteNet : Depth Map based 3D Object Detection for Real-Time Applications. Li, L.; and Heizmann, M. . 2021.
2 . 5D-VoteNet : Depth Map based 3D Object Detection for Real-Time Applications [pdf]Paper   link   bibtex  
Cascading Feature Extraction for Fast Point Cloud Registration. Hisadome, Y.; and Matsui, Y. ,1-12. 2021.
Cascading Feature Extraction for Fast Point Cloud Registration [pdf]Paper   Cascading Feature Extraction for Fast Point Cloud Registration [link]Website   link   bibtex   abstract  
Adaptive GMM Convolution for Point Cloud Learning. Wang, H. ,1-13. 2021.
Adaptive GMM Convolution for Point Cloud Learning [pdf]Paper   link   bibtex  
SwinFGHash: Fine-grained Image Retrieval via Transformer-based Hashing Network. Lu, D.; Wang, J.; Zeng, Z.; Chen, B.; Wu, S.; and Xia, S. . 2021.
SwinFGHash: Fine-grained Image Retrieval via Transformer-based Hashing Network [pdf]Paper   link   bibtex   abstract  
MVT: Multi-view Vision Transformer for 3D Object Recognition. Chen, S.; Yu, T.; and Li, P. . 2021.
MVT: Multi-view Vision Transformer for 3D Object Recognition [pdf]Paper   link   bibtex   abstract  
Grounded Situation Recognition with Transformers. Cho, J.; Yoon, Y.; Lee, H.; and Kwak, S. . 2021.
Grounded Situation Recognition with Transformers [pdf]Paper   Grounded Situation Recognition with Transformers [link]Website   link   bibtex   abstract  
Exploiting Scene Depth for Object Detection with Multimodal Transformers. Song, H.; Kim, E.; Jampani, V.; Sun, D.; Lee, J.; and Yang, M. . 2021.
Exploiting Scene Depth for Object Detection with Multimodal Transformers [pdf]Paper   link   bibtex   abstract  
SHI, MENG, XING, MA AND WATTENHOFER: 3D-RETR 3D-RETR: End-to-End Single and Multi-View 3D Reconstruction with Transformers. Shi, Z.; Meng, Z.; Ch, Z.; Xing, Y.; Ma, Y.; Wattenhofer, R.; Ch, W.; Zurich, E.; and Aachen, R. . 2021.
SHI, MENG, XING, MA AND WATTENHOFER: 3D-RETR 3D-RETR: End-to-End Single and Multi-View 3D Reconstruction with Transformers [pdf]Paper   SHI, MENG, XING, MA AND WATTENHOFER: 3D-RETR 3D-RETR: End-to-End Single and Multi-View 3D Reconstruction with Transformers [link]Website   link   bibtex   abstract  
HAT-Net: A Hierarchical Transformer Graph Neural Network for Grading of Colorectal Cancer Histology Images. Su, Y.; Bai, Y.; Zhang, B.; Zhang, Z.; and Wang, W. . 2021.
HAT-Net: A Hierarchical Transformer Graph Neural Network for Grading of Colorectal Cancer Histology Images [pdf]Paper   link   bibtex   abstract  
Feature Fusion Vision Transformer for Fine-Grained Visual Categorization. Wang, J.; Yu, X.; University, G.; and Yongsheng Gao, A. . 2021.
Feature Fusion Vision Transformer for Fine-Grained Visual Categorization [pdf]Paper   link   bibtex   abstract  
Localizing Objects with Self-Supervised Transformers and no Labels. Siméoni, O.; Puy, G.; Vo, H., V.; Roburin, S.; Gidaris, S.; Bursuc, A.; Pérez, P.; Marlet, R.; and Ponce, J. . 2021.
Localizing Objects with Self-Supervised Transformers and no Labels [pdf]Paper   Localizing Objects with Self-Supervised Transformers and no Labels [link]Website   link   bibtex   abstract  
Image-Text Alignment using Adaptive Cross-attention with Transformer Encoder for Scene Graphs. Song, J.; and Choi, S. . 2021.
Image-Text Alignment using Adaptive Cross-attention with Transformer Encoder for Scene Graphs [pdf]Paper   link   bibtex   abstract  
ASFormer: Transformer for Action Segmentation. Yi, F.; Wen, H.; and Jiang, T. . 2021.
ASFormer: Transformer for Action Segmentation [pdf]Paper   ASFormer: Transformer for Action Segmentation [link]Website   link   bibtex   abstract  
Mitigating Bias in Visual Transformers via Targeted Alignment. Sudhakar, S.; Prabhu, V.; Krishnakumar, A.; and Hoffman, J. . 2021.
Mitigating Bias in Visual Transformers via Targeted Alignment [pdf]Paper   link   bibtex   abstract  
Paying Attention to Varying Receptive Fields: Object Detection with Atrous Filters and Vision Transformers. Lam, A.; Lim, J.; Sutopo, R.; and Monn Baskaran, V. . 2021.
Paying Attention to Varying Receptive Fields: Object Detection with Atrous Filters and Vision Transformers [pdf]Paper   link   bibtex   abstract  
Adversarial Robustness Comparison of Vision Transformer and MLP-Mixer to CNNs. Benz, P.; Ham, S.; Zhang, C.; and Karjauv, A. . 2021.
Adversarial Robustness Comparison of Vision Transformer and MLP-Mixer to CNNs [pdf]Paper   Adversarial Robustness Comparison of Vision Transformer and MLP-Mixer to CNNs [link]Website   link   bibtex   abstract  
End-to-End Object Detection with Adaptive Clustering Transformer. Zheng, M.; Gao, P.; Zhang, R.; Li, K.; Wang, X.; Li, H.; and Dong, H. . 2021.
End-to-End Object Detection with Adaptive Clustering Transformer [pdf]Paper   End-to-End Object Detection with Adaptive Clustering Transformer [link]Website   link   bibtex   abstract  
FETNet: Feature Exchange Transformer Network for RGB-D Object Detection. Xiao, Z.; Xue, J.; Xie, P.; and Wang, G. . 2021.
FETNet: Feature Exchange Transformer Network for RGB-D Object Detection [pdf]Paper   link   bibtex   abstract  
Multi-Exit Vision Transformer for Dynamic Inference. Bakhtiarnia, A.; Zhang, Q.; Iosifidis, A.; and Digit, A., A., D. . 2021.
Multi-Exit Vision Transformer for Dynamic Inference [pdf]Paper   Multi-Exit Vision Transformer for Dynamic Inference [link]Website   link   bibtex   abstract  
Livestock Monitoring with Transformer. Tangirala, B.; Bhandari, I.; Laszlo, D.; Gupta, D., K.; Thomas, R., M.; Arya, D.; and Nl, D., A. . 2021.
Livestock Monitoring with Transformer [pdf]Paper   Livestock Monitoring with Transformer [link]Website   link   bibtex   abstract  
Multi-Teacher Single-Student Visual Transformer with Multi-Level Attention for Face Spoofing Detection. Huang, Y.; Hsieh, J.; Chang, M.; Ke, L.; Lyu, S.; and Santra, A., S. . 2021.
Multi-Teacher Single-Student Visual Transformer with Multi-Level Attention for Face Spoofing Detection [pdf]Paper   Multi-Teacher Single-Student Visual Transformer with Multi-Level Attention for Face Spoofing Detection [link]Website   link   bibtex   abstract  
OODformer: Out-Of-Distribution Detection Transformer. Koner, R.; Sinhamahapatra, P.; Roscher, K.; Günnemann, S.; and Tresp, V. . 2021.
OODformer: Out-Of-Distribution Detection Transformer [pdf]Paper   OODformer: Out-Of-Distribution Detection Transformer [link]Website   link   bibtex   abstract  
Transformer-based Monocular Depth Estimation with Attention Supervision. Chang, W.; Zhang, Y.; and Xiong, Z. . 2021.
Transformer-based Monocular Depth Estimation with Attention Supervision [pdf]Paper   Transformer-based Monocular Depth Estimation with Attention Supervision [link]Website   link   bibtex   abstract  
Few-Shot Temporal Action Localization with Query Adaptive Transformer. Nag, S.; Zhu, X.; and Xiang, T. . 2021.
Few-Shot Temporal Action Localization with Query Adaptive Transformer [pdf]Paper   Few-Shot Temporal Action Localization with Query Adaptive Transformer [link]Website   link   bibtex   abstract  
PROF: SATOSHI IKEHATA PS-Transformer: Learning Sparse Photometric Stereo Network using Self-Attention Mechanism Satoshi Ikehata. . 2021.
PROF: SATOSHI IKEHATA PS-Transformer: Learning Sparse Photometric Stereo Network using Self-Attention Mechanism Satoshi Ikehata [pdf]Paper   PROF: SATOSHI IKEHATA PS-Transformer: Learning Sparse Photometric Stereo Network using Self-Attention Mechanism Satoshi Ikehata [link]Website   link   bibtex   abstract  
Training Graph Neural Networks with 1000 Layers. Li, G.; Müller, M.; Ghanem, B.; and Koltun, V. . 2021.
Training Graph Neural Networks with 1000 Layers [pdf]Paper   Training Graph Neural Networks with 1000 Layers [link]Website   link   bibtex   abstract  
Adversarial Attack on Graph Neural Networks as An Influence Maximization Problem. Ma, J.; Deng, J.; and Mei, Q. . 2021.
Adversarial Attack on Graph Neural Networks as An Influence Maximization Problem [pdf]Paper   Adversarial Attack on Graph Neural Networks as An Influence Maximization Problem [link]Website   link   bibtex   abstract  
Adversarial Attacks on Graph Classification via Bayesian Optimisation. Wan, X.; Kenlay, H.; Ru, B.; Blaas, A.; Osborne, M., A.; and Dong, X. , (NeurIPS). 2021.
Adversarial Attacks on Graph Classification via Bayesian Optimisation [pdf]Paper   Adversarial Attacks on Graph Classification via Bayesian Optimisation [link]Website   link   bibtex   abstract  
Robust graph convolutional networks with directional graph adversarial training. Hu, W.; Chen, C.; Chang, Y.; Zheng, Z.; and Du, Y. Applied Intelligence, 51(11): 7812-7826. 2021.
Robust graph convolutional networks with directional graph adversarial training [pdf]Paper   doi   link   bibtex   abstract  
Graph Adversarial Attack via Rewiring. Ma, Y.; Wang, S.; Derr, T.; Wu, L.; and Tang, J. Proceedings of the ACM SIGKDD International Conference on Knowledge Discovery and Data Mining,1161-1169. 2021.
Graph Adversarial Attack via Rewiring [pdf]Paper   doi   link   bibtex   abstract  
Task and Model Agnostic Adversarial Attack on Graph Neural Networks. Sharma, K.; Verma, S.; Medya, S.; Ranu, S.; and Bhattacharya, A. . 2021.
Task and Model Agnostic Adversarial Attack on Graph Neural Networks [pdf]Paper   Task and Model Agnostic Adversarial Attack on Graph Neural Networks [link]Website   link   bibtex   abstract  
Understanding Structural Vulnerability in Graph Convolutional Networks. Chen, L.; Li, J.; Peng, Q.; Liu, Y.; Zheng, Z.; and Yang, C. ,2249-2255. 2021.
Understanding Structural Vulnerability in Graph Convolutional Networks [pdf]Paper   doi   link   bibtex   abstract  
Graph Universal Adversarial Attacks: A Few Bad Actors Ruin Graph Learning Models. Zang, X.; Xie, Y.; Chen, J.; and Yuan, B. ,3328-3334. 2021.
Graph Universal Adversarial Attacks: A Few Bad Actors Ruin Graph Learning Models [pdf]Paper   doi   link   bibtex   abstract  
Adversarial Attacks and Defenses on Graphs. Jin, W.; Li, Y.; Xu, H.; Wang, Y.; Ji, S.; Aggarwal, C.; and Tang, J. ACM SIGKDD Explorations Newsletter, 22(2): 19-34. 2021.
Adversarial Attacks and Defenses on Graphs [pdf]Paper   doi   link   bibtex   abstract  
Detection and Defense of Topological Adversarial Attacks on Graphs. Zhang, Y.; Regol, F.; Pal, S.; Khan, S.; Ma, L.; and Coates, M. Proceedings of the 24th International Conference on Artificial Intelligence and Statistics (AISTATS), 130: 2989-2997. 2021.
Detection and Defense of Topological Adversarial Attacks on Graphs [pdf]Paper   Detection and Defense of Topological Adversarial Attacks on Graphs [pdf]Website   link   bibtex   abstract  
Jointly Attacking Graph Neural Network and its Explanations. Fan, W.; Jin, W.; Liu, X.; Xu, H.; Tang, X.; Wang, S.; Li, Q.; Tang, J.; Wang, J.; and Aggarwal, C. ,1-17. 2021.
Jointly Attacking Graph Neural Network and its Explanations [pdf]Paper   Jointly Attacking Graph Neural Network and its Explanations [link]Website   link   bibtex   abstract  
Adversarial Attacks on Graph Classification via Bayesian Optimisation. Wan, X.; Kenlay, H.; Ru, B.; Blaas, A.; Osborne, M., A.; and Dong, X. , (NeurIPS). 2021.
Adversarial Attacks on Graph Classification via Bayesian Optimisation [pdf]Paper   Adversarial Attacks on Graph Classification via Bayesian Optimisation [link]Website   link   bibtex   abstract  
Expressive 1-Lipschitz Neural Networks for Robust Multiple Graph Learning against Adversarial Attacks. Zhao, X.; Zhang, Z.; Zhang, Z.; Wu, L.; Jin, J.; Zhou, Y.; Jin, R.; Dou, D.; and Yan, D. Proceedings of the 38th International Conference on Machine Learning, 139: 12719-12735. 2021.
Expressive 1-Lipschitz Neural Networks for Robust Multiple Graph Learning against Adversarial Attacks [pdf]Paper   Expressive 1-Lipschitz Neural Networks for Robust Multiple Graph Learning against Adversarial Attacks [link]Website   link   bibtex   abstract  
Generating Adversarial Examples with Graph Neural Networks. Jaeckle, F.; and Kumar, M., P. , (Uai). 2021.
Generating Adversarial Examples with Graph Neural Networks [pdf]Paper   Generating Adversarial Examples with Graph Neural Networks [link]Website   link   bibtex   abstract  
Adversarial Attack on Large Scale Graph. Li, J.; Xie, T.; Liang, C.; Xie, F.; He, X.; and Zheng, Z. IEEE Transactions on Knowledge and Data Engineering, 4347(c): 1-13. 2021.
Adversarial Attack on Large Scale Graph [pdf]Paper   doi   link   bibtex   abstract  
VoxelContext-Net: An Octree based Framework for Point Cloud Compression. Que, Z.; Lu, G.; and Xu, D. ,6038-6047. 2021.
VoxelContext-Net: An Octree based Framework for Point Cloud Compression [pdf]Paper   doi   link   bibtex   abstract  
Learning-based lossless compression of 3D point cloud geometry. Nguyen, D., T.; Quach, M.; Valenzise, G.; and Duhamel, P. ICASSP, IEEE International Conference on Acoustics, Speech and Signal Processing - Proceedings, 2021-June: 4220-4224. 2021.
Learning-based lossless compression of 3D point cloud geometry [pdf]Paper   doi   link   bibtex   abstract  
Point cloud classification with deep normalized Reeb graph convolution. Wang, W.; You, Y.; Liu, W.; and Lu, C. Image and Vision Computing, 106: 104092. 2021.
Point cloud classification with deep normalized Reeb graph convolution [pdf]Paper   Point cloud classification with deep normalized Reeb graph convolution [link]Website   doi   link   bibtex   abstract  
Graph Neural Networks with Convolutional ARMA Filters. Bianchi, F., M.; Grattarola, D.; Livi, L.; and Alippi, C. IEEE Transactions on Pattern Analysis and Machine Intelligence, 8828(c): 1-12. 2021.
Graph Neural Networks with Convolutional ARMA Filters [pdf]Paper   doi   link   bibtex   abstract  
On the stability of graph convolutional neural networks under edge rewiring. Kenlay, H.; Thanou, D.; and Dong, X. ICASSP, IEEE International Conference on Acoustics, Speech and Signal Processing - Proceedings, 2021-June: 8513-8517. 2021.
On the stability of graph convolutional neural networks under edge rewiring [pdf]Paper   doi   link   bibtex   abstract  
Modelling and studying the effect of graph errors in graph signal processing. Miettinen, J.; Vorobyov, S., A.; and Ollila, E. Signal Processing, 189: 108256. 2021.
Modelling and studying the effect of graph errors in graph signal processing [pdf]Paper   Modelling and studying the effect of graph errors in graph signal processing [link]Website   doi   link   bibtex   abstract  
Interpretable Stability Bounds for Spectral Graph Filters. Kenlay, H.; Thanou, D.; and Dong, X. , (1997): 1-29. 2021.
Interpretable Stability Bounds for Spectral Graph Filters [pdf]Paper   Interpretable Stability Bounds for Spectral Graph Filters [link]Website   link   bibtex   abstract  
On the Stability of Low Pass Graph Filter With a Large Number of Edge Rewires. Nguyen, H.; He, Y.; and Wai, H. . 2021.
On the Stability of Low Pass Graph Filter With a Large Number of Edge Rewires [pdf]Paper   On the Stability of Low Pass Graph Filter With a Large Number of Edge Rewires [link]Website   link   bibtex   abstract  
Point Cloud Processing based on Graph Neural Network. Lin, M. . 2021.
Point Cloud Processing based on Graph Neural Network [pdf]Paper   link   bibtex  
Graph convolutional networks for graphs containing missing features. Taguchi, H.; Liu, X.; and Murata, T. Future Generation Computer Systems, 117: 155-168. 2021.
Graph convolutional networks for graphs containing missing features [pdf]Paper   Graph convolutional networks for graphs containing missing features [link]Website   doi   link   bibtex   abstract  
Structural Features In Feature Space For Structure-Aware Graph Convolution. Li, Y.; and Tanaka, Y. ,3158-3162. 2021.
Structural Features In Feature Space For Structure-Aware Graph Convolution [pdf]Paper   doi   link   bibtex  
A weakly supervised framework for real-world point cloud classification. Deng, A.; Wu, Y.; Zhang, P.; Lu, Z.; Li, W.; and Su, Z. Computers & Graphics, 102: 78-88. 2021.
A weakly supervised framework for real-world point cloud classification [pdf]Paper   A weakly supervised framework for real-world point cloud classification [link]Website   doi   link   bibtex  
Beyond Farthest Point Sampling in Point-Wise Analysis. Lin, Y.; Chen, L.; Huang, H.; Ma, C.; Han, X.; and Cui, S. ,1-12. 2021.
Beyond Farthest Point Sampling in Point-Wise Analysis [pdf]Paper   Beyond Farthest Point Sampling in Point-Wise Analysis [link]Website   link   bibtex   abstract  
HISADOME, MATSUI: CASCADING FEATURE EXTRACTION FOR 3D REGISTRATION Cascading Feature Extraction for Fast Point Cloud Registration. Hisadome, Y.; and Matsui, Y. . 2021.
HISADOME, MATSUI: CASCADING FEATURE EXTRACTION FOR 3D REGISTRATION Cascading Feature Extraction for Fast Point Cloud Registration [pdf]Paper   link   bibtex   abstract  
A novel geometry image to accurately represent a surface by preserving mesh topology. Zeng, S.; Geng, G.; Gao, H.; and Zhou, M. Scientific Reports, 11(1): 1-9. 2021.
A novel geometry image to accurately represent a surface by preserving mesh topology [pdf]Paper   A novel geometry image to accurately represent a surface by preserving mesh topology [link]Website   doi   link   bibtex   abstract  
Point Cloud Classification Algorithm Based on the Fusion of the Local Binary Pattern Features and Structural Features of VoxelsLi, Y., Luo, Y., Gu, X., Chen, D., Gao, F., & Shuang, F. (2021). Point Cloud Classification Algorithm Based on the Fusion of the. Li, Y.; Luo, Y.; Gu, X.; Chen, D.; Gao, F.; and Shuang, F. Remote Sensing 2021, Vol. 13, Page 3156, 13(16): 3156. 8 2021.
Point Cloud Classification Algorithm Based on the Fusion of the Local Binary Pattern Features and Structural Features of VoxelsLi, Y., Luo, Y., Gu, X., Chen, D., Gao, F., & Shuang, F. (2021). Point Cloud Classification Algorithm Based on the Fusion of the [link]Website   doi   link   bibtex   abstract  
Point Cloud Classification Algorithm Based on the Fusion of the Local Binary Pattern Features and Structural Features of Voxels. Li, Y.; Luo, Y.; Gu, X.; Chen, D.; Gao, F.; and Shuang, F. Remote Sensing 2021, Vol. 13, Page 3156, 13(16): 3156. 8 2021.
Point Cloud Classification Algorithm Based on the Fusion of the Local Binary Pattern Features and Structural Features of Voxels [pdf]Paper   Point Cloud Classification Algorithm Based on the Fusion of the Local Binary Pattern Features and Structural Features of Voxels [link]Website   doi   link   bibtex   abstract  
CoFiNet: Reliable Coarse-to-fine Correspondences for Robust Point Cloud Registration. Yu, H.; Li, F.; Saleh, M.; Busam, B.; and Ilic, S. , (NeurIPS): 1-18. 2021.
CoFiNet: Reliable Coarse-to-fine Correspondences for Robust Point Cloud Registration [pdf]Paper   CoFiNet: Reliable Coarse-to-fine Correspondences for Robust Point Cloud Registration [link]Website   link   bibtex   abstract  
PREDATOR: Registration of 3D Point Clouds with Low Overlap. Huang, S.; Gojcic, Z.; Usvyatsov, M.; Wieser, A.; and Schindler, K. Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition,4265-4274. 2021.
PREDATOR: Registration of 3D Point Clouds with Low Overlap [pdf]Paper   doi   link   bibtex   abstract  
Learning of 3D Graph Convolution Networks for Point Cloud Analysis. Lin, Z., H.; Huang, S., Y.; and Wang, Y., C., F. IEEE Transactions on Pattern Analysis and Machine Intelligence, X(X). 2021.
Learning of 3D Graph Convolution Networks for Point Cloud Analysis [pdf]Paper   doi   link   bibtex   abstract  
Sensor agnostic semantic segmentation of structurally diverse and complex forest point clouds using deep learning. Krisanski, S.; Taskhiri, M., S.; Aracil, S., G.; Herries, D.; and Turner, P. Remote Sensing, 13(8). 2021.
Sensor agnostic semantic segmentation of structurally diverse and complex forest point clouds using deep learning [pdf]Paper   doi   link   bibtex   abstract  
Point Set Voting for Partial Point Cloud Analysis. Zhang, J.; Chen, W.; Wang, Y.; Vasudevan, R.; and Johnson-Roberson, M. IEEE Robotics and Automation Letters, 6(2): 596-603. 2021.
Point Set Voting for Partial Point Cloud Analysis [pdf]Paper   doi   link   bibtex   abstract  
Wireless 3D Point Cloud Delivery Using Deep Graph Neural Networks. Fujihashi, T.; Koike-Akino, T.; Chen, S.; and Watanabe, T. IEEE International Conference on Communications,1-6. 2021.
Wireless 3D Point Cloud Delivery Using Deep Graph Neural Networks [pdf]Paper   doi   link   bibtex   abstract  
Point2color: 3D point cloud colorization using a conditional generative network and differentiable rendering for airborne LiDAR. Shinohara, T.; Xiu, H.; and Matsuoka, M. IEEE Computer Society Conference on Computer Vision and Pattern Recognition Workshops,1062-1071. 2021.
Point2color: 3D point cloud colorization using a conditional generative network and differentiable rendering for airborne LiDAR [pdf]Paper   doi   link   bibtex   abstract  
Wireless 3D Point Cloud Delivery Using Deep Graph Neural Networks. Fujihashi, T.; Koike-Akino, T.; Chen, S.; and Watanabe, T. IEEE International Conference on Communications,0-5. 2021.
Wireless 3D Point Cloud Delivery Using Deep Graph Neural Networks [pdf]Paper   doi   link   bibtex   abstract  
BuildingNet: Learning to Label 3D Buildings. Selvaraju, P.; Nabail, M.; Loizou, M.; Maslioukova, M.; Averkiou, M.; Andreou, A.; Chaudhuri, S.; and Kalogerakis, E. ,10397-10407. 2021.
BuildingNet: Learning to Label 3D Buildings [pdf]Paper   BuildingNet: Learning to Label 3D Buildings [link]Website   link   bibtex   abstract  
An Overview on the Application of Graph Neural Networks in Wireless Networks. He, S.; Xiong, S.; Ou, Y.; Zhang, J.; Wang, J.; Huang, Y.; and Zhang, Y. IEEE Open Journal of the Communications Society, 2(November): 2547-2565. 2021.
An Overview on the Application of Graph Neural Networks in Wireless Networks [pdf]Paper   doi   link   bibtex   abstract  
Graph Neural Networks with Parallel Neighborhood Aggregations for Graph Classification. Doshi, S.; and Chepuri, S., P. ,1-20. 2021.
Graph Neural Networks with Parallel Neighborhood Aggregations for Graph Classification [pdf]Paper   Graph Neural Networks with Parallel Neighborhood Aggregations for Graph Classification [link]Website   link   bibtex   abstract  
HoloCast+: Hybrid Digital-Analog Transmission for Graceful Point Cloud Delivery with Graph Fourier Transform. Fujihashi, T.; Koike-Akino, T.; Watanabe, T.; and Orlik, P., V. IEEE Transactions on Multimedia,1-13. 2021.
HoloCast+: Hybrid Digital-Analog Transmission for Graceful Point Cloud Delivery with Graph Fourier Transform [pdf]Paper   doi   link   bibtex   abstract  
Advanced Geometry Surface Coding for Dynamic Point Cloud Compression. Xiong, J.; Gao, H.; Wang, M.; Li, H.; Ngan, K., N.; and Lin, W. ,1-10. 2021.
Advanced Geometry Surface Coding for Dynamic Point Cloud Compression [pdf]Paper   Advanced Geometry Surface Coding for Dynamic Point Cloud Compression [link]Website   link   bibtex   abstract  
AR Anchor System Using Mobile Based 3D GNN Detection. University, G., S., o., S., C., K.; Kim, J.; Kim, D.; CHUL, K., S.; and Jung, K. The International Journal of Internet, Broadcasting and Communication, 13(1): 54-60. 2021.
AR Anchor System Using Mobile Based 3D GNN Detection [pdf]Paper   link   bibtex   abstract  
Branchy-GNN: A device-edge co-inference framework for efficient point cloud processing. Shao, J.; Zhang, H.; Mao, Y.; and Zhang, J. ICASSP, IEEE International Conference on Acoustics, Speech and Signal Processing - Proceedings, 2021-June: 8488-8492. 2021.
Branchy-GNN: A device-edge co-inference framework for efficient point cloud processing [pdf]Paper   doi   link   bibtex   abstract  
Split Computing and Early Exiting for Deep Learning Applications: Survey and Research Challenges. Matsubara, Y.; Levorato, M.; and Restuccia, F. ACM Computing Surveys, 37(4). 2021.
Split Computing and Early Exiting for Deep Learning Applications: Survey and Research Challenges [pdf]Paper   Split Computing and Early Exiting for Deep Learning Applications: Survey and Research Challenges [link]Website   link   bibtex   abstract  
Superpoint-guided Semi-supervised Semantic Segmentation of 3D Point Clouds. Deng, S.; Dong, Q.; Liu, B.; and Hu, Z. . 2021.
Superpoint-guided Semi-supervised Semantic Segmentation of 3D Point Clouds [pdf]Paper   Superpoint-guided Semi-supervised Semantic Segmentation of 3D Point Clouds [link]Website   link   bibtex   abstract  
AirNet: Neural Network Transmission over the Air. Jankowski, M.; Gunduz, D.; and Mikolajczyk, K. , (677854). 2021.
AirNet: Neural Network Transmission over the Air [pdf]Paper   AirNet: Neural Network Transmission over the Air [link]Website   link   bibtex   abstract  
Point Cloud Instance Segmentation of Indoor Scenes Using Learned Pairwise Patch Relations. Yu, L.; Sun, Y.; Zhang, X.; Miao, Y.; and Zhang, X. IEEE Access, 9: 15891-15901. 2021.
Point Cloud Instance Segmentation of Indoor Scenes Using Learned Pairwise Patch Relations [pdf]Paper   doi   link   bibtex   abstract  
Multi-scale Point Cloud Analysis. Lejemble, T. . 2021.
Multi-scale Point Cloud Analysis [pdf]Paper   link   bibtex  
Facevae: Generation of a 3D geometric object using variational autoencoders. Park, S.; and Kim, H. Electronics (Switzerland), 10(22): 1-14. 2021.
Facevae: Generation of a 3D geometric object using variational autoencoders [pdf]Paper   doi   link   bibtex   abstract  
Hierarchical Graph-Convolutional Variational AutoEncoding for Generative Modelling of Human Motion. Bourached, A.; Gray, R.; Griffiths, R.; Jha, A.; and Nachev, P. . 2021.
Hierarchical Graph-Convolutional Variational AutoEncoding for Generative Modelling of Human Motion [pdf]Paper   Hierarchical Graph-Convolutional Variational AutoEncoding for Generative Modelling of Human Motion [link]Website   link   bibtex   abstract  
A Two-Stage Cascade Model with Variational Autoencoders and Attention Gates for MRI Brain Tumor Segmentation. Lyu, C.; and Shu, H. Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), 12658 LNCS: 435-447. 2021.
A Two-Stage Cascade Model with Variational Autoencoders and Attention Gates for MRI Brain Tumor Segmentation [pdf]Paper   doi   link   bibtex   abstract  
NeRF-VAE: A Geometry Aware 3D Scene Generative Model. Kosiorek, A., R.; Strathmann, H.; Zoran, D.; Moreno, P.; Schneider, R.; Mokrá, S.; and Rezende, D., J. . 2021.
NeRF-VAE: A Geometry Aware 3D Scene Generative Model [pdf]Paper   NeRF-VAE: A Geometry Aware 3D Scene Generative Model [link]Website   link   bibtex   abstract  
A Unified 3D Human Motion Synthesis Model via Conditional Variational Auto-Encoder *. Cai, Y.; Wang, Y.; Zhu, Y.; Cham, T.; Cai, J.; Yuan, J.; Liu, J.; Zheng, C.; Yan, S.; Ding, H.; Shen, X.; Liu, D.; and Thalmann, N., M. Proceedings of the IEEE/CVF International Conference on Computer Vision (ICCV),11645-11655. 2021.
A Unified 3D Human Motion Synthesis Model via Conditional Variational Auto-Encoder * [pdf]Paper   link   bibtex   abstract  
EditVAE: Unsupervised Part-Aware Controllable 3D Point Cloud Shape Generation. Li, S.; Liu, M.; and Walder, C. . 2021.
EditVAE: Unsupervised Part-Aware Controllable 3D Point Cloud Shape Generation [pdf]Paper   EditVAE: Unsupervised Part-Aware Controllable 3D Point Cloud Shape Generation [link]Website   link   bibtex   abstract  
Automated building change detection with amodal completion of point clouds. Czerniawski, T.; Ma, J., W.; and Fernanda Leite Automation in Construction, 124(January): 103568. 2021.
Automated building change detection with amodal completion of point clouds [pdf]Paper   Automated building change detection with amodal completion of point clouds [link]Website   doi   link   bibtex   abstract  
Setvae: Learning hierarchical composition for generative modeling of set-structured data. Kim, J.; Yoo, J.; Lee, J.; and Hong, S. Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition,15054-15063. 2021.
Setvae: Learning hierarchical composition for generative modeling of set-structured data [pdf]Paper   doi   link   bibtex   abstract  
Action-Conditioned 3D Human Motion Synthesis with Transformer VAE. Petrovich, M.; Black, M., J.; and Varol, G. . 2021.
Action-Conditioned 3D Human Motion Synthesis with Transformer VAE [pdf]Paper   Action-Conditioned 3D Human Motion Synthesis with Transformer VAE [link]Website   doi   link   bibtex   abstract  
A brief survey on RGB-D semantic segmentation using deep learning. Wang, C.; Wang, C.; Li, W.; and Wang, H. Displays, 70(September): 102080. 2021.
A brief survey on RGB-D semantic segmentation using deep learning [pdf]Paper   A brief survey on RGB-D semantic segmentation using deep learning [link]Website   doi   link   bibtex   abstract  
CoFiNet: Reliable Coarse-to-fine Correspondences for Robust Point Cloud Registration. Yu, H.; Li, F.; Saleh, M.; Busam, B.; and Ilic, S. . 10 2021.
CoFiNet: Reliable Coarse-to-fine Correspondences for Robust Point Cloud Registration [pdf]Paper   CoFiNet: Reliable Coarse-to-fine Correspondences for Robust Point Cloud Registration [link]Website   doi   link   bibtex   abstract  
Statistical Estimation of the Kullback–Leibler Divergence. Bulinski, A.; and Dimitrov, D. Mathematics, 9(5): 544. 1 2021.
Statistical Estimation of the Kullback–Leibler Divergence [pdf]Paper   Statistical Estimation of the Kullback–Leibler Divergence [link]Website   doi   link   bibtex   abstract  
Knowledge Distillation and Student-Teacher Learning for Visual Intelligence: A Review and New Outlooks. Wang, L.; and Yoon, K. IEEE Transactions on Pattern Analysis and Machine Intelligence,1. 2021.
Knowledge Distillation and Student-Teacher Learning for Visual Intelligence: A Review and New Outlooks [pdf]Paper   doi   link   bibtex   abstract  
An Image is Worth 16x16 Words: Transformers for Image Recognition at Scale. Dosovitskiy, A.; Beyer, L.; Kolesnikov, A.; Weissenborn, D.; Zhai, X.; Unterthiner, T.; Dehghani, M.; Minderer, M.; Heigold, G.; Gelly, S.; Uszkoreit, J.; and Houlsby, N. arXiv:2010.11929 [cs]. 6 2021.
An Image is Worth 16x16 Words: Transformers for Image Recognition at Scale [pdf]Paper   An Image is Worth 16x16 Words: Transformers for Image Recognition at Scale [link]Website   link   bibtex   abstract  
ToFNest: Efficient Normal Estimation for Time-of-Flight Depth Cameras. Molnár, S.; Kelényi, B.; and Tamás, L. In pages 1791-1798, 2021.
ToFNest: Efficient Normal Estimation for Time-of-Flight Depth Cameras [pdf]Paper   ToFNest: Efficient Normal Estimation for Time-of-Flight Depth Cameras [link]Website   link   bibtex  
Deep Optimized Priors for 3D Shape Modeling and Reconstruction. Yang, M.; Wen, Y.; Chen, W.; Chen, Y.; and Jia, K. In pages 3269-3278, 2021.
Deep Optimized Priors for 3D Shape Modeling and Reconstruction [pdf]Paper   Deep Optimized Priors for 3D Shape Modeling and Reconstruction [link]Website   link   bibtex  
Feature Pyramid Network Based Efficient Normal Estimation and Filtering for Time-of-Flight Depth Cameras. Molnár, S.; Kelenyi, B.; and Tamas, L. Sensors, 21: 6257. 9 2021.
Feature Pyramid Network Based Efficient Normal Estimation and Filtering for Time-of-Flight Depth Cameras [pdf]Paper   doi   link   bibtex   abstract  
Plausible 3D Face Wrinkle Generation Using Variational Autoencoders. Deng, Q.; Ma, L.; Jin, A.; Bi, H.; Le, B., H.; and Deng, Z. IEEE Transactions on Visualization and Computer Graphics, (01): 1. 1 2021.
Plausible 3D Face Wrinkle Generation Using Variational Autoencoders [pdf]Paper   Plausible 3D Face Wrinkle Generation Using Variational Autoencoders [link]Website   doi   link   bibtex   abstract  
Task-Generic Hierarchical Human Motion Prior using VAEs. Li, J.; Villegas, R.; Ceylan, D.; Yang, J.; Kuang, Z.; Li, H.; and Zhao, Y. In 2021 International Conference on 3D Vision (3DV), pages 771-781, 12 2021.
Task-Generic Hierarchical Human Motion Prior using VAEs [pdf]Paper   doi   link   bibtex   abstract  
Sparse Data Driven Mesh Deformation. Gao, L.; Lai, Y.; Yang, J.; Zhang, L.; Xia, S.; and Kobbelt, L. IEEE Transactions on Visualization and Computer Graphics, 27(3): 2085-2100. 3 2021.
Sparse Data Driven Mesh Deformation [pdf]Paper   doi   link   bibtex   abstract  
On relationships between the Pearson and the distance correlation coefficients. Edelmann, D.; Móri, T., F.; and Székely, G., J. Statistics \& Probability Letters, 169: 108960. 2 2021.
On relationships between the Pearson and the distance correlation coefficients [pdf]Paper   On relationships between the Pearson and the distance correlation coefficients [link]Website   doi   link   bibtex   abstract  
Tutorial on Variational Autoencoders. Doersch, C. arXiv:1606.05908 [cs, stat]. 1 2021.
Tutorial on Variational Autoencoders [pdf]Paper   Tutorial on Variational Autoencoders [link]Website   link   bibtex   abstract  
Mobil robotkar felhasználása a mezőgazdaságban: Mobile robotic manipulator for precision agriculture. Örs, K., M.; Szilárd, M.; and Levente, T. Energetika-Elektrotechnika – Számítástechnika és Oktatás Multi-konferencia,55-61. 10 2021.
Mobil robotkar felhasználása a mezőgazdaságban: Mobile robotic manipulator for precision agriculture [pdf]Paper   Mobil robotkar felhasználása a mezőgazdaságban: Mobile robotic manipulator for precision agriculture [link]Website   link   bibtex   abstract  
Learned Point Cloud Geometry Compression. Wang, J.; Zhu, H.; Ma, Z.; Chen, T.; Liu, H.; and Shen, Q. IEEE Transactions on Circuits and Systems for Video Technology, 31(12): 4909-4923. 12 2021.
Learned Point Cloud Geometry Compression [pdf]Paper   Learned Point Cloud Geometry Compression [link]Website   doi   link   bibtex   abstract  
Private-Shared Disentangled Multimodal VAE for Learning of Latent Representations. Lee, M.; and Pavlovic, V. In pages 1692-1700, 2021.
Private-Shared Disentangled Multimodal VAE for Learning of Latent Representations [pdf]Paper   Private-Shared Disentangled Multimodal VAE for Learning of Latent Representations [link]Website   link   bibtex  
NeRF-VAE: A Geometry Aware 3D Scene Generative Model. Kosiorek, A., R.; Strathmann, H.; Zoran, D.; Moreno, P.; Schneider, R.; Mokra, S.; and Rezende, D., J. In Proceedings of the 38th International Conference on Machine Learning, pages 5742-5752, 7 2021. PMLR
NeRF-VAE: A Geometry Aware 3D Scene Generative Model [pdf]Paper   NeRF-VAE: A Geometry Aware 3D Scene Generative Model [link]Website   link   bibtex   abstract  
NVAE: A Deep Hierarchical Variational Autoencoder. Vahdat, A.; and Kautz, J. arXiv:2007.03898 [cs, stat]. 1 2021.
NVAE: A Deep Hierarchical Variational Autoencoder [pdf]Paper   NVAE: A Deep Hierarchical Variational Autoencoder [link]Website   link   bibtex   abstract  
Very Deep VAEs Generalize Autoregressive Models and Can Outperform Them on Images. Child, R. arXiv:2011.10650 [cs]. 3 2021.
Very Deep VAEs Generalize Autoregressive Models and Can Outperform Them on Images [pdf]Paper   Very Deep VAEs Generalize Autoregressive Models and Can Outperform Them on Images [link]Website   link   bibtex   abstract  
ReZero is all you need: fast convergence at large depth. Bachlechner, T.; Majumder, B., P.; Mao, H.; Cottrell, G.; and McAuley, J. In Proceedings of the Thirty-Seventh Conference on Uncertainty in Artificial Intelligence, pages 1352-1361, 12 2021. PMLR
ReZero is all you need: fast convergence at large depth [pdf]Paper   ReZero is all you need: fast convergence at large depth [link]Website   link   bibtex   abstract  
3D Semantic Label Transfer in Human-Robot Collaboration. Rozenberszki, D.; Soros, G.; Szeier, S.; and Lorincz, A. In pages 2602-2611, 2021.
3D Semantic Label Transfer in Human-Robot Collaboration [pdf]Paper   3D Semantic Label Transfer in Human-Robot Collaboration [link]Website   link   bibtex  
Automated building change detection with amodal completion of point clouds. Czerniawski, T.; Ma, J., W.; and Fernanda Leite Automation in Construction, 124: 103568. 4 2021.
Automated building change detection with amodal completion of point clouds [pdf]Paper   Automated building change detection with amodal completion of point clouds [link]Website   doi   link   bibtex   abstract  
Strategies of attack–defense game for wireless sensor networks considering the effect of confidence level in fuzzy environment. Wu, Y.; Kang, B.; and Wu, H. Engineering Applications of Artificial Intelligence, 102(April): 104238. 2021.
Strategies of attack–defense game for wireless sensor networks considering the effect of confidence level in fuzzy environment [link]Website   doi   link   bibtex   abstract  
Regression-based methods for face alignment: A survey. Gogić, I.; Ahlberg, J.; and Pandžić, I., S. Signal Processing, 178. 2021.
Regression-based methods for face alignment: A survey [pdf]Paper   doi   link   bibtex   abstract  
A comprehensive survey on 2D multi-person pose estimation methods. Wang, C.; Zhang, F.; and Ge, S., S. Engineering Applications of Artificial Intelligence, 102(April): 104260. 2021.
A comprehensive survey on 2D multi-person pose estimation methods [pdf]Paper   A comprehensive survey on 2D multi-person pose estimation methods [link]Website   doi   link   bibtex   abstract  
Variational graph autoencoders for multiview canonical correlation analysis. Kaloga, Y.; Borgnat, P.; Chepuri, S., P.; Abry, P.; and Habrard, A. Signal Processing, 188: 108182. 2021.
Variational graph autoencoders for multiview canonical correlation analysis [pdf]Paper   Variational graph autoencoders for multiview canonical correlation analysis [link]Website   doi   link   bibtex   abstract  
A comprehensive survey on digital video forensics: Taxonomy, challenges, and future directions. Javed, A., R.; Jalil, Z.; Zehra, W.; Gadekallu, T., R.; Suh, D., Y.; and Piran, M., J. Engineering Applications of Artificial Intelligence, 106(August): 104456. 2021.
A comprehensive survey on digital video forensics: Taxonomy, challenges, and future directions [pdf]Paper   A comprehensive survey on digital video forensics: Taxonomy, challenges, and future directions [link]Website   doi   link   bibtex   abstract  
Kimera: from SLAM to Spatial Perception with 3D Dynamic Scene Graphs. Rosinol, A.; Violette, A.; Abate, M.; Hughes, N.; Chang, Y.; Shi, J.; Gupta, A.; and Carlone, L. International Journal of Robotics Research, 40(12-14): 1510-1546. 1 2021.
Kimera: from SLAM to Spatial Perception with 3D Dynamic Scene Graphs [link]Website   doi   link   bibtex   abstract  
SGMNet: Learning Rotation-Invariant Point Cloud Representations via Sorted Gram Matrix. Xu, J.; Tang, X.; Zhu, Y.; Sun, J.; and Pu, S. Proceedings of the IEEE International Conference on Computer Vision,10448-10457. 2021.
SGMNet: Learning Rotation-Invariant Point Cloud Representations via Sorted Gram Matrix [pdf]Paper   doi   link   bibtex   abstract  
Survey and Evaluation of RGB-D SLAM. Zhang, S.; Zheng, L.; and Tao, W. IEEE Access, 9: 21367-21387. 2021.
Survey and Evaluation of RGB-D SLAM [pdf]Paper   doi   link   bibtex   abstract  
A Closer Look at Rotation-invariant Deep Point Cloud Analysis. Li, F.; Fujiwara, K.; Okura, F.; and Matsushita, Y. Proceedings of the IEEE International Conference on Computer Vision,16198-16207. 2021.
A Closer Look at Rotation-invariant Deep Point Cloud Analysis [pdf]Paper   doi   link   bibtex   abstract  
On Automatic Data Augmentation for 3D Point Cloud Classification. Zhang, W.; Xu, X.; Liu, F.; Zhang, L.; and Foo, C. . 2021.
On Automatic Data Augmentation for 3D Point Cloud Classification [pdf]Paper   On Automatic Data Augmentation for 3D Point Cloud Classification [link]Website   link   bibtex   abstract  
DeepUME: Learning the Universal Manifold Embedding for Robust Point Cloud Registration. Lang, N.; and Francos, J., M. . 2021.
DeepUME: Learning the Universal Manifold Embedding for Robust Point Cloud Registration [pdf]Paper   DeepUME: Learning the Universal Manifold Embedding for Robust Point Cloud Registration [link]Website   link   bibtex   abstract  
Two Heads are Better than One: Geometric-Latent Attention for Point Cloud Classification and Segmentation. Cuevas-Velasquez, H.; Gallego, A., J.; and Fisher, R., B. . 2021.
Two Heads are Better than One: Geometric-Latent Attention for Point Cloud Classification and Segmentation [pdf]Paper   Two Heads are Better than One: Geometric-Latent Attention for Point Cloud Classification and Segmentation [link]Website   link   bibtex   abstract  
Multi-view 3D Reconstruction with Transformers. Wang, D.; Cui, X.; Chen, X.; Zou, Z.; Shi, T.; Salcudean, S.; Wang, Z., J.; and Ward, R. Proceedings of the IEEE International Conference on Computer Vision,5702-5711. 2021.
Multi-view 3D Reconstruction with Transformers [pdf]Paper   doi   link   bibtex   abstract  
Fooling LiDAR Perception via Adversarial Trajectory Perturbation. Li, Y.; Wen, C.; Juefei-Xu, F.; and Feng, C. Proceedings of the IEEE International Conference on Computer Vision,7878-7887. 2021.
Fooling LiDAR Perception via Adversarial Trajectory Perturbation [pdf]Paper   doi   link   bibtex   abstract  
VIN: Voxel-based Implicit Network for Joint 3D Object Detection and Segmentation for Lidars. Zhong, Y.; Zhu, M.; and Peng, H. . 2021.
VIN: Voxel-based Implicit Network for Joint 3D Object Detection and Segmentation for Lidars [pdf]Paper   VIN: Voxel-based Implicit Network for Joint 3D Object Detection and Segmentation for Lidars [link]Website   link   bibtex   abstract  
Multi-Modality Task Cascade for 3D Object Detection. Park, J.; Weng, X.; Man, Y.; and Kitani, K. . 2021.
Multi-Modality Task Cascade for 3D Object Detection [pdf]Paper   Multi-Modality Task Cascade for 3D Object Detection [link]Website   link   bibtex   abstract  
Self-Supervised Point Cloud Completion via Inpainting. Mittal, H.; Okorn, B.; Jangid, A.; and Held, D. . 2021.
Self-Supervised Point Cloud Completion via Inpainting [pdf]Paper   Self-Supervised Point Cloud Completion via Inpainting [link]Website   link   bibtex   abstract  
Adversarial Robustness Comparison of Vision Transformer and MLP-Mixer to CNNs. Benz, P.; Ham, S.; Zhang, C.; Karjauv, A.; and Kweon, I., S. ,1-16. 2021.
Adversarial Robustness Comparison of Vision Transformer and MLP-Mixer to CNNs [pdf]Paper   Adversarial Robustness Comparison of Vision Transformer and MLP-Mixer to CNNs [link]Website   link   bibtex   abstract  
Self-Supervised Pretraining of 3D Features on any Point-Cloud. Zhang, Z.; Girdhar, R.; Joulin, A.; and Misra, I. Proceedings of the IEEE International Conference on Computer Vision,10232-10243. 2021.
Self-Supervised Pretraining of 3D Features on any Point-Cloud [pdf]Paper   doi   link   bibtex   abstract  
Imperceptible Transfer Attack and Defense on 3D Point Cloud Classification. Liu, D.; and Hu, W. , 14(8). 2021.
Imperceptible Transfer Attack and Defense on 3D Point Cloud Classification [pdf]Paper   Imperceptible Transfer Attack and Defense on 3D Point Cloud Classification [link]Website   doi   link   bibtex   abstract  
Local and Global Point Cloud Reconstruction for 3D Hand Pose Estimation. Yu, Z.; Yang, L.; Chen, S.; and Yao, A. ,1-15. 2021.
Local and Global Point Cloud Reconstruction for 3D Hand Pose Estimation [pdf]Paper   Local and Global Point Cloud Reconstruction for 3D Hand Pose Estimation [link]Website   link   bibtex   abstract  
Point-set Distances for Learning Representations of 3D Point Clouds. Nguyen, T.; Pham, Q., H.; Le, T.; Pham, T.; Ho, N.; and Hua, B., S. Proceedings of the IEEE International Conference on Computer Vision, (Section 4): 10458-10467. 2021.
Point-set Distances for Learning Representations of 3D Point Clouds [pdf]Paper   doi   link   bibtex   abstract  
TSGCNet: Discriminative Geometric Feature Learning with Two-Stream Graph Convolutional Network for 3D Dental Model Segmentation. Zhang, L.; Zhao, Y.; Meng, D.; Cui, Z.; Gao, C.; Gao, X.; Lian, C.; and Shen, D. Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition,6695-6704. 2021.
TSGCNet: Discriminative Geometric Feature Learning with Two-Stream Graph Convolutional Network for 3D Dental Model Segmentation [pdf]Paper   doi   link   bibtex   abstract  
Dganet: A dilated graph attention-based network for local feature extraction on 3d point clouds. Wan, J.; Xie, Z.; Xu, Y.; Zeng, Z.; Yuan, D.; and Qiu, Q. Remote Sensing, 13(17). 2021.
Dganet: A dilated graph attention-based network for local feature extraction on 3d point clouds [pdf]Paper   doi   link   bibtex   abstract  
Group-Free 3D Object Detection via Transformers. Liu, Z.; Zhang, Z.; Cao, Y.; Hu, H.; and Tong, X. Proceedings of the IEEE International Conference on Computer Vision,2929-2938. 2021.
Group-Free 3D Object Detection via Transformers [pdf]Paper   doi   link   bibtex   abstract  
3D point cloud semantic segmentation toward large-scale unstructured agricultural scene classification. Chen, Y.; Xiong, Y.; Zhang, B.; Zhou, J.; and Zhang, Q. Computers and Electronics in Agriculture, 190(August): 106445. 2021.
3D point cloud semantic segmentation toward large-scale unstructured agricultural scene classification [pdf]Paper   3D point cloud semantic segmentation toward large-scale unstructured agricultural scene classification [link]Website   doi   link   bibtex   abstract  
Airborne LiDAR point cloud classification with global-local graph attention convolution neural network. Wen, C.; Li, X.; Yao, X.; Peng, L.; and Chi, T. ISPRS Journal of Photogrammetry and Remote Sensing, 173(January): 181-194. 2021.
Airborne LiDAR point cloud classification with global-local graph attention convolution neural network [pdf]Paper   Airborne LiDAR point cloud classification with global-local graph attention convolution neural network [link]Website   doi   link   bibtex   abstract  
FinerPCN: High fidelity point cloud completion network using pointwise convolution. Chang, Y.; Jung, C.; and Xu, Y. Neurocomputing, 460: 266-276. 2021.
FinerPCN: High fidelity point cloud completion network using pointwise convolution [pdf]Paper   FinerPCN: High fidelity point cloud completion network using pointwise convolution [link]Website   doi   link   bibtex   abstract  
HSGAN: Hierarchical Graph Learning for Point Cloud Generation. Li, Y.; and Baciu, G. IEEE Transactions on Image Processing, 30: 4540-4554. 2021.
HSGAN: Hierarchical Graph Learning for Point Cloud Generation [pdf]Paper   doi   link   bibtex   abstract  
Real-Time Volumetric-Semantic Exploration and Mapping : An Uncertainty-Aware Approach. Figueiredo, R., P., D.; Sejersen, F.; Hansen, J., G.; and Brand, M. ,9064-9070. 2021.
Real-Time Volumetric-Semantic Exploration and Mapping : An Uncertainty-Aware Approach [pdf]Paper   link   bibtex  
Learning Graph Representation with Generative Adversarial Nets. Wang, H.; Wang, J.; Wang, J.; Zhao, M.; Zhang, W.; Zhang, F.; Li, W.; Xie, X.; and Guo, M. IEEE Transactions on Knowledge and Data Engineering, 33(8): 3090-3103. 2021.
Learning Graph Representation with Generative Adversarial Nets [pdf]Paper   doi   link   bibtex   abstract  
Mastering Atari, Go, Chess and Shogi by Planning with a Learned Model. Schrittwieser, J.; Antonoglou, I.; Hubert, T.; Simonyan, K.; Sifre, L.; Schmitt, S.; Guez, A.; Lockhart, E.; Hassabis, D.; Graepel, T.; and Lillicrap, T. ,1-21. 2021.
Mastering Atari, Go, Chess and Shogi by Planning with a Learned Model [pdf]Paper   link   bibtex  
Real-Time Volumetric-Semantic Exploration and Mapping : An Uncertainty-Aware Approach. Figueiredo, R., P., D.; Sejersen, F.; Hansen, J., G.; and Brand, M. ,9064-9070. 2021.
Real-Time Volumetric-Semantic Exploration and Mapping : An Uncertainty-Aware Approach [pdf]Paper   link   bibtex  
Next-best-view regression using a 3D convolutional neural network. Vasquez-Gomez, J., I.; Troncoso, D.; Becerra, I.; Sucar, E.; and Murrieta-Cid, R. Machine Vision and Applications, 32(2): 1-14. 2021.
Next-best-view regression using a 3D convolutional neural network [pdf]Paper   Next-best-view regression using a 3D convolutional neural network [link]Website   doi   link   bibtex   abstract  
SE-MD: A Single-encoder multiple-decoder deep network for point cloud generation from 2D images. Hafiz, A., M.; Bhat, R., U., A.; Parah, S., A.; and Hassaballah, M. . 2021.
SE-MD: A Single-encoder multiple-decoder deep network for point cloud generation from 2D images [pdf]Paper   SE-MD: A Single-encoder multiple-decoder deep network for point cloud generation from 2D images [link]Website   link   bibtex   abstract  
PU-GCN: Point Cloud Upsampling using Graph Convolutional Networks. Qian, G.; Abualshour, A.; Li, G.; Thabet, A.; and Ghanem, B. Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition,11678-11687. 2021.
PU-GCN: Point Cloud Upsampling using Graph Convolutional Networks [pdf]Paper   doi   link   bibtex   abstract  
Learning Progressive Point Embeddings for 3D Point Cloud Generation. Wen, C.; Yu, B.; and Tao, D. Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition,10261-10270. 2021.
Learning Progressive Point Embeddings for 3D Point Cloud Generation [pdf]Paper   doi   link   bibtex   abstract  
Image-based 3d object reconstruction: State-of-the-art and trends in the deep learning era. Han, X., F.; Laga, H.; and Bennamoun, M. IEEE Transactions on Pattern Analysis and Machine Intelligence, 43(5): 1578-1604. 2021.
Image-based 3d object reconstruction: State-of-the-art and trends in the deep learning era [pdf]Paper   doi   link   bibtex   abstract  
Single image 3D object reconstruction based on deep learning: A review. Fu, K.; Peng, J.; He, Q.; and Zhang, H. Multimedia Tools and Applications, 80(1): 463-498. 2021.
Single image 3D object reconstruction based on deep learning: A review [pdf]Paper   doi   link   bibtex   abstract  
Leveraging SE(3) Equivariance for Self-Supervised Category-Level Object Pose Estimation. Li, X.; Weng, Y.; Yi, L.; Guibas, L.; Abbott, A., L.; Song, S.; and Wang, H. Advances in Neural Information Processing Systems, 19(3): 15370-15381. 2021.
Leveraging SE(3) Equivariance for Self-Supervised Category-Level Object Pose Estimation [pdf]Paper   link   bibtex   abstract  
Spectral spherical harmonics discrete ordinate method. Doicu, A.; Mishchenko, M., I.; Efremenko, D., S.; and Trautmann, T. Journal of Quantitative Spectroscopy and Radiative Transfer, 258: 107386. 2021.
Spectral spherical harmonics discrete ordinate method [pdf]Paper   Spectral spherical harmonics discrete ordinate method [link]Website   doi   link   bibtex   abstract  
Spherical cap harmonic analysis (SCHA) for characterising the morphology of rough surface patches. Shaqfa, M.; Choi, G., P.; and Beyer, K. Powder Technology, 393: 837-856. 2021.
Spherical cap harmonic analysis (SCHA) for characterising the morphology of rough surface patches [pdf]Paper   Spherical cap harmonic analysis (SCHA) for characterising the morphology of rough surface patches [link]Website   doi   link   bibtex   abstract  
Steerable 3D Spherical Neurons. Melnyk, P.; Felsberg, M.; and Wadenbäck, M. . 2021.
Steerable 3D Spherical Neurons [pdf]Paper   Steerable 3D Spherical Neurons [link]Website   link   bibtex   abstract  
Three-dimensional reconstruction of realistic stone-based materials with controllable stone inclusion geometries. Wang, X.; Yin, Z., y.; Zhang, J., q.; Xiong, H.; and Su, D. Construction and Building Materials, 305(January): 124240. 2021.
Three-dimensional reconstruction of realistic stone-based materials with controllable stone inclusion geometries [pdf]Paper   Three-dimensional reconstruction of realistic stone-based materials with controllable stone inclusion geometries [link]Website   doi   link   bibtex   abstract  
Geometric Algebra Attention Networks for Small Point Clouds. Spellings, M. ,1-23. 2021.
Geometric Algebra Attention Networks for Small Point Clouds [pdf]Paper   Geometric Algebra Attention Networks for Small Point Clouds [link]Website   link   bibtex   abstract  
Deep Hierarchical Rotation Invariance Learning with Exact Geometry Feature Representation for Point Cloud Classification. Lin, J.; Rickert, M.; and Knoll, A. Proceedings - IEEE International Conference on Robotics and Automation, 2021-May(Icra): 9529-9535. 2021.
Deep Hierarchical Rotation Invariance Learning with Exact Geometry Feature Representation for Point Cloud Classification [pdf]Paper   doi   link   bibtex   abstract  
Spherical Multi-Modal Place Recognition for Heterogeneous Sensor Systems. Bernreiter, L.; Ott, L.; Nieto, J.; Siegwart, R.; and Cadena, C. Proceedings - IEEE International Conference on Robotics and Automation, 2021-May(Icra): 1743-1750. 2021.
Spherical Multi-Modal Place Recognition for Heterogeneous Sensor Systems [pdf]Paper   doi   link   bibtex   abstract  
FAST 3D ACOUSTIC SCATTERING VIA DISCRETE LAPLACIAN BASED IMPLICIT FUNCTION ENCODERS. Via, C. ,1-16. 2021.
FAST 3D ACOUSTIC SCATTERING VIA DISCRETE LAPLACIAN BASED IMPLICIT FUNCTION ENCODERS [pdf]Paper   link   bibtex  
Spherical harmonics for shape-constrained 3d cell segmentation. Eschweiler, D.; Rethwisch, M.; Koppers, S.; and Stegmaier, J. Proceedings - International Symposium on Biomedical Imaging, 2021-April(3): 792-796. 2021.
Spherical harmonics for shape-constrained 3d cell segmentation [pdf]Paper   doi   link   bibtex   abstract  
Point-based Acoustic Scattering for Interactive Sound Propagation via Surface Encoding. Meng, H., Y.; Tang, Z.; and Manocha, D. IJCAI International Joint Conference on Artificial Intelligence,909-915. 2021.
Point-based Acoustic Scattering for Interactive Sound Propagation via Surface Encoding [pdf]Paper   doi   link   bibtex   abstract  
Learning acoustic scattering fields for dynamic interactive sound propagation. Tang, Z.; Meng, H., Y.; and Manocha, D. Proceedings - 2021 IEEE Conference on Virtual Reality and 3D User Interfaces, VR 2021,835-844. 2021.
Learning acoustic scattering fields for dynamic interactive sound propagation [pdf]Paper   doi   link   bibtex   abstract  
Survey on the View Planning Problem for Reverse Engineering and Automated Control Applications. Peuzin-Jubert, M.; Polette, A.; Nozais, D.; Mari, J., L.; and Pernot, J., P. CAD Computer Aided Design, 141: 103094. 2021.
Survey on the View Planning Problem for Reverse Engineering and Automated Control Applications [pdf]Paper   Survey on the View Planning Problem for Reverse Engineering and Automated Control Applications [link]Website   doi   link   bibtex   abstract  
Low Power Processors and Image Sensors for Vision-Based IoT Devices: A Review. Maheepala, M.; Joordens, M., A.; and Kouzani, A., Z. 1 2021.
Low Power Processors and Image Sensors for Vision-Based IoT Devices: A Review [pdf]Paper   doi   link   bibtex   abstract  
electronics Embedded Intelligence on FPGA: Survey, Applications and Challenges. Seng, K., P.; and Lee, P., J. , 10: 895. 2021.
electronics Embedded Intelligence on FPGA: Survey, Applications and Challenges [pdf]Paper   electronics Embedded Intelligence on FPGA: Survey, Applications and Challenges [link]Website   doi   link   bibtex   abstract  
Revisiting Point Cloud Shape Classification with a Simple and Effective Baseline. Goyal, A.; Law, H.; Liu, B.; Newell, A.; and Deng, J. . 2021.
Revisiting Point Cloud Shape Classification with a Simple and Effective Baseline [pdf]Paper   Revisiting Point Cloud Shape Classification with a Simple and Effective Baseline [link]Website   link   bibtex   abstract  
  2020 (225)
From planes to corners: Multi-purpose primitive detection in unorganized 3D point clouds. Sommer, C.; Sun, Y.; Guibas, L.; Cremers, D.; and Birdal, T. IEEE Robotics and Automation Letters, 5(2): 1764-1771. 2020.
From planes to corners: Multi-purpose primitive detection in unorganized 3D point clouds [pdf]Paper   doi   link   bibtex   abstract  
Geometric Primitives in LiDAR Point Clouds: A Review. Xia, S.; Chen, D.; Wang, R.; Li, J.; and Zhang, X. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 13: 685-707. 2020.
Geometric Primitives in LiDAR Point Clouds: A Review [pdf]Paper   doi   link   bibtex   abstract  
A review on deep learning approaches for 3d data representations in retrieval and classifications. Gezawa, A., S.; Zhang, Y.; Wang, Q.; and Yunqi, L. IEEE Access, 8: 57566-57593. 2020.
A review on deep learning approaches for 3d data representations in retrieval and classifications [pdf]Paper   doi   link   bibtex   abstract  
CNN-Based Lidar Point Cloud De-Noising in Adverse Weather. Heinzler, R.; Piewak, F.; Schindler, P.; and Stork, W. IEEE Robotics and Automation Letters, 5(2): 2514-2521. 2020.
CNN-Based Lidar Point Cloud De-Noising in Adverse Weather [pdf]Paper   doi   link   bibtex   abstract  
Supervised learning of the next-best-view for 3d object reconstruction. Mendoza, M.; Vasquez-Gomez, J., I.; Taud, H.; Sucar, L., E.; and Reta, C. Pattern Recognition Letters, 133: 224-231. 2020.
Supervised learning of the next-best-view for 3d object reconstruction [pdf]Paper   Supervised learning of the next-best-view for 3d object reconstruction [link]Website   doi   link   bibtex   abstract  
PointContrast: Unsupervised Pre-training for 3D Point Cloud Understanding. Xie, S.; Gu, J.; Guo, D.; Qi, C., R.; Guibas, L., J.; and Litany, O. . 2020.
PointContrast: Unsupervised Pre-training for 3D Point Cloud Understanding [pdf]Paper   PointContrast: Unsupervised Pre-training for 3D Point Cloud Understanding [link]Website   link   bibtex   abstract  
A survey on indoor RGB-D semantic segmentation : from hand-crafted features to deep convolutional neural networks. Fooladgar, F.; and Kasaei, S. ,4499-4524. 2020.
A survey on indoor RGB-D semantic segmentation : from hand-crafted features to deep convolutional neural networks [pdf]Paper   link   bibtex  
Uncertainty-Aware CNNs for Depth Completion: Uncertainty from Beginning to End. Eldesokey, A.; Felsberg, M.; Holmquist, K.; and Persson, M. ,12011-12020. 2020.
Uncertainty-Aware CNNs for Depth Completion: Uncertainty from Beginning to End [pdf]Paper   doi   link   bibtex   abstract  
Normal Estimation for 3D Point Clouds via Local Plane Constraint and Multi-scale Selection. Zhou, J.; Huang, H.; Liu, B.; and Liu, X. CAD Computer Aided Design, 129. 2020.
Normal Estimation for 3D Point Clouds via Local Plane Constraint and Multi-scale Selection [pdf]Paper   doi   link   bibtex   abstract  
PointCleanNet: Learning to Denoise and Remove Outliers from Dense Point Clouds. Rakotosaona, M., J.; La Barbera, V.; Guerrero, P.; Mitra, N., J.; and Ovsjanikov, M. Computer Graphics Forum, 39(1): 185-203. 2020.
PointCleanNet: Learning to Denoise and Remove Outliers from Dense Point Clouds [pdf]Paper   doi   link   bibtex   abstract  
Point Cloud Normal Estimation by Fast Guided Least Squares Representation. Zhang, J.; Duan, J.; Tang, K.; Cao, J.; and Liu, X. IEEE Access, 8: 101580-101590. 2020.
Point Cloud Normal Estimation by Fast Guided Least Squares Representation [pdf]Paper   doi   link   bibtex   abstract  
Confidence Estimation for ToF and Stereo Sensors and Its Application to Depth Data Fusion. Poggi, M.; Agresti, G.; Tosi, F.; Zanuttigh, P.; and Mattoccia, S. IEEE Sensors Journal, 20(3): 1411-1421. 2020.
Confidence Estimation for ToF and Stereo Sensors and Its Application to Depth Data Fusion [pdf]Paper   doi   link   bibtex   abstract  
Learning to segment 3D point clouds in 2D image space. Lyu, Y.; Huang, X.; and Zhang, Z. Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition,12252-12261. 2020.
Learning to segment 3D point clouds in 2D image space [pdf]Paper   doi   link   bibtex   abstract  
Normal assisted stereo depth estimation. Kusupati, U.; Cheng, S.; Chen, R.; and Su, H. Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition,2186-2196. 2020.
Normal assisted stereo depth estimation [pdf]Paper   doi   link   bibtex   abstract  
Neighbourhood-Insensitive Point Cloud Normal Estimation Network. Wang, Z.; and Prisacariu, V., A. . 2020.
Neighbourhood-Insensitive Point Cloud Normal Estimation Network [pdf]Paper   Neighbourhood-Insensitive Point Cloud Normal Estimation Network [link]Website   link   bibtex   abstract  
Deep learning based multi-modal fusion architectures for maritime vessel detection. Farahnakian, F.; and Heikkonen, J. Remote Sensing, 12(16). 2020.
Deep learning based multi-modal fusion architectures for maritime vessel detection [pdf]Paper   doi   link   bibtex   abstract  
CNN based Color and Thermal Image Fusion for Object Detection in CNN based Color and Thermal Image Fusion for Object Detection in Automated Driving. Yadav, R.; Samir, A.; Rashed, H.; Yogamani, S.; and Dahyot, R. , (July). 2020.
CNN based Color and Thermal Image Fusion for Object Detection in CNN based Color and Thermal Image Fusion for Object Detection in Automated Driving [pdf]Paper   link   bibtex  
From Planes to Corners : Multi-Purpose Primitive Detection in Unorganized 3D Point Clouds. Sommer, C.; Guibas, L.; and Cremers, D. , (c): 1-8. 2020.
From Planes to Corners : Multi-Purpose Primitive Detection in Unorganized 3D Point Clouds [pdf]Paper   link   bibtex  
Geometric Primitives in LiDAR Point Clouds: A Review. Xia, S.; Chen, D.; Wang, R.; Li, J.; and Zhang, X. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 13: 685-707. 2020.
Geometric Primitives in LiDAR Point Clouds: A Review [pdf]Paper   doi   link   bibtex   abstract  
PrimiTect: Fast Continuous Hough Voting for Primitive Detection. Sommer, C.; Sun, Y.; Bylow, E.; and Cremers, D. Proceedings - IEEE International Conference on Robotics and Automation,8404-8410. 2020.
PrimiTect: Fast Continuous Hough Voting for Primitive Detection [pdf]Paper   doi   link   bibtex   abstract  
View planning in robot active vision: A survey of systems, algorithms, and applications. Zeng, R.; Wen, Y.; Zhao, W.; and Liu, Y., J. Computational Visual Media, 6(3): 225-245. 2020.
View planning in robot active vision: A survey of systems, algorithms, and applications [pdf]Paper   doi   link   bibtex   abstract  
Linking Points with Labels in 3D: A Review of Point Cloud Semantic Segmentation. Xie, Y.; Tian, J.; and Zhu, X., X. IEEE Geoscience and Remote Sensing Magazine, 8(4): 38-59. 2020.
Linking Points with Labels in 3D: A Review of Point Cloud Semantic Segmentation [pdf]Paper   doi   link   bibtex   abstract  
3D Object Recognition and Pose Estimation from Point Cloud Using Stably Observed Point Pair Feature. Li, D.; Wang, H.; Liu, N.; Wang, X.; and Xu, J. IEEE Access, 8. 2020.
3D Object Recognition and Pose Estimation from Point Cloud Using Stably Observed Point Pair Feature [pdf]Paper   doi   link   bibtex   abstract  
Next-best-view Regression using a 3D Convolutional Neural Network. David, J., I., V.; Israel, T.; Enrique, B.; and Jan, C., V. Arxiv. 2020.
Next-best-view Regression using a 3D Convolutional Neural Network [pdf]Paper   link   bibtex  
Multi-Sensor Next-Best-View Planning as. Maximization, M., S.; Lauri, M.; Pajarinen, J.; Peters, J.; and Frintrop, S. , 5(4): 5323-5330. 2020.
Multi-Sensor Next-Best-View Planning as [pdf]Paper   link   bibtex  
PC-NBV : A Point Cloud Based Deep Network for Efficient Next Best View Planning PC-NBV. Zeng, R.; Zhao, W.; and Liu, Y. IEEE/RSJ International Conference on Intelligent Robots and Systems,7050-7057. 2020.
PC-NBV : A Point Cloud Based Deep Network for Efficient Next Best View Planning PC-NBV [pdf]Paper   link   bibtex  
ActiveMoCap: Optimized viewpoint selection for active human motion capture. Kiciroglu, S.; Rhodin, H.; Sinha, S., N.; Salzmann, M.; and Fua, P. Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition,100-109. 2020.
ActiveMoCap: Optimized viewpoint selection for active human motion capture [pdf]Paper   doi   link   bibtex   abstract  
PLAUSIBLE RECONSTRUCTION of AN APPROXIMATED MESH MODEL for NEXT-BEST VIEW PLANNING of SFM-MVS. Moritani, R.; Kanai, S.; Date, H.; Niina, Y.; and Honma, R. International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences - ISPRS Archives, 43(B2): 465-471. 2020.
PLAUSIBLE RECONSTRUCTION of AN APPROXIMATED MESH MODEL for NEXT-BEST VIEW PLANNING of SFM-MVS [pdf]Paper   doi   link   bibtex   abstract  
Recognition and grasping of disorderly stacked wood planks using a local image patch and point pair feature method. Xu, C.; Liu, Y.; Ding, F.; and Zhuang, Z. Sensors (Switzerland), 20(21): 1-18. 2020.
Recognition and grasping of disorderly stacked wood planks using a local image patch and point pair feature method [pdf]Paper   doi   link   bibtex   abstract  
Geometric modelling for 3d point clouds of elbow joints in piping systems. Chan, T., O.; Xia, L.; Lichti, D., D.; Sun, Y.; Wang, J.; Jiang, T.; and Li, Q. Sensors (Switzerland), 20(16): 1-18. 2020.
Geometric modelling for 3d point clouds of elbow joints in piping systems [pdf]Paper   doi   link   bibtex   abstract  
PC-NBV : A Point Cloud Based Deep Network for Efficient Next Best View Planning PC-NBV. Zeng, R.; Zhao, W.; and Liu, Y. IEEE/RSJ International Conference on Intelligent Robots and Systems,7050-7057. 2020.
PC-NBV : A Point Cloud Based Deep Network for Efficient Next Best View Planning PC-NBV [pdf]Paper   link   bibtex  
Geometry and learning co-supported normal estimation for unstructured point cloud. Zhou, H.; Chen, H.; Feng, Y.; Wang, Q.; Qin, J.; Xie, H.; Wang, F., L.; Wei, M.; and Wang, J. Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition,13235-13244. 2020.
Geometry and learning co-supported normal estimation for unstructured point cloud [pdf]Paper   doi   link   bibtex   abstract  
Deep feature-preserving normal estimation for point cloud filtering. Lu, D.; Lu, X.; Sun, Y.; and Wang, J. arXiv. 2020.
Deep feature-preserving normal estimation for point cloud filtering [pdf]Paper   link   bibtex   abstract  
DeepURL: Deep pose estimation framework for underwater relative localization. Joshi, B.; Modasshir, M.; Manderson, T.; Damron, H.; Xanthidis, M.; Li, A., Q.; Rekleitis, I.; and Dudek, G. arXiv. 2020.
DeepURL: Deep pose estimation framework for underwater relative localization [pdf]Paper   link   bibtex   abstract  
PointRCNN: 3D Object Proposal Generation and Detection From Point Cloud. Shi, S.; Wang, X.; and Li, H. ,770-779. 2020.
doi   link   bibtex   abstract  
A two-phase cross-modality fusion network for robust 3D object detection. Jiao, Y.; and Yin, Z. Sensors (Switzerland), 20(21): 1-14. 2020.
A two-phase cross-modality fusion network for robust 3D object detection [pdf]Paper   doi   link   bibtex   abstract  
CNN-Based Lidar Point Cloud De-Noising in Adverse Weather. Heinzler, R.; Piewak, F.; Schindler, P.; and Stork, W. IEEE Robotics and Automation Letters, 5(2): 2514-2521. 2020.
CNN-Based Lidar Point Cloud De-Noising in Adverse Weather [pdf]Paper   doi   link   bibtex   abstract  
Fast and Accurate Desnowing Algorithm for LiDAR Point Clouds. Park, J., I.; Park, J.; and Kim, K., S. IEEE Access, 8: 160202-160212. 2020.
Fast and Accurate Desnowing Algorithm for LiDAR Point Clouds [pdf]Paper   doi   link   bibtex   abstract  
Learning Graph-Convolutional Representations for Point Cloud Denoising. Pistilli, F.; Fracastoro, G.; Valsesia, D.; and Magli, E. Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), 12365 LNCS: 103-118. 2020.
doi   link   bibtex   abstract  
Differentiable Manifold Reconstruction for Point Cloud Denoising. Luo, S.; and Hu, W. arXiv. 2020.
doi   link   bibtex   abstract  
Geometric adversarial attacks and defenses on 3D point clouds. Lang, I.; Kotlicki, U.; and Avidan, S. arXiv. 2020.
Geometric adversarial attacks and defenses on 3D point clouds [pdf]Paper   link   bibtex   abstract  
MaskNet: A Fully-Convolutional Network to Estimate Inlier Points. Sarode, V.; Dhagat, A.; Srivatsan, R., A.; Zevallos, N.; Lucey, S.; and Choset, H. Proceedings - 2020 International Conference on 3D Vision, 3DV 2020,1029-1038. 2020.
MaskNet: A Fully-Convolutional Network to Estimate Inlier Points [pdf]Paper   doi   link   bibtex   abstract  
Next Best View Planning via Reinforcement Learning for Scanning of Arbitrary 3D Shapes. Potapova, S., G.; Artemov, A., V.; Sviridov, S., V.; Musatkina, D., A.; Zorin, D., N.; and Burnaev, E., V. Journal of Communications Technology and Electronics, 65(12): 1484-1490. 2020.
Next Best View Planning via Reinforcement Learning for Scanning of Arbitrary 3D Shapes [pdf]Paper   doi   link   bibtex   abstract  
Very power efficient neural time-of-flight. Chen, Y.; Ren, J.; Cheng, X.; Qian, K.; Wang, L.; and Gu, J. Proceedings - 2020 IEEE Winter Conference on Applications of Computer Vision, WACV 2020,2246-2255. 2020.
Very power efficient neural time-of-flight [pdf]Paper   doi   link   bibtex   abstract  
Deep Learning for Anomaly Detection. Wang, R.; Nie, K.; Chang, Y., J.; Gong, X.; Wang, T.; Yang, Y.; and Long, B. Proceedings of the ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, (February): 3569-3570. 2020.
Deep Learning for Anomaly Detection [pdf]Paper   doi   link   bibtex   abstract  
Point Transformer. Zhao, H.; Jiang, L.; Jia, J.; Torr, P.; and Koltun, V. . 2020.
Point Transformer [pdf]Paper   Point Transformer [link]Website   link   bibtex   abstract  
Occupancy Anticipation for Efficient Exploration and Navigation. Ramakrishnan, S., K.; Al-Halah, Z.; and Grauman, K. Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), 12350 LNCS: 400-418. 2020.
Occupancy Anticipation for Efficient Exploration and Navigation [pdf]Paper   doi   link   bibtex   abstract  
CNN based Road User Detection using the 3D Radar Cube. Palffy, A.; Dong, J.; Kooij, J., F., P.; and Gavrila, D., M. IEEE Robotics and Automation Letters, 5(2): 1263-1270. 4 2020.
CNN based Road User Detection using the 3D Radar Cube [pdf]Paper   CNN based Road User Detection using the 3D Radar Cube [link]Website   doi   link   bibtex   abstract  
DeepFit: 3D Surface Fitting via Neural Network Weighted Least Squares. Ben-Shabat, Y.; and Gould, S. Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), 12346 LNCS: 20-34. 2020.
DeepFit: 3D Surface Fitting via Neural Network Weighted Least Squares [pdf]Paper   doi   link   bibtex   abstract  
DeepFit: 3D Surface Fitting via Neural Network Weighted Least Squares. Ben-Shabat, Y.; and Gould, S. Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), 12346 LNCS: 20-34. 2020.
DeepFit: 3D Surface Fitting via Neural Network Weighted Least Squares [pdf]Paper   doi   link   bibtex   abstract  
Deep Iterative Surface Normal Estimation. Lenssen, J., E.; Osendorfer, C.; and Masci, J. Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition,11244-11253. 2020.
Deep Iterative Surface Normal Estimation [pdf]Paper   doi   link   bibtex   abstract  
Graph Networks with Spectral Message Passing. Stachenfeld, K., L.; Godwin, J.; and Battaglia, P. . 2020.
Graph Networks with Spectral Message Passing [pdf]Paper   link   bibtex  
Principal Neighbourhood Aggregation for Graph Nets. Corso, G.; Cavalleri, L.; Beaini, D.; Liò, P.; and Veličković, P. , (NeurIPS). 2020.
Principal Neighbourhood Aggregation for Graph Nets [pdf]Paper   Principal Neighbourhood Aggregation for Graph Nets [link]Website   link   bibtex   abstract  
Differentiable Graph Module (DGM) for Graph Convolutional Networks. Kazi, A.; Cosmo, L.; Navab, N.; and Bronstein, M. . 2020.
Differentiable Graph Module (DGM) for Graph Convolutional Networks [pdf]Paper   Differentiable Graph Module (DGM) for Graph Convolutional Networks [link]Website   link   bibtex   abstract  
Pointer Graph Networks. Veličković, P.; Buesing, L.; Overlan, M., C.; Pascanu, R.; Vinyals, O.; and Blundell, C. , (NeurIPS). 2020.
Pointer Graph Networks [pdf]Paper   Pointer Graph Networks [link]Website   link   bibtex   abstract  
Improving Graph Neural Network Expressivity via Subgraph Isomorphism Counting. Bouritsas, G.; Frasca, F.; Zafeiriou, S.; and Bronstein, M., M. ,1-29. 2020.
Improving Graph Neural Network Expressivity via Subgraph Isomorphism Counting [pdf]Paper   Improving Graph Neural Network Expressivity via Subgraph Isomorphism Counting [link]Website   link   bibtex   abstract  
Directional Graph Networks. Beaini, D.; Passaro, S.; Létourneau, V.; Hamilton, W., L.; Corso, G.; and Liò, P. . 2020.
Directional Graph Networks [pdf]Paper   Directional Graph Networks [link]Website   link   bibtex   abstract  
Solving Mixed Integer Programs Using Neural Networks. Nair, V.; Bartunov, S.; Gimeno, F.; von Glehn, I.; Lichocki, P.; Lobov, I.; O'Donoghue, B.; Sonnerat, N.; Tjandraatmadja, C.; Wang, P.; Addanki, R.; Hapuarachchi, T.; Keck, T.; Keeling, J.; Kohli, P.; Ktena, I.; Li, Y.; Vinyals, O.; and Zwols, Y. ,1-57. 2020.
Solving Mixed Integer Programs Using Neural Networks [pdf]Paper   Solving Mixed Integer Programs Using Neural Networks [link]Website   link   bibtex   abstract  
Batch Normalization Biases Residual Blocks Towards the Identity Function in Deep Networks. De, S.; and Smith, S., L. , (NeurIPS). 2020.
Batch Normalization Biases Residual Blocks Towards the Identity Function in Deep Networks [pdf]Paper   Batch Normalization Biases Residual Blocks Towards the Identity Function in Deep Networks [link]Website   link   bibtex   abstract  
Stabilizing transformers for reinforcement learning. Parisotto, E.; Song, H., F.; Rae, J., W.; Pascanu, R.; Gulcehre, C.; Jayakumar, S., M.; Jaderberg, M.; Kaufman, R., L.; Clark, A.; Noury, S.; Botvinick, M., M.; Heess, N.; and Hadsell, R. 37th International Conference on Machine Learning, ICML 2020, PartF16814: 7443-7454. 2020.
Stabilizing transformers for reinforcement learning [pdf]Paper   link   bibtex   abstract  
Loss landscapes and optimization in over-parameterized non-linear systems and neural networks. Liu, C.; Zhu, L.; and Belkin, M. ,1-31. 2020.
Loss landscapes and optimization in over-parameterized non-linear systems and neural networks [pdf]Paper   Loss landscapes and optimization in over-parameterized non-linear systems and neural networks [link]Website   link   bibtex   abstract  
Implicit Gradient Regularization. Barrett, D., G., T.; and Dherin, B. ,1-25. 2020.
Implicit Gradient Regularization [pdf]Paper   Implicit Gradient Regularization [link]Website   link   bibtex   abstract  
Machine Learning for Healthcare. Agrawal, R.; Chatterjee, J., M.; Kumar, A.; Rathore, P., S.; and Le, D. Machine Learning for Healthcare. 2020.
Machine Learning for Healthcare [pdf]Paper   doi   link   bibtex   abstract  
Introduction to Deep Learning. Wani, M., A.; Bhat, F., A.; Afzal, S.; and Khan, A., I. ,1-11. 2020.
Introduction to Deep Learning [pdf]Paper   doi   link   bibtex   abstract  
Exploring Self-attention for Image Recognition. Zhao, H.; Jia, J.; and Koltun, V. Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition,10073-10082. 4 2020.
Exploring Self-attention for Image Recognition [pdf]Paper   Exploring Self-attention for Image Recognition [link]Website   link   bibtex   abstract  
Spectral Graph Attention Network. Chang, H.; Rong, Y.; Xu, T.; Huang, W.; Sojoudi, S.; Huang, J.; and Zhu, W. Volume 1 Association for Computing Machinery, 2020.
Spectral Graph Attention Network [pdf]Paper   Spectral Graph Attention Network [link]Website   link   bibtex   abstract  
A Hierarchical Graph Network for 3D Object Detection on Point Clouds. Chen, J.; Lei, B.; Song, Q.; Ying, H.; Chen, D., Z.; and Wu, J. Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition,389-398. 2020.
A Hierarchical Graph Network for 3D Object Detection on Point Clouds [pdf]Paper   doi   link   bibtex   abstract  
Deep Learning for 3D Point Clouds: A Survey. Guo, Y.; Wang, H.; Hu, Q.; Liu, H.; Liu, L.; and Bennamoun, M. IEEE Transactions on Pattern Analysis and Machine Intelligence, 8828(c): 1-1. 2020.
Deep Learning for 3D Point Clouds: A Survey [pdf]Paper   doi   link   bibtex   abstract  
FGCN: Deep feature-based graph convolutional network for semantic segmentation of urban 3D point clouds. Ali Khan, S.; Shi, Y.; Shahzad, M.; and Xiang Zhu, X. IEEE Computer Society Conference on Computer Vision and Pattern Recognition Workshops, 2020-June: 778-787. 2020.
FGCN: Deep feature-based graph convolutional network for semantic segmentation of urban 3D point clouds [pdf]Paper   doi   link   bibtex   abstract  
Directed Graph Convolutional Network. Tong, Z.; Liang, Y.; Sun, C.; Rosenblum, D., S.; and Lim, A. . 2020.
Directed Graph Convolutional Network [pdf]Paper   Directed Graph Convolutional Network [link]Website   link   bibtex   abstract  
Scalable Graph Convolutional Networks with Fast Localized Spectral Filter for Directed Graphs. Li, C.; Qin, X.; Xu, X.; Yang, D.; and Wei, G. IEEE Access, 8: 105634-105644. 2020.
Scalable Graph Convolutional Networks with Fast Localized Spectral Filter for Directed Graphs [pdf]Paper   doi   link   bibtex   abstract  
Point clouds learning with attention-based graph convolution networks. Xie, Z.; Chen, J.; and Peng, B. Neurocomputing, 402: 245-255. 2020.
Point clouds learning with attention-based graph convolution networks [pdf]Paper   Point clouds learning with attention-based graph convolution networks [link]Website   doi   link   bibtex   abstract  
Building extraction from airborne multi-spectral LiDAR point clouds based on graph geometric moments convolutional neural networks. Li, D.; Shen, X.; Yu, Y.; Guan, H.; Li, J.; Zhang, G.; and Li, D. Remote Sensing, 12(19): 1-24. 2020.
Building extraction from airborne multi-spectral LiDAR point clouds based on graph geometric moments convolutional neural networks [pdf]Paper   doi   link   bibtex   abstract  
Spherical Kernel for Efficient Graph Convolution on 3D Point Clouds. Lei, H.; Akhtar, N.; and Mian, A. IEEE Transactions on Pattern Analysis and Machine Intelligence, X(X): 1-1. 2020.
Spherical Kernel for Efficient Graph Convolution on 3D Point Clouds [pdf]Paper   doi   link   bibtex   abstract  
Graph neural networks: A review of methods and applications. Zhou, J.; Cui, G.; Hu, S.; Zhang, Z.; Yang, C.; Liu, Z.; Wang, L.; Li, C.; and Sun, M. AI Open, 1(September 2020): 57-81. 2020.
Graph neural networks: A review of methods and applications [pdf]Paper   Graph neural networks: A review of methods and applications [link]Website   doi   link   bibtex   abstract  
An Experimental Study of the Transferability of Spectral Graph Networks. Nilsson, A.; and Bresson, X. . 2020.
An Experimental Study of the Transferability of Spectral Graph Networks [pdf]Paper   An Experimental Study of the Transferability of Spectral Graph Networks [link]Website   link   bibtex   abstract  
Benchmarking Graph Neural Networks. Dwivedi, V., P.; Joshi, C., K.; Laurent, T.; Bengio, Y.; and Bresson, X. . 2020.
Benchmarking Graph Neural Networks [pdf]Paper   Benchmarking Graph Neural Networks [link]Website   link   bibtex   abstract  
How Neural Networks Extrapolate: From Feedforward to Graph Neural Networks. Xu, K.; Zhang, M.; Li, J.; Du, S., S.; Kawarabayashi, K.; and Jegelka, S. . 2020.
How Neural Networks Extrapolate: From Feedforward to Graph Neural Networks [pdf]Paper   How Neural Networks Extrapolate: From Feedforward to Graph Neural Networks [link]Website   link   bibtex   abstract  
Generalization and representational limits of graph neural networks. Garg, V., K.; Jegelka, S.; and Jaakkola, T. 37th International Conference on Machine Learning, ICML 2020, PartF16814: 3377-3388. 2020.
Generalization and representational limits of graph neural networks [pdf]Paper   link   bibtex   abstract  
Towards Deeper Graph Neural Networks. Liu, M.; Gao, H.; and Ji, S. Proceedings of the ACM SIGKDD International Conference on Knowledge Discovery and Data Mining,338-348. 2020.
Towards Deeper Graph Neural Networks [pdf]Paper   doi   link   bibtex   abstract  
SuperGlue: Learning Feature Matching with Graph Neural Networks. Sarlin, P., E.; Detone, D.; Malisiewicz, T.; and Rabinovich, A. Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition,4937-4946. 2020.
SuperGlue: Learning Feature Matching with Graph Neural Networks [pdf]Paper   doi   link   bibtex   abstract  
Point-GNN: Graph neural network for 3D object detection in a point cloud. Shi, W.; and Rajkumar, R. Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition,1708-1716. 2020.
Point-GNN: Graph neural network for 3D object detection in a point cloud [pdf]Paper   doi   link   bibtex   abstract  
MEasuring and I Mproving the U Se of G Raph. The, M.; and Of, S., E. , (2018): 1-15. 2020.
MEasuring and I Mproving the U Se of G Raph [pdf]Paper   link   bibtex  
Exploring Self-attention for Image Recognition. Zhao, H.; Jia, J.; and Koltun, V. Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition,10073-10082. 4 2020.
Exploring Self-attention for Image Recognition [pdf]Paper   Exploring Self-attention for Image Recognition [link]Website   link   bibtex   abstract  
Exploring Self-attention for Image Recognition. Zhao, H.; Jia, J.; and Koltun, V. Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition,10073-10082. 4 2020.
Exploring Self-attention for Image Recognition [pdf]Paper   Exploring Self-attention for Image Recognition [link]Website   link   bibtex   abstract  
Exploring Self-attention for Image Recognition. Zhao, H.; Jia, J.; and Koltun, V. Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition,10073-10082. 4 2020.
Exploring Self-attention for Image Recognition [pdf]Paper   Exploring Self-attention for Image Recognition [link]Website   link   bibtex   abstract  
A Survey on Visual Transformer. Han, K.; Wang, Y.; Chen, H.; Chen, X.; Guo, J.; Liu, Z.; Tang, Y.; Xiao, A.; Xu, C.; Xu, Y.; Yang, Z.; Zhang, Y.; and Tao, D. . 12 2020.
A Survey on Visual Transformer [pdf]Paper   A Survey on Visual Transformer [link]Website   link   bibtex   abstract  
Taming Transformers for High-Resolution Image Synthesis. Esser, P.; Rombach, R.; and Ommer, B. . 12 2020.
Taming Transformers for High-Resolution Image Synthesis [pdf]Paper   Taming Transformers for High-Resolution Image Synthesis [link]Website   link   bibtex   abstract  
Generative Pretraining From Pixels. Chen, M.; Radford, A.; Child, R.; Wu, J.; Jun, H.; Luan, D.; and Sutskever, I. 11 2020.
Generative Pretraining From Pixels [pdf]Paper   Generative Pretraining From Pixels [link]Website   link   bibtex   abstract  
3D Object Detection with Pointformer. Pan, X.; Xia, Z.; Song, S.; Li, L., E.; and Huang, G. . 12 2020.
3D Object Detection with Pointformer [pdf]Paper   3D Object Detection with Pointformer [link]Website   link   bibtex   abstract  
Deep Learning on Graphs: A Survey. Zhang, Z.; Cui, P.; and Zhu, W. IEEE Transactions on Knowledge and Data Engineering, 14(8): 1-1. 2020.
Deep Learning on Graphs: A Survey [pdf]Paper   doi   link   bibtex   abstract  
An Image is Worth 16x16 Words: Transformers for Image Recognition at Scale. Dosovitskiy, A.; Beyer, L.; Kolesnikov, A.; Weissenborn, D.; Zhai, X.; Unterthiner, T.; Dehghani, M.; Minderer, M.; Heigold, G.; Gelly, S.; Uszkoreit, J.; and Houlsby, N. . 10 2020.
An Image is Worth 16x16 Words: Transformers for Image Recognition at Scale [pdf]Paper   An Image is Worth 16x16 Words: Transformers for Image Recognition at Scale [link]Website   link   bibtex   abstract  
Training data-efficient image transformers & distillation through attention. Touvron, H.; Cord, M.; Douze, M.; Massa, F.; Sablayrolles, A.; and Jégou, H. . 12 2020.
Training data-efficient image transformers & distillation through attention [pdf]Paper   Training data-efficient image transformers & distillation through attention [link]Website   link   bibtex   abstract  
Exploring Self-attention for Image Recognition. Zhao, H.; Jia, J.; and Koltun, V. Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition,10073-10082. 4 2020.
Exploring Self-attention for Image Recognition [pdf]Paper   Exploring Self-attention for Image Recognition [link]Website   link   bibtex   abstract  
Grid-GCN for fast and scalable point cloud learning. Xu, Q.; Sun, X.; Wu, C., Y.; Wang, P.; and Neumann, U. Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition,5660-5669. 2020.
Grid-GCN for fast and scalable point cloud learning [pdf]Paper   doi   link   bibtex   abstract  
A Closer Look at Local Aggregation Operators in Point Cloud Analysis. Liu, Z.; Hu, H.; Cao, Y.; Zhang, Z.; and Tong, X. Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), 12368 LNCS: 326-342. 2020.
A Closer Look at Local Aggregation Operators in Point Cloud Analysis [pdf]Paper   doi   link   bibtex   abstract  
Transformers are RNNs: Fast Autoregressive Transformers with Linear Attention. Katharopoulos, A.; Vyas, A.; Pappas, N.; and Fleuret, F. 37th International Conference on Machine Learning, ICML 2020, PartF168147-7: 5112-5121. 6 2020.
Transformers are RNNs: Fast Autoregressive Transformers with Linear Attention [pdf]Paper   Transformers are RNNs: Fast Autoregressive Transformers with Linear Attention [link]Website   link   bibtex   abstract  
Rethinking Attention with Performers. Choromanski, K.; Likhosherstov, V.; Dohan, D.; Song, X.; Gane, A.; Sarlos, T.; Hawkins, P.; Davis, J.; Mohiuddin, A.; Kaiser, L.; Belanger, D.; Colwell, L.; and Weller, A. . 9 2020.
Rethinking Attention with Performers [pdf]Paper   Rethinking Attention with Performers [link]Website   link   bibtex   abstract  
Big Bird: Transformers for Longer Sequences. Zaheer, M.; Guruganesh, G.; Dubey, A.; Ainslie, J.; Alberti, C.; Ontanon, S.; Pham, P.; Ravula, A.; Wang, Q.; Yang, L.; and Ahmed, A. Advances in Neural Information Processing Systems, 2020-December. 7 2020.
Big Bird: Transformers for Longer Sequences [pdf]Paper   Big Bird: Transformers for Longer Sequences [link]Website   link   bibtex   abstract  
Linformer: Self-Attention with Linear Complexity. Wang, S.; Li, B., Z.; Khabsa, M.; Fang, H.; and Ma, H. . 6 2020.
Linformer: Self-Attention with Linear Complexity [pdf]Paper   Linformer: Self-Attention with Linear Complexity [link]Website   link   bibtex   abstract  
Spherical Kernel for Efficient Graph Convolution on 3D Point Clouds. Lei, H.; Akhtar, N.; and Mian, A. IEEE Transactions on Pattern Analysis and Machine Intelligence, 43(10): 3664-3680. 2020.
Spherical Kernel for Efficient Graph Convolution on 3D Point Clouds [pdf]Paper   doi   link   bibtex   abstract  
Sparse Sinkhorn Attention. Tay, Y.; Bahri, D.; Yang, L.; Metzler, D.; and Juan, D. 37th International Conference on Machine Learning, ICML 2020, PartF168147-13: 9380-9389. 2 2020.
Sparse Sinkhorn Attention [pdf]Paper   Sparse Sinkhorn Attention [link]Website   link   bibtex   abstract  
A Long Horizon Planning Framework for Manipulating Rigid Pointcloud Objects. Simeonov, A.; Du, Y.; Kim, B.; Hogan, F., R.; Tenenbaum, J.; Agrawal, P.; and Rodriguez, A. , (CoRL): 1-20. 2020.
A Long Horizon Planning Framework for Manipulating Rigid Pointcloud Objects [pdf]Paper   A Long Horizon Planning Framework for Manipulating Rigid Pointcloud Objects [link]Website   link   bibtex   abstract  
Cross-regional attention network for point cloud completion. Wu, H.; and Miao, Y. Proceedings - International Conference on Pattern Recognition,885-892. 2020.
Cross-regional attention network for point cloud completion [pdf]Paper   doi   link   bibtex   abstract  
Exploring Deep 3D Spatial Encodings for Large-Scale 3D Scene Understanding. Khan, S., A.; Shi, Y.; Shahzad, M.; and Zhu, X., X. , (October): 1-5. 2020.
Exploring Deep 3D Spatial Encodings for Large-Scale 3D Scene Understanding [pdf]Paper   Exploring Deep 3D Spatial Encodings for Large-Scale 3D Scene Understanding [link]Website   link   bibtex   abstract  
3D hand pose estimation with disentangled cross-modal latent space. Gu, J.; Wang, Z.; Ouyang, W.; Zhang, W.; Li, J.; and Zhuo, L. Proceedings - 2020 IEEE Winter Conference on Applications of Computer Vision, WACV 2020,380-389. 2020.
3D hand pose estimation with disentangled cross-modal latent space [pdf]Paper   doi   link   bibtex   abstract  
Learning to dress 3D people in generative clothing. Ma, Q.; Yang, J.; Ranjan, A.; Pujades, S.; Pons-Moll, G.; Tang, S.; and Black, M., J. Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition,6468-6477. 2020.
Learning to dress 3D people in generative clothing [pdf]Paper   doi   link   bibtex   abstract  
Private-Shared Disentangled Multimodal VAE for Learning of Hybrid Latent Representations. Lee, M.; and Pavlovic, V. . 2020.
Private-Shared Disentangled Multimodal VAE for Learning of Hybrid Latent Representations [pdf]Paper   Private-Shared Disentangled Multimodal VAE for Learning of Hybrid Latent Representations [link]Website   doi   link   bibtex   abstract  
Quantifying the Generative Capabilities of Variational Autoencoders for 3D Car Point Clouds. Saha, S.; Menzel, S.; Minku, L., L.; Yao, X.; Sendhoff, B.; and Wollstadt, P. 2020 IEEE Symposium Series on Computational Intelligence, SSCI 2020,1469-1477. 2020.
Quantifying the Generative Capabilities of Variational Autoencoders for 3D Car Point Clouds [pdf]Paper   doi   link   bibtex   abstract  
Mesh variational autoencoders with edge contraction pooling. Yuan, Y., J.; Lai, Y., K.; Yang, J.; Duan, Q.; Fu, H.; and Gao, L. IEEE Computer Society Conference on Computer Vision and Pattern Recognition Workshops, 2020-June: 1105-1112. 2020.
Mesh variational autoencoders with edge contraction pooling [pdf]Paper   doi   link   bibtex   abstract  
End-to-End Human Pose and Mesh Reconstruction with Transformers. Lin, K.; Wang, L.; and Liu, Z. ,1954-1963. 2020.
End-to-End Human Pose and Mesh Reconstruction with Transformers [pdf]Paper   End-to-End Human Pose and Mesh Reconstruction with Transformers [link]Website   link   bibtex   abstract  
Statistically Consistent Saliency Estimation. Anonymous authors ,745-753. 2020.
Statistically Consistent Saliency Estimation [pdf]Paper   link   bibtex   abstract  
MVTN: Multi-View Transformation Network for 3D Shape Recognition. Hamdi, A.; Giancola, S.; and Ghanem, B. ,1-11. 2020.
MVTN: Multi-View Transformation Network for 3D Shape Recognition [pdf]Paper   MVTN: Multi-View Transformation Network for 3D Shape Recognition [link]Website   link   bibtex   abstract  
Point Transformer. Zhao, H.; Jiang, L.; Jia, J.; Torr, P.; and Koltun, V. . 2020.
Point Transformer [pdf]Paper   Point Transformer [link]Website   doi   link   bibtex   abstract  
Omni-GAN: On the Secrets of cGANs and Beyond. Zhou, P.; Xie, L.; Ni, B.; Geng, C.; and Tian, Q. ,14061-14071. 2020.
Omni-GAN: On the Secrets of cGANs and Beyond [pdf]Paper   Omni-GAN: On the Secrets of cGANs and Beyond [link]Website   link   bibtex   abstract  
Unsupervised Segmentation incorporating Shape Prior via Generative Adversarial Networks. Author, A.; and Address, A. , (NeurIPS): 7324-7334. 2020.
Unsupervised Segmentation incorporating Shape Prior via Generative Adversarial Networks [pdf]Paper   link   bibtex  
Minimal Adversarial Examples for Deep Learning on 3D Point Clouds. Kim, J.; Hua, B.; Nguyen, D., T.; and Yeung, S. ,7797-7806. 2020.
Minimal Adversarial Examples for Deep Learning on 3D Point Clouds [pdf]Paper   Minimal Adversarial Examples for Deep Learning on 3D Point Clouds [link]Website   link   bibtex   abstract  
Explaining Local, Global, And Higher-Order Interactions In Deep Learning. Lerman, S.; Xu, C.; Venuto, C.; and Kautz, H. ,1224-1233. 2020.
Explaining Local, Global, And Higher-Order Interactions In Deep Learning [pdf]Paper   Explaining Local, Global, And Higher-Order Interactions In Deep Learning [link]Website   link   bibtex   abstract  
Layout Generation and Completion with Self-attention. Gupta, K.; Achille, A.; Lazarow, J.; Davis, L.; Mahadevan, V.; and Shrivastava, A. ,1004-1014. 2020.
Layout Generation and Completion with Self-attention [pdf]Paper   Layout Generation and Completion with Self-attention [link]Website   link   bibtex   abstract  
FMODetect: Robust Detection and Trajectory Estimation of Fast Moving Objects. Rozumnyi, D.; Matas, J.; Sroubek, F.; Pollefeys, M.; and Oswald, M., R. ,3541-3549. 2020.
FMODetect: Robust Detection and Trajectory Estimation of Fast Moving Objects [pdf]Paper   FMODetect: Robust Detection and Trajectory Estimation of Fast Moving Objects [link]Website   link   bibtex   abstract  
Are we Missing Confidence in Pseudo-LiDAR Methods for Monocular 3D Object Detection?. Simonelli, A.; Bulò, S., R.; Porzi, L.; Kontschieder, P.; and Ricci, E. ,3225-3233. 2020.
Are we Missing Confidence in Pseudo-LiDAR Methods for Monocular 3D Object Detection? [pdf]Paper   Are we Missing Confidence in Pseudo-LiDAR Methods for Monocular 3D Object Detection? [link]Website   link   bibtex   abstract  
Generalized autoencoder for volumetric shape generation. Guan, Y.; Jahan, T.; and Van Kaick, O. IEEE Computer Society Conference on Computer Vision and Pattern Recognition Workshops, 2020-June: 1082-1088. 2020.
Generalized autoencoder for volumetric shape generation [pdf]Paper   doi   link   bibtex   abstract   1 download  
An Asynchronous Kalman Filter for Hybrid Event Cameras. Wang, Z.; Ng, Y.; Scheerlinck, C.; and Mahony, R. ,448-457. 2020.
An Asynchronous Kalman Filter for Hybrid Event Cameras [pdf]Paper   An Asynchronous Kalman Filter for Hybrid Event Cameras [link]Website   link   bibtex   abstract  
Dynamic Graph Warping Transformer for Video Alignment. Wang, J.; Long, Y.; Pagnucco, M.; and Song, Y. . 2020.
Dynamic Graph Warping Transformer for Video Alignment [pdf]Paper   link   bibtex   abstract  
DeeperGCN: All You Need to Train Deeper GCNs. Li, G.; Xiong, C.; Thabet, A.; and Ghanem, B. . 2020.
DeeperGCN: All You Need to Train Deeper GCNs [pdf]Paper   DeeperGCN: All You Need to Train Deeper GCNs [link]Website   link   bibtex   abstract  
G-TAD: Sub-graph localization for temporal action detection. Xu, M.; Zhao, C.; Rojas, D., S.; Thabet, A.; and Ghanem, B. Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition,10153-10162. 2020.
G-TAD: Sub-graph localization for temporal action detection [pdf]Paper   doi   link   bibtex   abstract  
VLG-Net: Video-Language Graph Matching Network for Video Grounding. Qu, S.; Soldan, M.; Xu, M.; Tegner, J.; and Ghanem, B. , (12): 3224-3234. 2020.
VLG-Net: Video-Language Graph Matching Network for Video Grounding [pdf]Paper   VLG-Net: Video-Language Graph Matching Network for Video Grounding [link]Website   link   bibtex   abstract  
SGAS: Sequential greedy architecture search. Li, G.; Qian, G.; Delgadillo, I., C.; Müller, M.; Thabet, A.; and Ghanem, B. Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition,1617-1627. 2020.
SGAS: Sequential greedy architecture search [pdf]Paper   doi   link   bibtex   abstract  
Uncertainty-Matching Graph Neural Networks to Defend Against Poisoning Attacks. Shanthamallu, U., S.; Thiagarajan, J., J.; and Spanias, A. . 2020.
Uncertainty-Matching Graph Neural Networks to Defend Against Poisoning Attacks [pdf]Paper   Uncertainty-Matching Graph Neural Networks to Defend Against Poisoning Attacks [link]Website   link   bibtex   abstract  
Model Extraction Attacks on Graph Neural Networks: Taxonomy and Realization. Wu, B.; Yang, X.; Pan, S.; and Yuan, X. Volume 1 Association for Computing Machinery, 2020.
Model Extraction Attacks on Graph Neural Networks: Taxonomy and Realization [pdf]Paper   Model Extraction Attacks on Graph Neural Networks: Taxonomy and Realization [link]Website   doi   link   bibtex   abstract  
Certified robustness of graph convolution networks for graph classification under topological attacks. Jin, H.; Shi, Z.; Peruri, A.; and Zhang, X. Advances in Neural Information Processing Systems, 2020-Decem(Section 5). 2020.
Certified robustness of graph convolution networks for graph classification under topological attacks [pdf]Paper   link   bibtex   abstract  
A restricted black-box adversarial framework towards attacking graph embedding models. Chang, H.; Rong, Y.; Xu, T.; Huang, W.; Zhang, H.; Cui, P.; Zhu, W.; and Huang, J. AAAI 2020 - 34th AAAI Conference on Artificial Intelligence,3389-3396. 2020.
A restricted black-box adversarial framework towards attacking graph embedding models [pdf]Paper   doi   link   bibtex   abstract  
Convolutional Networks with Adaptive Inference Graphs. Veit, A.; and Belongie, S. International Journal of Computer Vision, 128(3): 730-741. 2020.
Convolutional Networks with Adaptive Inference Graphs [pdf]Paper   doi   link   bibtex   abstract  
GNNGUARD: Defending graph neural networks against adversarial attacks. Zhang, X.; and Zitnik, M. Advances in Neural Information Processing Systems, 2020-Decem(NeurIPS). 2020.
GNNGUARD: Defending graph neural networks against adversarial attacks [pdf]Paper   link   bibtex   abstract  
Graph Structure Learning for Robust Graph Neural Networks. Jin, W.; Ma, Y.; Liu, X.; Tang, X.; Wang, S.; and Tang, J. Proceedings of the ACM SIGKDD International Conference on Knowledge Discovery and Data Mining,66-74. 2020.
Graph Structure Learning for Robust Graph Neural Networks [pdf]Paper   doi   link   bibtex   abstract  
Information Obfuscation of Graph Neural Networks. Liao, P.; Zhao, H.; Xu, K.; Jaakkola, T.; Gordon, G.; Jegelka, S.; and Salakhutdinov, R. . 2020.
Information Obfuscation of Graph Neural Networks [pdf]Paper   Information Obfuscation of Graph Neural Networks [link]Website   link   bibtex   abstract  
Adversarial Attacks on Graph Neural Networks via Node Injections: A Hierarchical Reinforcement Learning Approach. Sun, Y.; Wang, S.; Tang, X.; Hsieh, T., Y.; and Honavar, V. The Web Conference 2020 - Proceedings of the World Wide Web Conference, WWW 2020,673-683. 2020.
Adversarial Attacks on Graph Neural Networks via Node Injections: A Hierarchical Reinforcement Learning Approach [pdf]Paper   doi   link   bibtex   abstract  
Defending Graph Convolutional Networks Against Adversarial Attacks. Ioannidis, V., N.; and Giannakis, G., B. ICASSP, IEEE International Conference on Acoustics, Speech and Signal Processing - Proceedings, 2020-May: 8469-8473. 2020.
Defending Graph Convolutional Networks Against Adversarial Attacks [pdf]Paper   doi   link   bibtex   abstract  
Transferring robustness for graph neural network against poisoning attacks. Tang, X.; Li, Y.; Sun, Y.; Yao, H.; Mitra, P.; and Wang, S. WSDM 2020 - Proceedings of the 13th International Conference on Web Search and Data Mining,600-608. 2020.
Transferring robustness for graph neural network against poisoning attacks [pdf]Paper   doi   link   bibtex   abstract  
Adversarial Attacks on Graph Neural Networks: Perturbations and their Paterns. Zügner, D.; Borchert, O.; Akbarnejad, A.; and Günnemann, S. ACM Transactions on Knowledge Discovery from Data, 14(5). 2020.
Adversarial Attacks on Graph Neural Networks: Perturbations and their Paterns [pdf]Paper   doi   link   bibtex   abstract  
All you need is Low (rank): Defending against adversarial attacks on graphs. Entezari, N.; Al-Sayouri, S., A.; Darvishzadeh, A.; and Papalexakis, E., E. WSDM 2020 - Proceedings of the 13th International Conference on Web Search and Data Mining,169-177. 2020.
All you need is Low (rank): Defending against adversarial attacks on graphs [pdf]Paper   doi   link   bibtex   abstract  
Adversarial Attacks and Defenses on Graphs: A Review, A Tool and Empirical Studies. Jin, W.; Li, Y.; Xu, H.; Wang, Y.; Ji, S.; Aggarwal, C.; and Tang, J. . 2020.
Adversarial Attacks and Defenses on Graphs: A Review, A Tool and Empirical Studies [pdf]Paper   Adversarial Attacks and Defenses on Graphs: A Review, A Tool and Empirical Studies [link]Website   link   bibtex   abstract  
Towards more practical adversarial attacks on graph neural networks. Ma, J.; Ding, S.; and Mei, Q. Advances in Neural Information Processing Systems, 2020-Decem(NeurIPS). 2020.
Towards more practical adversarial attacks on graph neural networks [pdf]Paper   link   bibtex   abstract  
DeepRobust: A PyTorch Library for Adversarial Attacks and Defenses. Li, Y.; Jin, W.; Xu, H.; and Tang, J. ,1-19. 2020.
DeepRobust: A PyTorch Library for Adversarial Attacks and Defenses [pdf]Paper   DeepRobust: A PyTorch Library for Adversarial Attacks and Defenses [link]Website   link   bibtex   abstract  
A restricted black-box adversarial framework towards attacking graph embedding models. Chang, H.; Rong, Y.; Xu, T.; Huang, W.; Zhang, H.; Cui, P.; Zhu, W.; and Huang, J. AAAI 2020 - 34th AAAI Conference on Artificial Intelligence,3389-3396. 2020.
A restricted black-box adversarial framework towards attacking graph embedding models [pdf]Paper   doi   link   bibtex   abstract  
Exploratory adversarial attacks on graph neural networks. Lin, X.; Zhou, C.; Yang, H.; Wu, J.; Wang, H.; Cao, Y.; and Wang, B. Proceedings - IEEE International Conference on Data Mining, ICDM, 2020-Novem(Icdm): 1136-1141. 2020.
Exploratory adversarial attacks on graph neural networks [pdf]Paper   doi   link   bibtex   abstract  
DefenseVGAE: Defending against Adversarial Attacks on Graph Data via a Variational Graph Autoencoder. Zhang, A.; and Ma, J. . 2020.
DefenseVGAE: Defending against Adversarial Attacks on Graph Data via a Variational Graph Autoencoder [pdf]Paper   DefenseVGAE: Defending against Adversarial Attacks on Graph Data via a Variational Graph Autoencoder [link]Website   link   bibtex   abstract  
Graph Adversarial Attacks and Defense: An Empirical Study on Citation Graph. Pham, C.; Pham, V.; and Dang, T. Proceedings - 2020 IEEE International Conference on Big Data, Big Data 2020,2553-2562. 2020.
Graph Adversarial Attacks and Defense: An Empirical Study on Citation Graph [pdf]Paper   doi   link   bibtex   abstract  
Uncertainty-aware Attention Graph Neural Network for Defending Adversarial Attacks. Feng, B.; Wang, Y.; Wang, Z.; and Ding, Y. . 2020.
Uncertainty-aware Attention Graph Neural Network for Defending Adversarial Attacks [pdf]Paper   Uncertainty-aware Attention Graph Neural Network for Defending Adversarial Attacks [link]Website   link   bibtex   abstract  
Adversarial autoencoders for compact representations of 3D point clouds. Zamorski, M.; Zięba, M.; Klukowski, P.; Nowak, R.; Kurach, K.; Stokowiec, W.; and Trzciński, T. Computer Vision and Image Understanding, 193(January): 102921. 2020.
Adversarial autoencoders for compact representations of 3D point clouds [pdf]Paper   Adversarial autoencoders for compact representations of 3D point clouds [link]Website   doi   link   bibtex   abstract  
Learning geometry-image representation for 3D point cloud generation. Wang, L.; Huang, Y.; Tao, P.; Hou, Y.; and Liu, Y. . 2020.
Learning geometry-image representation for 3D point cloud generation [pdf]Paper   Learning geometry-image representation for 3D point cloud generation [link]Website   link   bibtex   abstract  
Feature Visualization for 3D Point Cloud Autoencoders. Rios, T.; Van Stein, B.; Menzel, S.; Back, T.; Sendhoff, B.; and Wollstadt, P. Proceedings of the International Joint Conference on Neural Networks. 2020.
Feature Visualization for 3D Point Cloud Autoencoders [pdf]Paper   doi   link   bibtex   abstract  
Understanding Spectral Graph Neural Network. Chen, X. . 2020.
Understanding Spectral Graph Neural Network [pdf]Paper   Understanding Spectral Graph Neural Network [link]Website   doi   link   bibtex   abstract  
Stability Properties of Graph Neural Networks. Gama, F.; Bruna, J.; and Ribeiro, A. IEEE Transactions on Signal Processing, 68: 5680-5695. 2020.
Stability Properties of Graph Neural Networks [pdf]Paper   doi   link   bibtex   abstract  
On the Stability of Polynomial Spectral Graph Filters. Kenlay, H.; Thanou, D.; and Dong, X. ICASSP, IEEE International Conference on Acoustics, Speech and Signal Processing - Proceedings, 2020-May: 5350-5354. 2020.
On the Stability of Polynomial Spectral Graph Filters [pdf]Paper   doi   link   bibtex   abstract  
On the Experimental Transferability of Spectral Graph Convolutional Networks. Thesis, M. , (June). 2020.
On the Experimental Transferability of Spectral Graph Convolutional Networks [pdf]Paper   link   bibtex  
Spatial-Spectral Smooth Graph Convolutional Network for Multispectral Point Cloud Classification. Wang, Q.; Zhang, X.; and Gu, Y. International Geoscience and Remote Sensing Symposium (IGARSS),1062-1065. 2020.
Spatial-Spectral Smooth Graph Convolutional Network for Multispectral Point Cloud Classification [pdf]Paper   doi   link   bibtex   abstract  
A survey of traditional and deep learning-based feature descriptors for high dimensional data in computer vision. Georgiou, T.; Liu, Y.; Chen, ·., W.; and Lew, ·., M. International Journal of Multimedia Information Retrieval, 9: 135-170. 2020.
A survey of traditional and deep learning-based feature descriptors for high dimensional data in computer vision [pdf]Paper   A survey of traditional and deep learning-based feature descriptors for high dimensional data in computer vision [link]Website   doi   link   bibtex   abstract  
Incorporating Handcrafted Features into Deep Learning for Point Cloud Classification. Hsu, P., H.; and Zhuang, Z., Y. Remote Sensing 2020, Vol. 12, Page 3713, 12(22): 3713. 11 2020.
Incorporating Handcrafted Features into Deep Learning for Point Cloud Classification [pdf]Paper   Incorporating Handcrafted Features into Deep Learning for Point Cloud Classification [link]Website   doi   link   bibtex   abstract  
D3Feat: Joint learning of dense detection and description of 3D local features. Bai, X.; Luo, Z.; Zhou, L.; Fu, H.; Quan, L.; and Tai, C., L. Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition,6358-6366. 2020.
D3Feat: Joint learning of dense detection and description of 3D local features [pdf]Paper   doi   link   bibtex   abstract  
Convolution in the cloud: Learning deformable kernels in 3D graph convolution networks for point cloud analysis. Lin, Z., H.; Huang, S., Y.; and Wang, Y., C., F. Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition,1797-1806. 2020.
Convolution in the cloud: Learning deformable kernels in 3D graph convolution networks for point cloud analysis [pdf]Paper   doi   link   bibtex   abstract  
Convolution in the cloud: Learning deformable kernels in 3D graph convolution networks for point cloud analysis. Lin, Z., H.; Huang, S., Y.; and Wang, Y., C., F. Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, 1(c): 1797-1806. 2020.
Convolution in the cloud: Learning deformable kernels in 3D graph convolution networks for point cloud analysis [pdf]Paper   doi   link   bibtex   abstract  
Graphite: Graph-Induced Feature Extraction for Point Cloud Registration. Saleh, M.; Dehghani, S.; Busam, B.; Navab, N.; and Tombari, F. Proceedings - 2020 International Conference on 3D Vision, 3DV 2020,241-251. 2020.
Graphite: Graph-Induced Feature Extraction for Point Cloud Registration [pdf]Paper   doi   link   bibtex   abstract  
PC-Net: A deep network for 3D point clouds analysis. Chen, Z.; Guan, T.; Luo, Y.; Wang, Y.; Luo, K.; and Xu, L. Proceedings - International Conference on Pattern Recognition,465-472. 2020.
PC-Net: A deep network for 3D point clouds analysis [pdf]Paper   doi   link   bibtex   abstract  
A Dynamic Reduction Network for Point Clouds. Gray, L.; Klijnsma, T.; and Ghosh, S. ,2-5. 2020.
A Dynamic Reduction Network for Point Clouds [pdf]Paper   A Dynamic Reduction Network for Point Clouds [link]Website   link   bibtex   abstract  
Polarnet: An improved grid representation for online Lidar point clouds semantic segmentation. Zhang, Y.; Zhou, Z.; David, P.; Yue, X.; Xi, Z.; Gong, B.; and Foroosh, H. Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition,9598-9607. 2020.
Polarnet: An improved grid representation for online Lidar point clouds semantic segmentation [pdf]Paper   doi   link   bibtex   abstract  
Mesorasi: Architecture support for point cloud analytics via delayed-aggregation. Feng, Y.; Tian, B.; Xu, T.; Whatmough, P.; and Zhu, Y. Proceedings of the Annual International Symposium on Microarchitecture, MICRO, 2020-Octob: 1037-1050. 2020.
Mesorasi: Architecture support for point cloud analytics via delayed-aggregation [pdf]Paper   doi   link   bibtex   abstract  
Multi-Scale Dynamic Graph Convolution Network for Point Clouds Classification. Zhai, Z.; Zhang, X.; and Yao, L. IEEE Access, 8: 65591-65598. 2020.
Multi-Scale Dynamic Graph Convolution Network for Point Clouds Classification [pdf]Paper   doi   link   bibtex   abstract  
Unsupervised semantic and instance segmentation of forest point clouds. Wang, D. ISPRS Journal of Photogrammetry and Remote Sensing, 165(April): 86-97. 2020.
Unsupervised semantic and instance segmentation of forest point clouds [pdf]Paper   Unsupervised semantic and instance segmentation of forest point clouds [link]Website   doi   link   bibtex   abstract  
Linking Points With Labels in 3D. Xie, Y.; Tian, J.; and Zhu, X., X. IEEE Geoscience and Remote Sensing Magazine, (March). 2020.
Linking Points With Labels in 3D [pdf]Paper   link   bibtex  
Variational Autoencoder for 3D Voxel Compression. Liu, J.; Mills, S.; and McCane, B. International Conference Image and Vision Computing New Zealand, 2020-Novem: 3-8. 2020.
Variational Autoencoder for 3D Voxel Compression [pdf]Paper   doi   link   bibtex   abstract  
Semantic labeling and instance segmentation of 3d point clouds using patch context analysis and multiscale processing. Hu, S., M.; Cai, J., X.; and Lai, Y., K. IEEE Transactions on Visualization and Computer Graphics, 26(7): 2485-2498. 2020.
Semantic labeling and instance segmentation of 3d point clouds using patch context analysis and multiscale processing [pdf]Paper   doi   link   bibtex   abstract  
PGCNet: patch graph convolutional network for point cloud segmentation of indoor scenes. Sun, Y.; Miao, Y.; Chen, J.; and Pajarola, R. Visual Computer, 36(10-12): 2407-2418. 2020.
PGCNet: patch graph convolutional network for point cloud segmentation of indoor scenes [pdf]Paper   PGCNet: patch graph convolutional network for point cloud segmentation of indoor scenes [link]Website   doi   link   bibtex   abstract  
ImVoteNet: Boosting 3D Object Detection in Point Clouds with Image Votes. Qi, C., R.; Chen, X.; Litany, O.; and Guibas, L., J. Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition,4403-4412. 2020.
ImVoteNet: Boosting 3D Object Detection in Point Clouds with Image Votes [pdf]Paper   doi   link   bibtex   abstract  
Multi-Modal Anomaly Detection for Unstructured and Uncertain Environments. Ji, T.; Vuppala, S., T.; Chowdhary, G.; and Driggs-Campbell, K. , (CoRL). 2020.
Multi-Modal Anomaly Detection for Unstructured and Uncertain Environments [pdf]Paper   Multi-Modal Anomaly Detection for Unstructured and Uncertain Environments [link]Website   link   bibtex   abstract  
Two-Stage Relation Constraint for Semantic Segmentation of Point Clouds. Yu, M.; Liu, J.; Ni, B.; and Li, C. Proceedings - 2020 International Conference on 3D Vision, 3DV 2020,271-280. 2020.
Two-Stage Relation Constraint for Semantic Segmentation of Point Clouds [pdf]Paper   doi   link   bibtex   abstract  
NVAE: A deep hierarchical variational autoencoder. Vahdat, A.; and Kautz, J. Advances in Neural Information Processing Systems, 2020-Decem(NeurIPS): 1-21. 2020.
NVAE: A deep hierarchical variational autoencoder [pdf]Paper   link   bibtex   abstract  
Self-Supervised Out-of-Distribution Detection in Brain CT Scans. Venkatakrishnan, A., R.; Kim, S., T.; Eisawy, R.; Pfister, F.; and Navab, N. arXiv:2011.05428 [cs, eess]. 11 2020.
Self-Supervised Out-of-Distribution Detection in Brain CT Scans [pdf]Paper   Self-Supervised Out-of-Distribution Detection in Brain CT Scans [link]Website   link   bibtex   abstract  
Green AI. Schwartz, R.; Dodge, J.; Smith, N., A.; and Etzioni, O. Communications of the ACM, 63(12): 54-63. 11 2020.
Green AI [pdf]Paper   Green AI [link]Website   doi   link   bibtex   abstract  
Összehasonlítás a 2D-s és 3D-s tárgyfelismerő technikák között a robot navigációban: Comparison between 2D and 3D Object Recognition Techniques for Mobile Robot Navigation. Szilárd, M.; and Levente, T. Energetika-Elektrotechnika – Számítástechnika és Oktatás Multi-konferencia,137-141. 10 2020.
Összehasonlítás a 2D-s és 3D-s tárgyfelismerő technikák között a robot navigációban: Comparison between 2D and 3D Object Recognition Techniques for Mobile Robot Navigation [pdf]Paper   Összehasonlítás a 2D-s és 3D-s tárgyfelismerő technikák között a robot navigációban: Comparison between 2D and 3D Object Recognition Techniques for Mobile Robot Navigation [link]Website   link   bibtex   abstract  
From Variational to Deterministic Autoencoders. Ghosh, P.; Sajjadi, M., S., M.; Vergari, A.; Black, M.; and Schölkopf, B. arXiv:1903.12436 [cs, stat]. 5 2020.
From Variational to Deterministic Autoencoders [pdf]Paper   From Variational to Deterministic Autoencoders [link]Website   link   bibtex   abstract  
Variational Autoencoder for 3D Voxel Compression. Liu, J.; Mills, S.; and McCane, B. In 2020 35th International Conference on Image and Vision Computing New Zealand (IVCNZ), pages 1-6, 11 2020.
Variational Autoencoder for 3D Voxel Compression [pdf]Paper   doi   link   bibtex   abstract  
Semantic segmentation of point clouds of building interiors with deep learning: Augmenting training datasets with synthetic BIM-based point clouds. Ma, J., W.; Czerniawski, T.; and Leite, F. Automation in Construction, 113: 103144. 5 2020.
Semantic segmentation of point clouds of building interiors with deep learning: Augmenting training datasets with synthetic BIM-based point clouds [pdf]Paper   Semantic segmentation of point clouds of building interiors with deep learning: Augmenting training datasets with synthetic BIM-based point clouds [link]Website   doi   link   bibtex   abstract  
Quantifying The Generative Capabilities Of Variational Autoencoders For 3D Car Point Clouds. Saha, S.; Menzel, S.; Minku, L., L.; Yao, X.; Sendhoff, B.; and Wollstadt, P. In 2020 IEEE Symposium Series on Computational Intelligence (SSCI), pages 1469-1477, 12 2020.
Quantifying The Generative Capabilities Of Variational Autoencoders For 3D Car Point Clouds [pdf]Paper   doi   link   bibtex   abstract  
NTU RGB+D 120: A Large-Scale Benchmark for 3D Human Activity Understanding. Liu, J.; Shahroudy, A.; Perez, M.; Wang, G.; Duan, L.; and Kot, A., C. IEEE Transactions on Pattern Analysis and Machine Intelligence, 42(10): 2684-2701. 10 2020.
NTU RGB+D 120: A Large-Scale Benchmark for 3D Human Activity Understanding [pdf]Paper   doi   link   bibtex   abstract  
NeRF: Representing Scenes as Neural Radiance Fields for View Synthesis. Mildenhall, B.; Srinivasan, P., P.; Tancik, M.; Barron, J., T.; Ramamoorthi, R.; and Ng, R. In Vedaldi, A.; Bischof, H.; Brox, T.; and Frahm, J., editor(s), Computer Vision – ECCV 2020, of Lecture Notes in Computer Science, pages 405-421, 2020. Springer International Publishing
NeRF: Representing Scenes as Neural Radiance Fields for View Synthesis [pdf]Paper   doi   link   bibtex   abstract  
MRGAN: Multi-Rooted 3D Shape Generation with Unsupervised Part Disentanglement. Gal, R.; Bermano, A.; Zhang, H.; and Cohen-Or, D. arXiv:2007.12944 [cs]. 7 2020.
MRGAN: Multi-Rooted 3D Shape Generation with Unsupervised Part Disentanglement [pdf]Paper   MRGAN: Multi-Rooted 3D Shape Generation with Unsupervised Part Disentanglement [link]Website   link   bibtex   abstract  
Adversarial Discriminative Attention for Robust Anomaly Detection. Kimura, D.; Chaudhury, S.; Narita, M.; Munawar, A.; and Tachibana, R. In pages 2172-2181, 2020.
Adversarial Discriminative Attention for Robust Anomaly Detection [pdf]Paper   Adversarial Discriminative Attention for Robust Anomaly Detection [link]Website   link   bibtex  
Balancing Reconstruction Error and Kullback-Leibler Divergence in Variational Autoencoders. Asperti, A.; and Trentin, M. IEEE Access, 8: 199440-199448. 2020.
Balancing Reconstruction Error and Kullback-Leibler Divergence in Variational Autoencoders [pdf]Paper   doi   link   bibtex   abstract  
Regularized Autoencoders via Relaxed Injective Probability Flow. Kumar, A.; Poole, B.; and Murphy, K. In Proceedings of the Twenty Third International Conference on Artificial Intelligence and Statistics, pages 4292-4301, 6 2020. PMLR
Regularized Autoencoders via Relaxed Injective Probability Flow [pdf]Paper   Regularized Autoencoders via Relaxed Injective Probability Flow [link]Website   link   bibtex   abstract  
Action2Motion: Conditioned Generation of 3D Human Motions. Guo, C.; Zuo, X.; Wang, S.; Zou, S.; Sun, Q.; Deng, A.; Gong, M.; and Cheng, L. Proceedings of the 28th ACM International Conference on Multimedia, pages 2021-2029. Association for Computing Machinery, 10 2020.
Proceedings of the 28th ACM International Conference on Multimedia [pdf]Paper   Proceedings of the 28th ACM International Conference on Multimedia [link]Website   link   bibtex   abstract  
VIBE: Video Inference for Human Body Pose and Shape Estimation. Kocabas, M.; Athanasiou, N.; and Black, M., J. In pages 5253-5263, 2020.
VIBE: Video Inference for Human Body Pose and Shape Estimation [pdf]Paper   VIBE: Video Inference for Human Body Pose and Shape Estimation [link]Website   link   bibtex  
History Repeats Itself: Human Motion Prediction via Motion Attention. Mao, W.; Liu, M.; and Salzmann, M. In Vedaldi, A.; Bischof, H.; Brox, T.; and Frahm, J., editor(s), Computer Vision – ECCV 2020, of Lecture Notes in Computer Science, pages 474-489, 2020. Springer International Publishing
History Repeats Itself: Human Motion Prediction via Motion Attention [pdf]Paper   doi   link   bibtex   abstract  
A Comprehensive Study of Autoencoders' Applications Related to Images. Kovenko, V.; and Bogach, I. In IT\&I Workshops, 2020.
link   bibtex   abstract  
SurVAE Flows: Surjections to Bridge the Gap between VAEs and Flows. Nielsen, D.; Jaini, P.; Hoogeboom, E.; Winther, O.; and Welling, M. arXiv:2007.02731 [cs, stat]. 10 2020.
SurVAE Flows: Surjections to Bridge the Gap between VAEs and Flows [pdf]Paper   SurVAE Flows: Surjections to Bridge the Gap between VAEs and Flows [link]Website   link   bibtex   abstract  
Skeleton-aware networks for deep motion retargeting. Aberman, K.; Li, P.; Lischinski, D.; Sorkine-Hornung, O.; Cohen-Or, D.; and Chen, B. ACM Transactions on Graphics, 39(4): 62:62:1--62:62:14. 7 2020.
Skeleton-aware networks for deep motion retargeting [pdf]Paper   Skeleton-aware networks for deep motion retargeting [link]Website   doi   link   bibtex   abstract  
S2DNet: Learning Accurate Correspondences for Sparse-to-Dense Feature Matching. Germain, H.; Bourmaud, G.; and Lepetit, V. arXiv:2004.01673 [cs]. 4 2020.
S2DNet: Learning Accurate Correspondences for Sparse-to-Dense Feature Matching [pdf]Paper   S2DNet: Learning Accurate Correspondences for Sparse-to-Dense Feature Matching [link]Website   link   bibtex   abstract  
Learning to Reconstruct and Segment 3D Objects. Yang, B. . 2020.
Learning to Reconstruct and Segment 3D Objects [pdf]Paper   link   bibtex  
PointCutMix : Regularization Strategy for Point Cloud Classification. Zhang, J.; Chen, L.; Ouyang, B.; Liu, B.; Zhu, J.; Chen, Y.; and Meng, Y. . 2020.
PointCutMix : Regularization Strategy for Point Cloud Classification [pdf]Paper   link   bibtex  
Online LiDAR-SLAM for Legged Robots with Robust Registration and Deep-Learned Loop Closure. Ramezani, M.; Tinchev, G.; Iuganov, E.; and Fallon, M. Proceedings - IEEE International Conference on Robotics and Automation,4158-4164. 1 2020.
Online LiDAR-SLAM for Legged Robots with Robust Registration and Deep-Learned Loop Closure [pdf]Paper   Online LiDAR-SLAM for Legged Robots with Robust Registration and Deep-Learned Loop Closure [link]Website   doi   link   bibtex   abstract  
ENDOWING DEEP 3D MODELS WITH ROTATION INVARIANCE BASED ON PRINCIPAL COMPONENT ANALYSIS School of Data and Computer Science , Sun Yat-sen University , Guangzhou , China. . 2020.
ENDOWING DEEP 3D MODELS WITH ROTATION INVARIANCE BASED ON PRINCIPAL COMPONENT ANALYSIS School of Data and Computer Science , Sun Yat-sen University , Guangzhou , China [pdf]Paper   link   bibtex  
Rotation-invariant local-to-global representation learning for 3D point cloud. Kim, S.; Park, J.; and Han, B. Advances in Neural Information Processing Systems, 2020-Decem(NeurIPS). 2020.
Rotation-invariant local-to-global representation learning for 3D point cloud [pdf]Paper   link   bibtex   abstract  
Learning 3D semantic scene graphs from 3D indoor reconstructions. Wald, J.; Dhamo, H.; Navab, N.; and Tombari, F. Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition,3960-3969. 2020.
Learning 3D semantic scene graphs from 3D indoor reconstructions [pdf]Paper   doi   link   bibtex   abstract  
Learning to segment 3D point clouds in 2D image space. Lyu, Y.; Huang, X.; and Zhang, Z. Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition,12252-12261. 2020.
Learning to segment 3D point clouds in 2D image space [pdf]Paper   doi   link   bibtex   abstract  
Spectral-GANs for High-Resolution 3D Point-cloud Generation. Ramasinghe, S.; Khan, S.; Barnes, N.; and Gould, S. ,8169-8176. 2020.
Spectral-GANs for High-Resolution 3D Point-cloud Generation [pdf]Paper   link   bibtex  
Point Cloud Denoising via Feature Graph Laplacian Regularization. Dinesh, C.; Member, S.; Cheung, G.; Member, S.; and Baji, I., V. , 29: 4143-4158. 2020.
Point Cloud Denoising via Feature Graph Laplacian Regularization [pdf]Paper   link   bibtex  
Computing the Testing Error without a Testing Set. Corneanu, C., A.; Escalera, S.; and Martinez, A., M. Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition,2674-2682. 2020.
Computing the Testing Error without a Testing Set [pdf]Paper   doi   link   bibtex   abstract  
Supervised learning of the next-best-view for 3d object reconstruction. Mendoza, M.; Vasquez-Gomez, J., I.; Taud, H.; Sucar, L., E.; and Reta, C. Pattern Recognition Letters, 133: 224-231. 2020.
Supervised learning of the next-best-view for 3d object reconstruction [pdf]Paper   Supervised learning of the next-best-view for 3d object reconstruction [link]Website   doi   link   bibtex   abstract  
PC-NBV: A point cloud based deep network for efficient next best view planning. Zeng, R.; Zhao, W.; and Liu, Y., J. IEEE International Conference on Intelligent Robots and Systems,7050-7057. 2020.
PC-NBV: A point cloud based deep network for efficient next best view planning [pdf]Paper   doi   link   bibtex   abstract  
Generative adversarial networks. Goodfellow, I.; Pouget-Abadie, J.; Mirza, M.; Xu, B.; Warde-Farley, D.; Ozair, S.; Courville, A.; and Bengio, Y. Communications of the ACM, 63(11): 139-144. 2020.
Generative adversarial networks [pdf]Paper   doi   link   bibtex   abstract  
PointGrow: Autoregressively learned point cloud generation with self-attention. Sun, Y.; Wang, Y.; Liu, Z.; Siegel, J., E.; and Sarma, S., E. Proceedings - 2020 IEEE Winter Conference on Applications of Computer Vision, WACV 2020,61-70. 2020.
PointGrow: Autoregressively learned point cloud generation with self-attention [pdf]Paper   doi   link   bibtex   abstract  
A Progressive Conditional Generative Adversarial Network for Generating Dense and Colored 3D Point Clouds. Arshad, M., S.; and Beksi, W., J. Proceedings - 2020 International Conference on 3D Vision, 3DV 2020,712-722. 2020.
A Progressive Conditional Generative Adversarial Network for Generating Dense and Colored 3D Point Clouds [pdf]Paper   doi   link   bibtex   abstract  
PF-Net: Point fractal network for 3D point cloud completion. Huang, Z.; Yu, Y.; Xu, J.; Ni, F.; and Le, X. Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, 6(3): 7659-7667. 2020.
PF-Net: Point fractal network for 3D point cloud completion [pdf]Paper   doi   link   bibtex   abstract  
Representation Learning on Unit Ball with 3D Roto-translational Equivariance. Ramasinghe, S.; Khan, S.; Barnes, N.; and Gould, S. International Journal of Computer Vision, 128(6): 1612-1634. 2020.
Representation Learning on Unit Ball with 3D Roto-translational Equivariance [pdf]Paper   Representation Learning on Unit Ball with 3D Roto-translational Equivariance [link]Website   doi   link   bibtex   abstract  
Spherical harmonic energy over Gaussian sphere for incomplete 3D shape retrieval. Li, J.; Li, Z.; Lin, H.; Chen, R.; and Lan, Q. IEEE Access, 8: 183117-183126. 2020.
Spherical harmonic energy over Gaussian sphere for incomplete 3D shape retrieval [pdf]Paper   doi   link   bibtex   abstract  
Learning SO(3) Equivariant Representations with Spherical CNNs. Esteves, C.; Allen-Blanchette, C.; Makadia, A.; and Daniilidis, K. International Journal of Computer Vision, 128(3): 588-600. 2020.
Learning SO(3) Equivariant Representations with Spherical CNNs [pdf]Paper   doi   link   bibtex   abstract  
On Isometry Robustness of Deep 3D Point Cloud Models under Adversarial Attacks. Zhao, Y.; Wu, Y.; Chen, C.; Lim, A.; and Chen, C. Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition,1198-1207. 2020.
On Isometry Robustness of Deep 3D Point Cloud Models under Adversarial Attacks [pdf]Paper   doi   link   bibtex   abstract  
Three-dimensional Simultaneous Shape and Pose Estimation for Extended Objects Using Spherical Harmonics. Kurz, G.; Faion, F.; Pfaff, F.; Zea, A.; and Hanebeck, U., D. . 2020.
Three-dimensional Simultaneous Shape and Pose Estimation for Extended Objects Using Spherical Harmonics [pdf]Paper   Three-dimensional Simultaneous Shape and Pose Estimation for Extended Objects Using Spherical Harmonics [link]Website   link   bibtex   abstract  
RIDF: A Robust Rotation-Invariant Descriptor for 3D Point Cloud Registration in the Frequency Domain. Huang, R.; Yao, W.; Ye, Z.; Xu, Y.; and Stilla, U. ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences, 5(2): 235-242. 2020.
RIDF: A Robust Rotation-Invariant Descriptor for 3D Point Cloud Registration in the Frequency Domain [pdf]Paper   doi   link   bibtex   abstract  
WISH: Efficient 3D biological shape classification through Willmore flow and Spherical Harmonics decomposition. Agus, M.; Gobbetti, E.; Pintore, G.; Cali, C.; and Schneider, J. IEEE Computer Society Conference on Computer Vision and Pattern Recognition Workshops, 2020-June: 4184-4194. 2020.
WISH: Efficient 3D biological shape classification through Willmore flow and Spherical Harmonics decomposition [pdf]Paper   doi   link   bibtex   abstract  
On the Universality of Rotation Equivariant Point Cloud Networks. Dym, N.; and Maron, H. ,1-20. 2020.
On the Universality of Rotation Equivariant Point Cloud Networks [pdf]Paper   On the Universality of Rotation Equivariant Point Cloud Networks [link]Website   link   bibtex   abstract  
Local rotation invariance in 3D CNNs. Andrearczyk, V.; Fageot, J.; Oreiller, V.; Montet, X.; and Depeursinge, A. Medical Image Analysis, 65. 2020.
Local rotation invariance in 3D CNNs [pdf]Paper   doi   link   bibtex   abstract  
PointAR: Efficient Lighting Estimation for Mobile Augmented Reality. Zhao, Y.; and Guo, T. Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), 12368 LNCS: 678-693. 2020.
PointAR: Efficient Lighting Estimation for Mobile Augmented Reality [pdf]Paper   doi   link   bibtex   abstract  
Beyond Peak Performance: Comparing the Real Performance of AI-Optimized FPGAs and GPUs. Boutros, A.; Nurvitadhi, E.; Ma, R.; Gribok, S.; Zhao, Z.; Hoe, J., C.; Betz, V.; and Langhammer, M. In Proceedings - 2020 International Conference on Field-Programmable Technology, ICFPT 2020, pages 10-19, 12 2020. Institute of Electrical and Electronics Engineers Inc.
Beyond Peak Performance: Comparing the Real Performance of AI-Optimized FPGAs and GPUs [pdf]Paper   doi   link   bibtex   abstract  
2020 IEEE Canadian Conference on Electrical and Computer Engineering (CCECE). IEEE, 2020.
2020 IEEE Canadian Conference on Electrical and Computer Engineering (CCECE) [pdf]Paper   link   bibtex   abstract  
  2019 (183)
Supervised fitting of geometric primitives to 3D point clouds. Li, L.; Sung, M.; Dubrovina, A.; Yi, L.; and Guibas, L., J. Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, 2019-June(Figure 1): 2647-2655. 2019.
Supervised fitting of geometric primitives to 3D point clouds [pdf]Paper   doi   link   bibtex   abstract  
Unsupervised primitive discovery for improved 3D generative modeling. Khan, S., H.; Guo, Y.; Hayat, M.; and Barnes, N. Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, 2019-June: 9731-9740. 2019.
Unsupervised primitive discovery for improved 3D generative modeling [pdf]Paper   doi   link   bibtex   abstract  
Portable system for box volume measurement based on line-structured light vision and deep learning. Peng, T.; Zhang, Z.; Song, Y.; Chen, F.; and Zeng, D. Sensors (Switzerland), 19(18). 2019.
Portable system for box volume measurement based on line-structured light vision and deep learning [pdf]Paper   doi   link   bibtex   abstract  
R2D2: Repeatable and Reliable Detector and Descriptor. Revaud, J.; Weinzaepfel, P.; De Souza, C.; Pion, N.; Csurka, G.; Cabon, Y.; and Humenberger, M. , (NeurIPS). 2019.
R2D2: Repeatable and Reliable Detector and Descriptor [pdf]Paper   R2D2: Repeatable and Reliable Detector and Descriptor [link]Website   link   bibtex   abstract  
Deep learning for multi-path error removal in tof sensors. Agresti, G.; and Zanuttigh, P. Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), 11131 LNCS: 410-426. 2019.
Deep learning for multi-path error removal in tof sensors [pdf]Paper   doi   link   bibtex   abstract  
Deep learning for multi-path error removal in tof sensors. Agresti, G.; and Zanuttigh, P. In Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), 2019.
Deep learning for multi-path error removal in tof sensors [pdf]Paper   doi   link   bibtex   abstract  
Deep Learning for 3D Point Clouds: A Survey. Guo, Y.; Wang, H.; Hu, Q.; Liu, H.; Liu, L.; and Bennamoun, M. ,1-24. 2019.
Deep Learning for 3D Point Clouds: A Survey [pdf]Paper   Deep Learning for 3D Point Clouds: A Survey [link]Website   link   bibtex   abstract  
PV-RCNN: Point-Voxel Feature Set Abstraction for 3D Object Detection. Shi, S.; Guo, C.; Jiang, L.; Wang, Z.; Shi, J.; Wang, X.; and Li, H. . 2019.
PV-RCNN: Point-Voxel Feature Set Abstraction for 3D Object Detection [pdf]Paper   PV-RCNN: Point-Voxel Feature Set Abstraction for 3D Object Detection [link]Website   link   bibtex   abstract  
Lossy Point Cloud Geometry Compression via End-to-End Learning. Wang, J.; Zhu, H.; Ma, Z.; Chen, T.; Liu, H.; and Shen, Q. ,1-13. 2019.
Lossy Point Cloud Geometry Compression via End-to-End Learning [pdf]Paper   Lossy Point Cloud Geometry Compression via End-to-End Learning [link]Website   link   bibtex   abstract  
Dynamic graph Cnn for learning on point clouds. Wang, Y.; Sun, Y.; Liu, Z.; Sarma, S., E.; Bronstein, M., M.; and Solomon, J., M. ACM Transactions on Graphics, 38(5). 2019.
Dynamic graph Cnn for learning on point clouds [pdf]Paper   doi   link   bibtex   abstract  
MeshCNN : A Network with an Edge. Hanocka, R. , 1(1). 2019.
MeshCNN : A Network with an Edge [pdf]Paper   link   bibtex  
Deep end-to-end alignment and refinement for time-of-flight RGB-D module. Qiu, D.; Pang, J.; Sun, W.; and Yang, C. In Proceedings of the IEEE International Conference on Computer Vision, volume 2019-Octob, pages 9993-10002, 2019.
Deep end-to-end alignment and refinement for time-of-flight RGB-D module [pdf]Paper   doi   link   bibtex   abstract  
Robust normal estimation for 3D LiDAR point clouds in urban environments. Zhao, R.; Pang, M.; Liu, C.; and Zhang, Y. Sensors (Switzerland), 19(5): 1-17. 2019.
Robust normal estimation for 3D LiDAR point clouds in urban environments [pdf]Paper   doi   link   bibtex   abstract  
Nesti-net: Normal estimation for unstructured 3D point clouds using convolutional neural networks. Ben-Shabat, Y.; Lindenbaum, M.; and Fischer, A. Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, 2019-June: 10104-10112. 2019.
Nesti-net: Normal estimation for unstructured 3D point clouds using convolutional neural networks [pdf]Paper   doi   link   bibtex   abstract  
Unsupervised domain adaptation for TOF data denoising with adversarial learning. Agresti, G.; Schaefer, H.; Sartor, P.; and Zanuttigh, P. Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, 2019-June: 5579-5586. 2019.
Unsupervised domain adaptation for TOF data denoising with adversarial learning [pdf]Paper   doi   link   bibtex   abstract  
Ground-aware point cloud semantic segmentation for autonomous driving. Wu, J.; Jiao, J.; Yang, Q.; Zha, Z., J.; and Chen, X. MM 2019 - Proceedings of the 27th ACM International Conference on Multimedia,971-979. 2019.
Ground-aware point cloud semantic segmentation for autonomous driving [pdf]Paper   doi   link   bibtex   abstract  
NormNet: Point-wise normal estimation network for three-dimensional point cloud data. Hyeon, J.; Lee, W.; Kim, J., H.; and Doh, N. International Journal of Advanced Robotic Systems, 16(4): 1-11. 2019.
NormNet: Point-wise normal estimation network for three-dimensional point cloud data [pdf]Paper   doi   link   bibtex   abstract  
RGB-D-Based Object Recognition Using Multimodal Convolutional Neural Networks: A Survey. Gao, M.; Jiang, J.; Zou, G.; John, V.; and Liu, Z. IEEE Access, 7: 43110-43136. 2019.
RGB-D-Based Object Recognition Using Multimodal Convolutional Neural Networks: A Survey [pdf]Paper   doi   link   bibtex   abstract  
Floors are flat: Leveraging semantics for real-time surface normal prediction. Hickson, S.; Raveendran, K.; Fathi, A.; Murphy, K.; and Essa, I. Proceedings - 2019 International Conference on Computer Vision Workshop, ICCVW 2019,4065-4074. 2019.
Floors are flat: Leveraging semantics for real-time surface normal prediction [pdf]Paper   doi   link   bibtex   abstract  
Uncertainty-aware occupancy map prediction using generative networks for robot navigation. Katyal, K.; Popek, K.; Paxton, C.; Burlina, P.; and Hager, G., D. Proceedings - IEEE International Conference on Robotics and Automation, 2019-May: 5453-5459. 2019.
Uncertainty-aware occupancy map prediction using generative networks for robot navigation [pdf]Paper   doi   link   bibtex   abstract  
Deep end-to-end alignment and refinement for time-of-flight RGB-D module. Qiu, D.; Pang, J.; Sun, W.; and Yang, C. In Proceedings of the IEEE International Conference on Computer Vision, volume 2019-Octob, pages 9993-10002, 10 2019. Institute of Electrical and Electronics Engineers Inc.
Deep end-to-end alignment and refinement for time-of-flight RGB-D module [pdf]Paper   Deep end-to-end alignment and refinement for time-of-flight RGB-D module [link]Website   doi   link   bibtex   abstract  
Point-Voxel CNN for Efficient 3D Deep Learning. Liu, Z.; Tang, H.; Lin, Y.; and Han, S. arXiv. 7 2019.
Point-Voxel CNN for Efficient 3D Deep Learning [pdf]Paper   Point-Voxel CNN for Efficient 3D Deep Learning [link]Website   link   bibtex   abstract  
Point-voxel CNN for efficient 3d deep learning. Liu, Z.; Tang, H.; Lin, Y.; and Han, S. arXiv, (NeurIPS). 2019.
Point-voxel CNN for efficient 3d deep learning [pdf]Paper   link   bibtex   abstract  
Searching for mobileNetV3. Howard, A.; Sandler, M.; Chen, B.; Wang, W.; Chen, L., C.; Tan, M.; Chu, G.; Vasudevan, V.; Zhu, Y.; Pang, R.; Le, Q.; and Adam, H. In Proceedings of the IEEE International Conference on Computer Vision, volume 2019-October, pages 1314-1324, 10 2019. Institute of Electrical and Electronics Engineers Inc.
Searching for mobileNetV3 [pdf]Paper   Searching for mobileNetV3 [link]Website   doi   link   bibtex   abstract  
Searching for MobileNetV3. Howard, A.; Sandler, M.; Chu, G.; Chen, L.; Chen, B.; Tan, M.; Wang, W.; Zhu, Y.; Pang, R.; Vasudevan, V.; Le, Q., V.; and Adam, H. Proceedings of the IEEE International Conference on Computer Vision, 2019-Octob: 1314-1324. 5 2019.
Searching for MobileNetV3 [pdf]Paper   Searching for MobileNetV3 [link]Website   link   bibtex   abstract  
Point-Voxel CNN for Efficient 3D Deep Learning. Liu, Z.; Tang, H.; Lin, Y.; and Han, S. arXiv. 7 2019.
Point-Voxel CNN for Efficient 3D Deep Learning [pdf]Paper   Point-Voxel CNN for Efficient 3D Deep Learning [link]Website   link   bibtex   abstract  
A 3D Robot Self Filter for Next Best View Planning. Monica, R.; and Aleotti, J. Proceedings - 3rd IEEE International Conference on Robotic Computing, IRC 2019,117-124. 2019.
A 3D Robot Self Filter for Next Best View Planning [pdf]Paper   doi   link   bibtex   abstract  
Volumetric next best view by 3d occupancy mapping using markov chain gibbs sampler for precise manufacturing. Hou, L.; Chen, X.; Lan, K.; Rasmussen, R.; and Roberts, J. IEEE Access, 7(Mcmc): 121949-121960. 2019.
Volumetric next best view by 3d occupancy mapping using markov chain gibbs sampler for precise manufacturing [pdf]Paper   doi   link   bibtex   abstract  
Fitting cylindrical objects in 3-d point cloud using contextual and geometrical constraints. Vu, H.; Le, V., H.; Nguyen, T., T.; Le, T., L.; and Tran, T., H. Journal of Information Science and Engineering, 35(1): 41-60. 2019.
Fitting cylindrical objects in 3-d point cloud using contextual and geometrical constraints [pdf]Paper   doi   link   bibtex   abstract  
Point Pair Feature Matching: Evaluating Methods to Detect Simple Shapes. Ziegler, M.; Rudorfer, M.; Kroischke, X.; Krone, S.; and Krüger, J. Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), 11754 LNCS: 445-456. 2019.
Point Pair Feature Matching: Evaluating Methods to Detect Simple Shapes [pdf]Paper   doi   link   bibtex   abstract  
Self-attention generative adversarial networks. Zhang, H.; Goodfellow, I.; Metaxas, D.; and Odena, A. 36th International Conference on Machine Learning, ICML 2019, 2019-June: 12744-12753. 2019.
Self-attention generative adversarial networks [pdf]Paper   link   bibtex   abstract  
Point-voxel CNN for efficient 3d deep learning. Liu, Z.; Tang, H.; Lin, Y.; and Han, S. arXiv. 2019.
Point-voxel CNN for efficient 3d deep learning [pdf]Paper   link   bibtex   abstract  
A new fast filtering algorithm for a 3D point cloud based on RGB-D information. Jia, C.; Yang, T.; Wang, C.; Fan, B.; and He, F. PLoS ONE, 14(8): 1-21. 2019.
A new fast filtering algorithm for a 3D point cloud based on RGB-D information [pdf]Paper   doi   link   bibtex   abstract  
Total denoising: Unsupervised learning of 3D point cloud cleaning. Casajus, P., H.; Ritschel, T.; and Ropinski, T. Proceedings of the IEEE International Conference on Computer Vision, 2019-Octob: 52-60. 2019.
Total denoising: Unsupervised learning of 3D point cloud cleaning [pdf]Paper   doi   link   bibtex   abstract  
Total denoising: Unsupervised learning of 3D point cloud cleaning. Casajus, P., H.; Ritschel, T.; and Ropinski, T. Proceedings of the IEEE International Conference on Computer Vision, 2019-Octob(Iccv): 52-60. 2019.
Total denoising: Unsupervised learning of 3D point cloud cleaning [pdf]Paper   doi   link   bibtex   abstract  
CNN-based Lidar Point Cloud De-Noising in Adverse Weather. Heinzler, R.; Piewak, F.; Schindler, P.; and Stork, W. arXiv, 5(2): 2514-2521. 2019.
CNN-based Lidar Point Cloud De-Noising in Adverse Weather [pdf]Paper   link   bibtex   abstract  
Self-supervised deep depth denoising. Sterzentsenko, V.; Saroglou, L.; Chatzitofis, A.; Thermos, S.; Zioulis, N.; Doumanoglou, A.; Zarpalas, D.; and Daras, P. Proceedings of the IEEE International Conference on Computer Vision, 2019-Octob: 1242-1251. 2019.
Self-supervised deep depth denoising [pdf]Paper   doi   link   bibtex   abstract   3 downloads  
Searching for mobileNetV3. Howard, A.; Sandler, M.; Chen, B.; Wang, W.; Chen, L., C.; Tan, M.; Chu, G.; Vasudevan, V.; Zhu, Y.; Pang, R.; Le, Q.; and Adam, H. In Proceedings of the IEEE International Conference on Computer Vision, volume 2019-October, pages 1314-1324, 10 2019. Institute of Electrical and Electronics Engineers Inc.
Searching for mobileNetV3 [link]Website   doi   link   bibtex   abstract  
Searching for mobileNetV3. Howard, A.; Sandler, M.; Chen, B.; Wang, W.; Chen, L., C.; Tan, M.; Chu, G.; Vasudevan, V.; Zhu, Y.; Pang, R.; Le, Q.; and Adam, H. In Proceedings of the IEEE International Conference on Computer Vision, volume 2019-October, pages 1314-1324, 10 2019. Institute of Electrical and Electronics Engineers Inc.
Searching for mobileNetV3 [pdf]Paper   Searching for mobileNetV3 [link]Website   doi   link   bibtex   abstract  
Simplifying Graph Convolutional Networks. Wu, F.; Zhang, T.; Holanda, A.; Jr, D., S.; Fifty, C.; Yu, T.; Convolutional, G.; and Gcns, N. . 2019.
Simplifying Graph Convolutional Networks [pdf]Paper   link   bibtex  
Janossy pooling: Learning deep permutation-invariant functions for variable-size inputs. Murphy, R., L.; Srinivasan, B.; Ribeiro, B.; and Rao, V. 7th International Conference on Learning Representations, ICLR 2019,1-21. 2019.
Janossy pooling: Learning deep permutation-invariant functions for variable-size inputs [pdf]Paper   link   bibtex   abstract  
Relational pooling for graph representations. Murphy, R., L.; Srinivasan, B.; Rao, V.; and Ribeiro, B. 36th International Conference on Machine Learning, ICML 2019, 2019-June: 8192-8202. 2019.
Relational pooling for graph representations [pdf]Paper   link   bibtex   abstract  
Position-aware graph neural networks. You, J.; Ying, R.; and Leskovec, J. 36th International Conference on Machine Learning, ICML 2019, 2019-June: 12372-12381. 2019.
Position-aware graph neural networks [pdf]Paper   link   bibtex   abstract  
Weisfeiler and leman go neural: Higher-order graph neural networks. Morris, C.; Ritzert, M.; Fey, M.; Hamilton, W., L.; Lenssen, J., E.; Rattan, G.; and Grohe, M. 33rd AAAI Conference on Artificial Intelligence, AAAI 2019, 31st Innovative Applications of Artificial Intelligence Conference, IAAI 2019 and the 9th AAAI Symposium on Educational Advances in Artificial Intelligence, EAAI 2019,4602-4609. 2019.
Weisfeiler and leman go neural: Higher-order graph neural networks [pdf]Paper   doi   link   bibtex   abstract  
The lottery ticket hypothesis: Finding sparse, trainable neural networks. Frankle, J.; and Carbin, M. 7th International Conference on Learning Representations, ICLR 2019,1-42. 2019.
The lottery ticket hypothesis: Finding sparse, trainable neural networks [pdf]Paper   link   bibtex   abstract  
On Warm-Starting Neural Network Training. Ash, J., T.; and Adams, R., P. , (NeurIPS): 1-21. 2019.
On Warm-Starting Neural Network Training [pdf]Paper   On Warm-Starting Neural Network Training [link]Website   link   bibtex   abstract  
Ray Interference: a Source of Plateaus in Deep Reinforcement Learning. Schaul, T.; Borsa, D.; Modayil, J.; and Pascanu, R. ,1-17. 2019.
Ray Interference: a Source of Plateaus in Deep Reinforcement Learning [pdf]Paper   Ray Interference: a Source of Plateaus in Deep Reinforcement Learning [link]Website   link   bibtex   abstract  
A Deep Neural Network's Loss Surface Contains Every Low-dimensional Pattern. Czarnecki, W., M.; Osindero, S.; Pascanu, R.; and Jaderberg, M. . 2019.
A Deep Neural Network's Loss Surface Contains Every Low-dimensional Pattern [pdf]Paper   A Deep Neural Network's Loss Surface Contains Every Low-dimensional Pattern [link]Website   link   bibtex   abstract  
Reconciling modern machine-learning practice and the classical bias–variance trade-off. Belkin, M.; Hsu, D.; Ma, S.; and Mandal, S. Proceedings of the National Academy of Sciences of the United States of America, 116(32): 15849-15854. 2019.
Reconciling modern machine-learning practice and the classical bias–variance trade-off [pdf]Paper   doi   link   bibtex   abstract  
Geometry of Deep Convolutional Networks. Carlsson, S. ,1-15. 2019.
Geometry of Deep Convolutional Networks [pdf]Paper   Geometry of Deep Convolutional Networks [link]Website   link   bibtex   abstract  
Exploring RGB+depth fusion for real-time object detection. Ophoff, T.; Van Beeck, K.; and Goedemé, T. Sensors (Switzerland), 19(4). 2019.
Exploring RGB+depth fusion for real-time object detection [pdf]Paper   doi   link   bibtex   abstract  
PU-GAN: A point cloud upsampling adversarial network. Li, R.; Li, X.; Fu, C., W.; Cohen-Or, D.; and Heng, P., A. Proceedings of the IEEE International Conference on Computer Vision, 2019-Octob(c): 7202-7211. 2019.
PU-GAN: A point cloud upsampling adversarial network [pdf]Paper   doi   link   bibtex   abstract  
RealPoint3D: An Efficient Generation Network for 3D Object Reconstruction from a Single Image. Zhang, Y.; Liu, Z.; Liu, T.; Peng, B.; and Li, X. IEEE Access, 7: 57539-57549. 2019.
RealPoint3D: An Efficient Generation Network for 3D Object Reconstruction from a Single Image [pdf]Paper   doi   link   bibtex   abstract  
Patch-based progressive 3D point set upsampling. Yifan, W.; Wu, S.; Huang, H.; Cohen-Or, D.; and Sorkine-Hornung, O. Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, 2019-June: 5951-5960. 2019.
Patch-based progressive 3D point set upsampling [pdf]Paper   doi   link   bibtex   abstract  
Plant phenotyping by deep-learning-based planner for multi-robots. Wu, C.; Zeng, R.; Pan, J.; Wang, C., C.; and Liu, Y., J. IEEE Robotics and Automation Letters, 4(4): 3113-3120. 2019.
Plant phenotyping by deep-learning-based planner for multi-robots [pdf]Paper   doi   link   bibtex   abstract  
Transferability of Spectral Graph Convolutional Neural Networks. Levie, R.; Huang, W.; Bucci, L.; Bronstein, M., M.; and Kutyniok, G. ,1-45. 2019.
Transferability of Spectral Graph Convolutional Neural Networks [pdf]Paper   Transferability of Spectral Graph Convolutional Neural Networks [link]Website   link   bibtex   abstract  
CayleyNets: Graph Convolutional Neural Networks with Complex Rational Spectral Filters. Levie, R.; Monti, F.; Bresson, X.; and Bronstein, M., M. IEEE Transactions on Signal Processing, 67(1): 97-109. 2019.
CayleyNets: Graph Convolutional Neural Networks with Complex Rational Spectral Filters [pdf]Paper   doi   link   bibtex   abstract  
Octree guided CNN with spherical kernels for 3D point clouds. Lei, H.; Akhtar, N.; and Mian, A. Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, 2019-June: 9623-9632. 2019.
Octree guided CNN with spherical kernels for 3D point clouds [pdf]Paper   doi   link   bibtex   abstract  
Spectral-based Graph Convolutional Network for Directed Graphs. Ma, Y.; Hao, J.; Yang, Y.; Li, H.; Jin, J.; and Chen, G. . 2019.
Spectral-based Graph Convolutional Network for Directed Graphs [pdf]Paper   Spectral-based Graph Convolutional Network for Directed Graphs [link]Website   link   bibtex   abstract  
Learning localized generative models for 3D point clouds via graph convolution. Valsesia, D.; Fracastoro, G.; and Magli, E. 7th International Conference on Learning Representations, ICLR 2019,1-15. 2019.
Learning localized generative models for 3D point clouds via graph convolution [pdf]Paper   link   bibtex   abstract  
Hierarchical depthwise graph convolutional neural network for 3D semantic segmentation of point clouds. Liang, Z.; Yang, M.; Deng, L.; Wang, C.; and Wang, B. Proceedings - IEEE International Conference on Robotics and Automation, 2019-May: 8152-8158. 2019.
Hierarchical depthwise graph convolutional neural network for 3D semantic segmentation of point clouds [pdf]Paper   doi   link   bibtex   abstract  
How powerful are graph neural networks?. Xu, K.; Jegelka, S.; Hu, W.; and Leskovec, J. 7th International Conference on Learning Representations, ICLR 2019,1-17. 2019.
How powerful are graph neural networks? [pdf]Paper   link   bibtex   abstract  
Position-aware Graph Neural Networks. You, J.; Ying, R.; and Leskovec, J. . 2019.
Position-aware Graph Neural Networks [pdf]Paper   link   bibtex  
Strategies for Pre-training Graph Neural Networks. Hu, W.; Liu, B.; Gomes, J.; Zitnik, M.; Liang, P.; Pande, V.; and Leskovec, J. ,1-22. 2019.
Strategies for Pre-training Graph Neural Networks [pdf]Paper   Strategies for Pre-training Graph Neural Networks [link]Website   link   bibtex   abstract  
Exploiting edge features for graph neural networks. Gong, L.; and Cheng, Q. Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, 2019-June: 9203-9211. 2019.
Exploiting edge features for graph neural networks [pdf]Paper   doi   link   bibtex   abstract  
Pay Less Attention with Lightweight and Dynamic Convolutions. Wu, F.; Fan, A.; Baevski, A.; Dauphin, Y., N.; and Auli, M. 7th International Conference on Learning Representations, ICLR 2019. 1 2019.
Pay Less Attention with Lightweight and Dynamic Convolutions [pdf]Paper   Pay Less Attention with Lightweight and Dynamic Convolutions [link]Website   link   bibtex   abstract  
Transformer-XL: Attentive Language Models Beyond a Fixed-Length Context. Dai, Z.; Yang, Z.; Yang, Y.; Carbonell, J.; Le, Q., V.; and Salakhutdinov, R. ACL 2019 - 57th Annual Meeting of the Association for Computational Linguistics, Proceedings of the Conference,2978-2988. 1 2019.
Transformer-XL: Attentive Language Models Beyond a Fixed-Length Context [pdf]Paper   Transformer-XL: Attentive Language Models Beyond a Fixed-Length Context [link]Website   link   bibtex   abstract  
XLNet: Generalized Autoregressive Pretraining for Language Understanding. Yang, Z.; Dai, Z.; Yang, Y.; Carbonell, J.; Salakhutdinov, R.; and Le, Q., V. Advances in Neural Information Processing Systems, 32. 6 2019.
XLNet: Generalized Autoregressive Pretraining for Language Understanding [pdf]Paper   XLNet: Generalized Autoregressive Pretraining for Language Understanding [link]Website   link   bibtex   abstract  
Spherical fractal convolutional neural networks for point cloud recognition. Rao, Y.; Lu, J.; and Zhou, J. Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, 2019-June: 452-460. 2019.
Spherical fractal convolutional neural networks for point cloud recognition [pdf]Paper   doi   link   bibtex   abstract  
Dgcnn. Wang, Y.; Sun, Y.; Liu, Z.; Sarma, S., E.; Bronstein, M., M.; and Solomon, J., M. ACM Transactions on Graphics, 38(5): Article 146. 2019.
Dgcnn [pdf]Paper   link   bibtex   abstract  
An Introduction to Variational Autoencoders. Kingma, D., P.; and Welling, M. . 2019.
An Introduction to Variational Autoencoders [pdf]Paper   doi   link   bibtex  
DeepGCNs: Can GCNs go as deep as CNNs?. Li, G.; Muller, M.; Thabet, A.; and Ghanem, B. Proceedings of the IEEE International Conference on Computer Vision, 2019-Octob: 9266-9275. 2019.
DeepGCNs: Can GCNs go as deep as CNNs? [pdf]Paper   doi   link   bibtex   abstract  
DeepGCNs: Can GCNs go as deep as CNNs?. Li, G.; Muller, M.; Thabet, A.; and Ghanem, B. Proceedings of the IEEE International Conference on Computer Vision, 2019-Octob(4): 9266-9275. 2019.
DeepGCNs: Can GCNs go as deep as CNNs? [pdf]Paper   doi   link   bibtex   abstract  
The Evolved Transformer. So, D., R.; Liang, C.; and Le, Q., V. 36th International Conference on Machine Learning, ICML 2019, 2019-June: 10315-10328. 1 2019.
The Evolved Transformer [pdf]Paper   The Evolved Transformer [link]Website   link   bibtex   abstract  
Hypergraph neural networks. Feng, Y.; You, H.; Zhang, Z.; Ji, R.; and Gao, Y. 33rd AAAI Conference on Artificial Intelligence, AAAI 2019, 31st Innovative Applications of Artificial Intelligence Conference, IAAI 2019 and the 9th AAAI Symposium on Educational Advances in Artificial Intelligence, EAAI 2019,3558-3565. 2019.
Hypergraph neural networks [pdf]Paper   doi   link   bibtex   abstract  
Unsupervised multi-task feature learning on point clouds. Hassani, K.; and Haley, M. Proceedings of the IEEE International Conference on Computer Vision, 2019-Octob: 8159-8170. 2019.
Unsupervised multi-task feature learning on point clouds [pdf]Paper   doi   link   bibtex   abstract  
Clusternet: Deep hierarchical cluster network with rigorously rotation-invariant representation for point cloud analysis. Chen, C.; Li, G.; Xu, R.; Chen, T.; Wang, M.; and Lin, L. Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, 2019-June(61602533): 4989-4997. 2019.
Clusternet: Deep hierarchical cluster network with rigorously rotation-invariant representation for point cloud analysis [pdf]Paper   doi   link   bibtex   abstract  
Linked Dynamic Graph CNN: Learning on Point Cloud via Linking Hierarchical Features. Zhang, K.; Hao, M.; Wang, J.; de Silva, C., W.; and Fu, C. ,1-8. 2019.
Linked Dynamic Graph CNN: Learning on Point Cloud via Linking Hierarchical Features [pdf]Paper   Linked Dynamic Graph CNN: Learning on Point Cloud via Linking Hierarchical Features [link]Website   link   bibtex   abstract  
Dynamic points agglomeration for hierarchical point sets learning. Liu, J.; Ni, B.; Li, C.; Yang, J.; and Tian, Q. Proceedings of the IEEE International Conference on Computer Vision, 2019-Octob: 7545-7554. 2019.
Dynamic points agglomeration for hierarchical point sets learning [pdf]Paper   doi   link   bibtex   abstract  
Generating Long Sequences with Sparse Transformers. Child, R.; Gray, S.; Radford, A.; and Sutskever, I. . 4 2019.
Generating Long Sequences with Sparse Transformers [pdf]Paper   Generating Long Sequences with Sparse Transformers [link]Website   link   bibtex   abstract  
On the Relationship between Self-Attention and Convolutional Layers. Cordonnier, J.; Loukas, A.; and Jaggi, M. . 11 2019.
On the Relationship between Self-Attention and Convolutional Layers [pdf]Paper   On the Relationship between Self-Attention and Convolutional Layers [link]Website   link   bibtex   abstract  
Stand-Alone Self-Attention in Vision Models. Ramachandran, P.; Parmar, N.; Vaswani, A.; Bello, I.; Levskaya, A.; and Shlens, J. Advances in Neural Information Processing Systems, 32. 6 2019.
Stand-Alone Self-Attention in Vision Models [pdf]Paper   Stand-Alone Self-Attention in Vision Models [link]Website   link   bibtex   abstract  
3D high-resolution cardiac segmentation reconstruction from 2d views using conditional variational autoencoders. Biffi, C.; Cerrolaza, J., J.; Tarroni, G.; De Marvao, A.; Cook, S., A.; O'Regan, D., P.; and Rueckert, D. Proceedings - International Symposium on Biomedical Imaging, 2019-April(Isbi): 1643-1646. 2019.
3D high-resolution cardiac segmentation reconstruction from 2d views using conditional variational autoencoders [pdf]Paper   doi   link   bibtex   abstract  
VV-net: Voxel VAE net with group convolutions for point cloud segmentation. Meng, H., Y.; Gao, L.; Lai, Y., K.; and Manocha, D. Proceedings of the IEEE International Conference on Computer Vision, 2019-Octob: 8499-8507. 2019.
VV-net: Voxel VAE net with group convolutions for point cloud segmentation [pdf]Paper   doi   link   bibtex   abstract  
Multi-angle point cloud-vae: Unsupervised feature learning for 3D point clouds from multiple angles by joint self-reconstruction and half-to-half prediction. Han, Z.; Wang, X.; Liu, Y., S.; and Zwicker, M. Proceedings of the IEEE International Conference on Computer Vision, 2019-Octob(Iccv): 10441-10450. 2019.
Multi-angle point cloud-vae: Unsupervised feature learning for 3D point clouds from multiple angles by joint self-reconstruction and half-to-half prediction [pdf]Paper   doi   link   bibtex   abstract  
Generating diverse high-fidelity images with VQ-VAE-2. Razavi, A.; van den Oord, A.; and Vinyals, O. Advances in Neural Information Processing Systems, 32(NeurIPS 2019): 1-11. 2019.
Generating diverse high-fidelity images with VQ-VAE-2 [pdf]Paper   link   bibtex   abstract  
Spatial Transformer for 3D Point Clouds. Wang, J.; Chakraborty, R.; and Yu, S., X. IEEE Transactions on Pattern Analysis and Machine Intelligence. 6 2019.
Spatial Transformer for 3D Point Clouds [pdf]Paper   Spatial Transformer for 3D Point Clouds [link]Website   doi   link   bibtex   abstract  
Deep closest point: Learning representations for point cloud registration. Wang, Y.; and Solomon, J. Proceedings of the IEEE International Conference on Computer Vision, 2019-Octob: 3522-3531. 2019.
Deep closest point: Learning representations for point cloud registration [pdf]Paper   doi   link   bibtex   abstract  
Graph attention convolution for point cloud semantic segmentation. Wang, L.; Huang, Y.; Hou, Y.; Zhang, S.; and Shan, J. Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, 2019-June: 10288-10297. 2019.
Graph attention convolution for point cloud semantic segmentation [pdf]Paper   doi   link   bibtex   abstract  
Improving Graph Attention Networks with Large Margin-based Constraints. Wang, G.; Ying, R.; Huang, J.; and Leskovec, J. . 2019.
Improving Graph Attention Networks with Large Margin-based Constraints [pdf]Paper   Improving Graph Attention Networks with Large Margin-based Constraints [link]Website   link   bibtex   abstract  
Supplementary Material SUPPLEMENTARY MATERIAL Paluskar. Fe, C. Mpb, 2(c): 1-10. 2019.
Supplementary Material SUPPLEMENTARY MATERIAL Paluskar [pdf]Paper   link   bibtex  
Graph attention convolution for point cloud semantic segmentation. Wang, L.; Huang, Y.; Hou, Y.; Zhang, S.; and Shan, J. Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, 2019-June: 10288-10297. 2019.
Graph attention convolution for point cloud semantic segmentation [pdf]Paper   doi   link   bibtex   abstract  
Aligning latent spaces for 3D hand pose estimation. Yang, L.; Li, S.; Lee, D.; and Yao, A. Proceedings of the IEEE International Conference on Computer Vision, 2019-Octob: 2335-2343. 2019.
Aligning latent spaces for 3D hand pose estimation [pdf]Paper   doi   link   bibtex   abstract  
Multi-angle point cloud-vae: Unsupervised feature learning for 3D point clouds from multiple angles by joint self-reconstruction and half-to-half prediction. Han, Z.; Wang, X.; Liu, Y., S.; and Zwicker, M. Proceedings of the IEEE International Conference on Computer Vision, 2019-Octob(Iccv): 10441-10450. 2019.
Multi-angle point cloud-vae: Unsupervised feature learning for 3D point clouds from multiple angles by joint self-reconstruction and half-to-half prediction [pdf]Paper   doi   link   bibtex   abstract  
End-to-end cad model retrieval and 9DOF alignment in 3D scans. Avetisyan, A.; Dai, A.; and Niessner, M. Proceedings of the IEEE International Conference on Computer Vision, 2019-Octob: 2551-2560. 2019.
End-to-end cad model retrieval and 9DOF alignment in 3D scans [pdf]Paper   doi   link   bibtex   abstract  
SCAN2CAD: Learning cad model alignment in rgb-d scans. Avetisyan, A.; Dahnert, M.; Dai, A.; Savva, M.; Chang, A., X.; and Niebner, M. Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, 2019-June: 2609-2618. 2019.
SCAN2CAD: Learning cad model alignment in rgb-d scans [pdf]Paper   doi   link   bibtex   abstract  
PU-GCN: Point Cloud Upsampling using Graph Convolutional Networks. Qian, G.; Abualshour, A.; Li, G.; Thabet, A.; and Ghanem, B. . 2019.
PU-GCN: Point Cloud Upsampling using Graph Convolutional Networks [pdf]Paper   PU-GCN: Point Cloud Upsampling using Graph Convolutional Networks [link]Website   link   bibtex   abstract  
KPConv: Flexible and deformable convolution for point clouds. Thomas, H.; Qi, C., R.; Deschaud, J., E.; Marcotegui, B.; Goulette, F.; and Guibas, L. Proceedings of the IEEE International Conference on Computer Vision, 2019-Octob: 6410-6419. 2019.
KPConv: Flexible and deformable convolution for point clouds [pdf]Paper   doi   link   bibtex   abstract  
Do Image Classifiers Generalize Across Time?. Shankar, V.; Dave, A.; Roelofs, R.; Ramanan, D.; Recht, B.; and Schmidt, L. . 2019.
Do Image Classifiers Generalize Across Time? [pdf]Paper   Do Image Classifiers Generalize Across Time? [link]Website   link   bibtex   abstract  
Graph convolutional networks: a comprehensive review. Zhang, S.; Tong, H.; Xu, J.; and Maciejewski, R. Computational Social Networks, 6(1). 2019.
Graph convolutional networks: a comprehensive review [pdf]Paper   Graph convolutional networks: a comprehensive review [link]Website   doi   link   bibtex   abstract  
Eigenvalue and Generalized Eigenvalue Problems: Tutorial. Ghojogh, B.; Karray, F.; and Crowley, M. , (2): 1-8. 2019.
Eigenvalue and Generalized Eigenvalue Problems: Tutorial [link]Website   link   bibtex   abstract  
On the Efficiency of a Point Cloud Autoencoder as a Geometric Representation for Shape Optimization. Rios, T.; Sendhoff, B.; Menzel, S.; Back, T.; and Van Stein, B. 2019 IEEE Symposium Series on Computational Intelligence, SSCI 2019,791-798. 2019.
On the Efficiency of a Point Cloud Autoencoder as a Geometric Representation for Shape Optimization [pdf]Paper   doi   link   bibtex   abstract  
Scalability of Learning Tasks on 3D CAE Models Using Point Cloud Autoencoders. Rios, T.; Wollstadt, P.; Stein, B., V.; Back, T.; Xu, Z.; Sendhoff, B.; and Menzel, S. 2019 IEEE Symposium Series on Computational Intelligence, SSCI 2019,1367-1374. 2019.
Scalability of Learning Tasks on 3D CAE Models Using Point Cloud Autoencoders [pdf]Paper   doi   link   bibtex   abstract  
CompoNet: Learning to generate the unseen by part synthesis and composition. Schor, N.; Katzir, O.; Zhang, H.; and Cohen-Or, D. Proceedings of the IEEE International Conference on Computer Vision, 2019-Octob: 8758-8767. 2019.
CompoNet: Learning to generate the unseen by part synthesis and composition [pdf]Paper   doi   link   bibtex   abstract  
Attacking Graph Convolutional Networks via Rewiring. Ma, Y.; Wang, S.; Derr, T.; Wu, L.; and Tang, J. . 2019.
Attacking Graph Convolutional Networks via Rewiring [pdf]Paper   Attacking Graph Convolutional Networks via Rewiring [link]Website   link   bibtex   abstract  
Can Adversarial Network Attack be Defended?. Chen, J.; Wu, Y.; Lin, X.; and Xuan, Q. ,1-10. 2019.
Can Adversarial Network Attack be Defended? [pdf]Paper   Can Adversarial Network Attack be Defended? [link]Website   link   bibtex   abstract  
Robust graph convolutional networks against adversarial attacks. Zhu, D.; Cui, P.; Zhang, Z.; and Zhu, W. Proceedings of the ACM SIGKDD International Conference on Knowledge Discovery and Data Mining,1399-1407. 2019.
Robust graph convolutional networks against adversarial attacks [pdf]Paper   doi   link   bibtex   abstract  
Comparing and Detecting Adversarial Attacks for Graph Deep Learning. Zhang, Y.; Hossain Khan, S.; and Coates, M. ICLR 2019 Workshop: Representation Learning on Graphs and Manifolds,1-7. 2019.
Comparing and Detecting Adversarial Attacks for Graph Deep Learning [pdf]Paper   Comparing and Detecting Adversarial Attacks for Graph Deep Learning [link]Website   link   bibtex   abstract  
Indirect Adversarial Attacks via Poisoning Neighbors for Graph Convolutional Networks. Takahashi, T. Proceedings - 2019 IEEE International Conference on Big Data, Big Data 2019,1395-1400. 2019.
Indirect Adversarial Attacks via Poisoning Neighbors for Graph Convolutional Networks [pdf]Paper   doi   link   bibtex   abstract  
Adversarial examples for graph data: Deep insights into attack and defense. Wu, H.; Wang, C.; Tyshetskiy, Y.; Docherty, A.; Lu, K.; and Zhu, L. IJCAI International Joint Conference on Artificial Intelligence, 2019-Augus: 4816-4823. 2019.
Adversarial examples for graph data: Deep insights into attack and defense [pdf]Paper   doi   link   bibtex   abstract  
Topology attack and defense for graph neural networks: An optimization perspective. Xu, K.; Chen, H.; Liu, S.; Chen, P., Y.; Weng, T., W.; Hong, M.; and Lin, X. IJCAI International Joint Conference on Artificial Intelligence, 2019-Augus: 3961-3967. 2019.
Topology attack and defense for graph neural networks: An optimization perspective [pdf]Paper   doi   link   bibtex   abstract  
Latent Adversarial Training of Graph Convolution Networks. Jin, H.; and Zhang, X. ICML 2019 Workshop: Learning and Reasoning with Graph-Structured Representations. 2019.
Latent Adversarial Training of Graph Convolution Networks [pdf]Paper   link   bibtex   abstract  
3D point cloud geometry compression on deep learning. Huang, T.; and Liu, Y. MM 2019 - Proceedings of the 27th ACM International Conference on Multimedia,890-898. 2019.
3D point cloud geometry compression on deep learning [pdf]Paper   doi   link   bibtex   abstract  
PointAE: Point auto-encoder for 3D statistical shape and texture modelling. Dai, H.; and Shao, L. Proceedings of the IEEE International Conference on Computer Vision, 2019-Octob: 5409-5418. 2019.
PointAE: Point auto-encoder for 3D statistical shape and texture modelling [pdf]Paper   doi   link   bibtex   abstract  
Multi-angle point cloud-vae: Unsupervised feature learning for 3D point clouds from multiple angles by joint self-reconstruction and half-to-half prediction. Han, Z.; Wang, X.; Liu, Y., S.; and Zwicker, M. Proceedings of the IEEE International Conference on Computer Vision, 2019-Octob: 10441-10450. 2019.
Multi-angle point cloud-vae: Unsupervised feature learning for 3D point clouds from multiple angles by joint self-reconstruction and half-to-half prediction [pdf]Paper   doi   link   bibtex   abstract  
NeuralSampler: Euclidean Point Cloud Auto-Encoder and Sampler. Remelli, E.; Baque, P.; and Fua, P. . 2019.
NeuralSampler: Euclidean Point Cloud Auto-Encoder and Sampler [pdf]Paper   NeuralSampler: Euclidean Point Cloud Auto-Encoder and Sampler [link]Website   link   bibtex   abstract  
Pointflow: 3D point cloud generation with continuous normalizing flows. Yang, G.; Huang, X.; Hao, Z.; Liu, M., Y.; Belongie, S.; and Hariharan, B. Proceedings of the IEEE International Conference on Computer Vision, 2019-Octob: 4540-4549. 2019.
Pointflow: 3D point cloud generation with continuous normalizing flows [pdf]Paper   doi   link   bibtex   abstract  
Stability of graph scattering transforms. Gama, F.; Bruna, J.; and Ribeiro, A. Advances in Neural Information Processing Systems, 32(NeurIPS). 2019.
Stability of graph scattering transforms [pdf]Paper   link   bibtex   abstract  
Modelling Graph Errors: Towards Robust Graph Signal Processing. Miettinen, J.; Vorobyov, S., A.; and Ollila, E. , (299243): 1-34. 2019.
Modelling Graph Errors: Towards Robust Graph Signal Processing [pdf]Paper   Modelling Graph Errors: Towards Robust Graph Signal Processing [link]Website   link   bibtex   abstract  
J Oint G Raph and F Eature L Earning I N G Raph. Tang, J.; Hu, W.; Gao, X.; and Guo, Z. arXiv. 2019.
J Oint G Raph and F Eature L Earning I N G Raph [pdf]Paper   link   bibtex   abstract  
A Review of Deep Learning-Based Semantic Segmentation for Point Cloud. Zhang, J.; Zhao, X.; Chen, Z.; and Lu, Z. IEEE Access, 7: 179118-179133. 2019.
A Review of Deep Learning-Based Semantic Segmentation for Point Cloud [pdf]Paper   doi   link   bibtex   abstract  
SemanticKITTI. Behley, J.; Garbade, M.; Milioto, A.; Quenzel, J.; Behnke, S.; Stachniss, C.; and Gall, J. Iccv, (iii). 2019.
SemanticKITTI [pdf]Paper   SemanticKITTI [link]Website   link   bibtex   abstract  
Optimized skeleton-based action recognition via sparsified graph regression. Gao, X.; Hu, W.; Tang, J.; Liu, J.; and Guo, Z. MM 2019 - Proceedings of the 27th ACM International Conference on Multimedia,601-610. 2019.
Optimized skeleton-based action recognition via sparsified graph regression [pdf]Paper   doi   link   bibtex   abstract  
Accurate lane detection with atrous convolution and spatial pyramid pooling for autonomous driving. Sun, Y.; Wang, L.; Chen, Y.; and Liu, M. IEEE International Conference on Robotics and Biomimetics, ROBIO 2019, (December): 642-647. 2019.
Accurate lane detection with atrous convolution and spatial pyramid pooling for autonomous driving [pdf]Paper   doi   link   bibtex   abstract  
Fast Graph Representation Learning with PyTorch Geometric. Fey, M.; and Lenssen, J., E. , (1): 1-9. 2019.
Fast Graph Representation Learning with PyTorch Geometric [pdf]Paper   Fast Graph Representation Learning with PyTorch Geometric [link]Website   link   bibtex   abstract  
A Survey of Simple Geometric Primitives Detection Methods for Captured 3D Data. Kaiser, A.; Ybanez Zepeda, J., A.; and Boubekeur, T. Computer Graphics Forum, 38(1): 167-196. 2019.
A Survey of Simple Geometric Primitives Detection Methods for Captured 3D Data [pdf]Paper   doi   link   bibtex   abstract  
Emerging MPEG Standards for Point Cloud Compression. Schwarz, S.; Preda, M.; Baroncini, V.; Budagavi, M.; Cesar, P.; Chou, P., A.; Cohen, R., A.; Krivokuca, M.; Lasserre, S.; Li, Z.; Llach, J.; Mammou, K.; Mekuria, R.; Nakagami, O.; Siahaan, E.; Tabatabai, A.; Tourapis, A., M.; and Zakharchenko, V. IEEE Journal on Emerging and Selected Topics in Circuits and Systems, 9(1): 133-148. 2019.
Emerging MPEG Standards for Point Cloud Compression [pdf]Paper   doi   link   bibtex   abstract  
Point2Sequence: Learning the shape representation of 3D point clouds with an attention-based sequence to sequence network. Liu, X.; Han, Z.; Liu, Y., S.; and Zwicker, M. 33rd AAAI Conference on Artificial Intelligence, AAAI 2019, 31st Innovative Applications of Artificial Intelligence Conference, IAAI 2019 and the 9th AAAI Symposium on Educational Advances in Artificial Intelligence, EAAI 2019,8778-8785. 2019.
Point2Sequence: Learning the shape representation of 3D point clouds with an attention-based sequence to sequence network [pdf]Paper   doi   link   bibtex   abstract  
Deep point-based scene labeling with depth mapping and geometric patch feature encoding. Cai, J., X.; Mu, T., J.; Lai, Y., K.; and Hu, S., M. Graphical Models, 104(February): 101033. 2019.
Deep point-based scene labeling with depth mapping and geometric patch feature encoding [pdf]Paper   Deep point-based scene labeling with depth mapping and geometric patch feature encoding [link]Website   doi   link   bibtex   abstract  
Diagnosing and enhancing VAE models. Dai, B.; and Wipf, D. 7th International Conference on Learning Representations, ICLR 2019,1-44. 2019.
Diagnosing and enhancing VAE models [pdf]Paper   link   bibtex   abstract  
Non-local Attention Optimized Deep Image Compression. Liu, H.; Chen, T.; Guo, P.; Shen, Q.; Cao, X.; Wang, Y.; and Ma, Z. arXiv:1904.09757 [cs, eess]. 4 2019.
Non-local Attention Optimized Deep Image Compression [pdf]Paper   Non-local Attention Optimized Deep Image Compression [link]Website   link   bibtex   abstract  
Adversarial Autoencoders for Compact Representations of 3D Point Clouds. Zamorski, M.; Zięba, M.; Klukowski, P.; Nowak, R.; Kurach, K.; Stokowiec, W.; and Trzciński, T. arXiv:1811.07605 [cs, stat]. 5 2019.
Adversarial Autoencoders for Compact Representations of 3D Point Clouds [pdf]Paper   Adversarial Autoencoders for Compact Representations of 3D Point Clouds [link]Website   link   bibtex   abstract  
A Variational Observation Model of 3D Object for Probabilistic Semantic SLAM. Yu, H., W.; Moon, J., Y.; and Lee, B., H. In 2019 International Conference on Robotics and Automation (ICRA), pages 5866-5872, 5 2019.
A Variational Observation Model of 3D Object for Probabilistic Semantic SLAM [pdf]Paper   doi   link   bibtex   abstract  
Set Transformer: A Framework for Attention-based Permutation-Invariant Neural Networks. Lee, J.; Lee, Y.; Kim, J.; Kosiorek, A.; Choi, S.; and Teh, Y., W. In Proceedings of the 36th International Conference on Machine Learning, pages 3744-3753, 5 2019. PMLR
Set Transformer: A Framework for Attention-based Permutation-Invariant Neural Networks [pdf]Paper   Set Transformer: A Framework for Attention-based Permutation-Invariant Neural Networks [link]Website   link   bibtex   abstract  
Multi-Stage Variational Auto-Encoders for Coarse-to-Fine Image Generation. Cai, L.; Gao, H.; and Ji, S. of Proceedings. Proceedings of the 2019 SIAM International Conference on Data Mining (SDM), pages 630-638. Society for Industrial and Applied Mathematics, 5 2019.
Proceedings of the 2019 SIAM International Conference on Data Mining (SDM) [pdf]Paper   Proceedings of the 2019 SIAM International Conference on Data Mining (SDM) [link]Website   doi   link   bibtex   abstract  
BERT: Pre-training of Deep Bidirectional Transformers for Language Understanding. Devlin, J.; Chang, M.; Lee, K.; and Toutanova, K. arXiv:1810.04805 [cs]. 5 2019.
BERT: Pre-training of Deep Bidirectional Transformers for Language Understanding [pdf]Paper   BERT: Pre-training of Deep Bidirectional Transformers for Language Understanding [link]Website   link   bibtex   abstract  
Under canopy light detection and ranging-based autonomous navigation. Higuti, V., A., H.; Velasquez, A., E., B.; Magalhaes, D., V.; Becker, M.; and Chowdhary, G. Journal of Field Robotics, 36(3): 547-567. 2019.
Under canopy light detection and ranging-based autonomous navigation [pdf]Paper   Under canopy light detection and ranging-based autonomous navigation [link]Website   doi   link   bibtex   abstract  
Cross-Atlas Convolution for Parameterization Invariant Learning on Textured Mesh Surface. Li, S.; Luo, Z.; Zhen, M.; Yao, Y.; Shen, T.; Fang, T.; and Quan, L. In pages 6143-6152, 2019.
Cross-Atlas Convolution for Parameterization Invariant Learning on Textured Mesh Surface [pdf]Paper   Cross-Atlas Convolution for Parameterization Invariant Learning on Textured Mesh Surface [link]Website   link   bibtex  
On the Continuity of Rotation Representations in Neural Networks. Zhou, Y.; Barnes, C.; Lu, J.; Yang, J.; and Li, H. In pages 5745-5753, 2019.
On the Continuity of Rotation Representations in Neural Networks [pdf]Paper   On the Continuity of Rotation Representations in Neural Networks [link]Website   link   bibtex  
3D Point Cloud Generative Adversarial Network Based on Tree Structured Graph Convolutions. Shu, D., W.; Park, S., W.; and Kwon, J. In pages 3859-3868, 2019.
3D Point Cloud Generative Adversarial Network Based on Tree Structured Graph Convolutions [pdf]Paper   3D Point Cloud Generative Adversarial Network Based on Tree Structured Graph Convolutions [link]Website   link   bibtex  
GANomaly: Semi-supervised Anomaly Detection via Adversarial Training. Akcay, S.; Atapour-Abarghouei, A.; and Breckon, T., P. In Jawahar, C., V.; Li, H.; Mori, G.; and Schindler, K., editor(s), Computer Vision – ACCV 2018, of Lecture Notes in Computer Science, pages 622-637, 2019. Springer International Publishing
GANomaly: Semi-supervised Anomaly Detection via Adversarial Training [pdf]Paper   doi   link   bibtex   abstract  
Pluralistic Image Completion. Zheng, C.; Cham, T.; and Cai, J. In pages 1438-1447, 2019.
Pluralistic Image Completion [pdf]Paper   Pluralistic Image Completion [link]Website   link   bibtex  
VV-Net: Voxel VAE Net with Group Convolutions for Point Cloud Segmentation. Meng, H.; Gao, L.; Lai, Y.; and Manocha, D. arXiv:1811.04337 [cs]. 8 2019.
VV-Net: Voxel VAE Net with Group Convolutions for Point Cloud Segmentation [pdf]Paper   VV-Net: Voxel VAE Net with Group Convolutions for Point Cloud Segmentation [link]Website   link   bibtex   abstract  
AMASS: Archive of Motion Capture As Surface Shapes. Mahmood, N.; Ghorbani, N.; Troje, N., F.; Pons-Moll, G.; and Black, M., J. In pages 5442-5451, 2019.
AMASS: Archive of Motion Capture As Surface Shapes [pdf]Paper   AMASS: Archive of Motion Capture As Surface Shapes [link]Website   link   bibtex  
Point-To-Pose Voting Based Hand Pose Estimation Using Residual Permutation Equivariant Layer. Li, S.; and Lee, D. In pages 11927-11936, 2019.
Point-To-Pose Voting Based Hand Pose Estimation Using Residual Permutation Equivariant Layer [pdf]Paper   Point-To-Pose Voting Based Hand Pose Estimation Using Residual Permutation Equivariant Layer [link]Website   link   bibtex  
Zero-shot Learning via Simultaneous Generating and Learning. Yu, H.; and Lee, B. In Advances in Neural Information Processing Systems, volume 32, 2019. Curran Associates, Inc.
Zero-shot Learning via Simultaneous Generating and Learning [pdf]Paper   Zero-shot Learning via Simultaneous Generating and Learning [link]Website   link   bibtex  
Discriminative regularization of the latent manifold of variational auto-encoders. Kossyk, I.; and Márton, Z. Journal of Visual Communication and Image Representation, 61: 121-129. 5 2019.
Discriminative regularization of the latent manifold of variational auto-encoders [pdf]Paper   Discriminative regularization of the latent manifold of variational auto-encoders [link]Website   doi   link   bibtex   abstract  
Learning Time-Series Data of Industrial Design Optimization using Recurrent Neural Networks. Saha, S.; Rios, T.; Menzel, S.; Sendhoff, B.; Bäck, T.; Yao, X.; Xu, Z.; and Wollstadt, P. In 2019 International Conference on Data Mining Workshops (ICDMW), pages 785-792, 11 2019.
Learning Time-Series Data of Industrial Design Optimization using Recurrent Neural Networks [pdf]Paper   doi   link   bibtex   abstract  
On the Potential and Challenges of Neural Style Transfer for Three-Dimensional Shape Data. Friedrich, T.; Aulig, N.; and Menzel, S. pages 581-592. 1 2019.
doi   link   bibtex   abstract  
Deep Set Prediction Networks. Zhang, Y.; Hare, J.; and Prugel-Bennett, A. In Advances in Neural Information Processing Systems, volume 32, 2019. Curran Associates, Inc.
Deep Set Prediction Networks [pdf]Paper   Deep Set Prediction Networks [link]Website   link   bibtex  
PartNet: A Large-Scale Benchmark for Fine-Grained and Hierarchical Part-Level 3D Object Understanding. Mo, K.; Zhu, S.; Chang, A., X.; Yi, L.; Tripathi, S.; Guibas, L., J.; and Su, H. In pages 909-918, 2019.
PartNet: A Large-Scale Benchmark for Fine-Grained and Hierarchical Part-Level 3D Object Understanding [pdf]Paper   PartNet: A Large-Scale Benchmark for Fine-Grained and Hierarchical Part-Level 3D Object Understanding [link]Website   link   bibtex  
Superquadrics Revisited: Learning 3D Shape Parsing Beyond Cuboids. Paschalidou, D.; Ulusoy, A., O.; and Geiger, A. In pages 10344-10353, 2019.
Superquadrics Revisited: Learning 3D Shape Parsing Beyond Cuboids [pdf]Paper   Superquadrics Revisited: Learning 3D Shape Parsing Beyond Cuboids [link]Website   link   bibtex  
Learning Trajectory Dependencies for Human Motion Prediction. Mao, W.; Liu, M.; Salzmann, M.; and Li, H. In pages 9489-9497, 2019.
Learning Trajectory Dependencies for Human Motion Prediction [pdf]Paper   Learning Trajectory Dependencies for Human Motion Prediction [link]Website   link   bibtex  
Tracking Error Learning Control for Precise Mobile Robot Path Tracking in Outdoor Environment. Kayacan, E.; and Chowdhary, G. Journal of Intelligent \& Robotic Systems, 95(3): 975-986. 9 2019.
Tracking Error Learning Control for Precise Mobile Robot Path Tracking in Outdoor Environment [pdf]Paper   Tracking Error Learning Control for Precise Mobile Robot Path Tracking in Outdoor Environment [link]Website   doi   link   bibtex   abstract  
Multi-Angle Point Cloud-VAE: Unsupervised Feature Learning for 3D Point Clouds From Multiple Angles by Joint Self-Reconstruction and Half-to-Half Prediction. Han, Z.; Wang, X.; Liu, Y.; and Zwicker, M. In 2019 IEEE/CVF International Conference on Computer Vision (ICCV), pages 10441-10450, 10 2019.
Multi-Angle Point Cloud-VAE: Unsupervised Feature Learning for 3D Point Clouds From Multiple Angles by Joint Self-Reconstruction and Half-to-Half Prediction [pdf]Paper   doi   link   bibtex   abstract  
Deep Multimodal Representation Learning: A Survey. Guo, W.; Wang, J.; and Wang, S. IEEE Access, 7: 63373-63394. 2019.
Deep Multimodal Representation Learning: A Survey [pdf]Paper   doi   link   bibtex   abstract  
3D MRI Brain Tumor Segmentation Using Autoencoder Regularization. Myronenko, A. In Crimi, A.; Bakas, S.; Kuijf, H.; Keyvan, F.; Reyes, M.; and van Walsum, T., editor(s), Brainlesion: Glioma, Multiple Sclerosis, Stroke and Traumatic Brain Injuries, of Lecture Notes in Computer Science, pages 311-320, 2019. Springer International Publishing
3D MRI Brain Tumor Segmentation Using Autoencoder Regularization [pdf]Paper   doi   link   bibtex   abstract  
PointFlow: 3D Point Cloud Generation With Continuous Normalizing Flows. Yang, G.; Huang, X.; Hao, Z.; Liu, M.; Belongie, S.; and Hariharan, B. In pages 4541-4550, 2019.
PointFlow: 3D Point Cloud Generation With Continuous Normalizing Flows [pdf]Paper   PointFlow: 3D Point Cloud Generation With Continuous Normalizing Flows [link]Website   link   bibtex  
PartNet: A Recursive Part Decomposition Network for Fine-Grained and Hierarchical Shape Segmentation. Yu, F.; Liu, K.; Zhang, Y.; Zhu, C.; and Xu, K. In pages 9491-9500, 2019.
PartNet: A Recursive Part Decomposition Network for Fine-Grained and Hierarchical Shape Segmentation [pdf]Paper   PartNet: A Recursive Part Decomposition Network for Fine-Grained and Hierarchical Shape Segmentation [link]Website   link   bibtex  
On the Efficiency of a Point Cloud Autoencoder as a Geometric Representation for Shape Optimization. Rios, T.; Sendhoff, B.; Menzel, S.; Bäck, T.; and van Stein, B. In 2019 IEEE Symposium Series on Computational Intelligence (SSCI), pages 791-798, 12 2019.
On the Efficiency of a Point Cloud Autoencoder as a Geometric Representation for Shape Optimization [pdf]Paper   doi   link   bibtex   abstract  
StructureNet: Hierarchical Graph Networks for 3D Shape Generation. Mo, K.; Guerrero, P.; Yi, L.; Su, H.; Wonka, P.; Mitra, N.; and Guibas, L., J. arXiv:1908.00575 [cs]. 8 2019.
StructureNet: Hierarchical Graph Networks for 3D Shape Generation [pdf]Paper   StructureNet: Hierarchical Graph Networks for 3D Shape Generation [link]Website   link   bibtex   abstract  
Scalability of Learning Tasks on 3D CAE Models Using Point Cloud Autoencoders. Rios, T.; Wollstadt, P.; Stein, B., v.; Bäck, T.; Xu, Z.; Sendhoff, B.; and Menzel, S. In 2019 IEEE Symposium Series on Computational Intelligence (SSCI), pages 1367-1374, 12 2019.
Scalability of Learning Tasks on 3D CAE Models Using Point Cloud Autoencoders [pdf]Paper   doi   link   bibtex   abstract  
A comprehensive survey on impulse and Gaussian denoising filters for digital images. Mafi, M.; Martin, H.; Cabrerizo, M.; Andrian, J.; Barreto, A.; and Adjouadi, M. Signal Processing, 157: 236-260. 2019.
A comprehensive survey on impulse and Gaussian denoising filters for digital images [pdf]Paper   A comprehensive survey on impulse and Gaussian denoising filters for digital images [link]Website   doi   link   bibtex   abstract  
Inductive t-SNE via deep learning to visualize multi-label images. Roman-Rangel, E.; and Marchand-Maillet, S. Engineering Applications of Artificial Intelligence, 81(March): 336-345. 2019.
Inductive t-SNE via deep learning to visualize multi-label images [pdf]Paper   Inductive t-SNE via deep learning to visualize multi-label images [link]Website   doi   link   bibtex   abstract  
Process monitoring using variational autoencoder for high-dimensional nonlinear processes. Lee, S.; Kwak, M.; Tsui, K., L.; and Kim, S., B. Engineering Applications of Artificial Intelligence, 83(May): 13-27. 2019.
Process monitoring using variational autoencoder for high-dimensional nonlinear processes [pdf]Paper   Process monitoring using variational autoencoder for high-dimensional nonlinear processes [link]Website   doi   link   bibtex   abstract  
A review of state-of-the-art techniques for abnormal human activity recognition. Dhiman, C.; and Vishwakarma, D., K. Engineering Applications of Artificial Intelligence, 77(July 2017): 21-45. 2019.
A review of state-of-the-art techniques for abnormal human activity recognition [pdf]Paper   A review of state-of-the-art techniques for abnormal human activity recognition [link]Website   doi   link   bibtex   abstract  
Industry 4.0: A bibliometric analysis and detailed overview. Muhuri, P., K.; Shukla, A., K.; and Abraham, A. Engineering Applications of Artificial Intelligence, 78(September 2018): 218-235. 2019.
Industry 4.0: A bibliometric analysis and detailed overview [pdf]Paper   Industry 4.0: A bibliometric analysis and detailed overview [link]Website   doi   link   bibtex   abstract  
Srinet: Learning strictly rotation-invariant representations for point cloud classification and segmentation. Sun, X.; Lian, Z.; and Xiao, J. MM 2019 - Proceedings of the 27th ACM International Conference on Multimedia,980-988. 2019.
Srinet: Learning strictly rotation-invariant representations for point cloud classification and segmentation [pdf]Paper   doi   link   bibtex   abstract  
Rotation Invariant Convolutions for 3D Point Clouds Deep Learning. Zhang, Z.; Hua, B., S.; Rosen, D., W.; and Yeung, S., K. Proceedings - 2019 International Conference on 3D Vision, 3DV 2019,204-213. 2019.
Rotation Invariant Convolutions for 3D Point Clouds Deep Learning [pdf]Paper   doi   link   bibtex   abstract  
Generating 3D Adversarial Point Clouds. Qi, C., R.; and Li, B. ,9136-9144. 2019.
Generating 3D Adversarial Point Clouds [pdf]Paper   link   bibtex  
Adversarial Attack and Defense on Point Sets. Yang, J.; Zhang, Q.; Fang, R.; Ni, B.; Liu, J.; and Tian, Q. ,1-17. 2019.
Adversarial Attack and Defense on Point Sets [pdf]Paper   link   bibtex  
3D Point Capsule Networks Supplementary Material. Zhao, Y.; Deng, H.; Tombari, F.; Universit, T.; and Ag, S. Cvpr,2-6. 2019.
3D Point Capsule Networks Supplementary Material [pdf]Paper   link   bibtex   abstract  
PU-GAN: A point cloud upsampling adversarial network. Li, R.; Li, X.; Fu, C., W.; Cohen-Or, D.; and Heng, P., A. Proceedings of the IEEE International Conference on Computer Vision, 2019-Octob(c): 7202-7211. 2019.
PU-GAN: A point cloud upsampling adversarial network [pdf]Paper   doi   link   bibtex   abstract  
Topnet: Structural point cloud decoder. Tchapmi, L., P.; Kosaraju, V.; Rezatofighi, H.; Reid, I.; and Savarese, S. Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, 2019-June: 383-392. 2019.
Topnet: Structural point cloud decoder [pdf]Paper   doi   link   bibtex   abstract  
Learning implicit fields for generative shape modeling. Chen, Z.; and Zhang, H. Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, 2019-June: 5932-5941. 2019.
Learning implicit fields for generative shape modeling [pdf]Paper   doi   link   bibtex   abstract  
3D scene reconstruction with multi-layer depth and epipolar transformers. Shin, D.; Ren, Z.; Sudderth, E.; and Fowlkes, C. Proceedings of the IEEE International Conference on Computer Vision, 2019-Octob: 2172-2182. 2019.
3D scene reconstruction with multi-layer depth and epipolar transformers [pdf]Paper   doi   link   bibtex   abstract  
What do single-view 3D reconstruction networks learn?. Tatarchenko, M.; Richter, S., R.; Ranftl, R.; Li, Z.; Koltun, V.; and Brox, T. Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, 2019-June: 3400-3409. 2019.
What do single-view 3D reconstruction networks learn? [pdf]Paper   doi   link   bibtex   abstract  
MVPNet: Multi-view point regression networks for 3D object reconstruction from a single image. Wang, J.; Sun, B.; and Lu, Y. 33rd AAAI Conference on Artificial Intelligence, AAAI 2019, 31st Innovative Applications of Artificial Intelligence Conference, IAAI 2019 and the 9th AAAI Symposium on Educational Advances in Artificial Intelligence, EAAI 2019,8949-8956. 2019.
MVPNet: Multi-view point regression networks for 3D object reconstruction from a single image [pdf]Paper   doi   link   bibtex   abstract  
Effective Rotation-Invariant Point CNN with Spherical Harmonics Kernels. Poulenard, A.; Rakotosaona, M., J.; Ponty, Y.; and Ovsjanikov, M. Proceedings - 2019 International Conference on 3D Vision, 3DV 2019,47-56. 2019.
doi   link   bibtex   abstract  
Effective Rotation-Invariant Point CNN with Spherical Harmonics Kernels. Poulenard, A.; Rakotosaona, M., J.; Ponty, Y.; and Ovsjanikov, M. Proceedings - 2019 International Conference on 3D Vision, 3DV 2019,47-56. 2019.
Effective Rotation-Invariant Point CNN with Spherical Harmonics Kernels [pdf]Paper   doi   link   bibtex   abstract  
Registration of point cloud data for matching crushed sand particles. Wu, M.; and Wang, J. Powder Technology, 347: 227-242. 2019.
Registration of point cloud data for matching crushed sand particles [pdf]Paper   Registration of point cloud data for matching crushed sand particles [link]Website   doi   link   bibtex   abstract  
A Novel Recognition Algorithm in 3D Point Clouds based for on Local Spherical Harmonics. Hui, C.; Wang, R.; Wen, X.; Zhao, J.; Chen, W.; and Zhang, X. Proceedings of 2019 IEEE International Conference on Mechatronics and Automation, ICMA 2019,1041-1046. 2019.
A Novel Recognition Algorithm in 3D Point Clouds based for on Local Spherical Harmonics [pdf]Paper   doi   link   bibtex   abstract  
Why Compete When You Can Work Together: FPGA-ASIC Integration for Persistent RNNs. Nurvitadhi, E.; Kwon, D.; Jafari, A.; Boutros, A.; Sim, J.; Tomson, P.; Sumbul, H.; Chen, G.; Knag, P.; Kumar, R.; Krishnamurthy, R.; Gribok, S.; Pasca, B.; Langhammer, M.; Marr, D.; and Dasu, A. In Proceedings - 27th IEEE International Symposium on Field-Programmable Custom Computing Machines, FCCM 2019, pages 199-207, 4 2019. Institute of Electrical and Electronics Engineers Inc.
Why Compete When You Can Work Together: FPGA-ASIC Integration for Persistent RNNs [pdf]Paper   doi   link   bibtex   abstract  
  2018 (164)
Accurate Measurements with Off-the-Shelf Range Cameras. Fakult, D., T.; and Peter, F. ,139. 2018.
Accurate Measurements with Off-the-Shelf Range Cameras [pdf]Paper   link   bibtex  
PCPNet learning local shape properties from raw point clouds. Guerrero, P.; Kleiman, Y.; Ovsjanikov, M.; and Mitra, N., J. Computer Graphics Forum, 37(2): 75-85. 2018.
PCPNet learning local shape properties from raw point clouds [pdf]Paper   doi   link   bibtex   abstract  
Deep End-to-End Time-of-Flight Imaging (Supplemental Material). Su, S.; Heide, U., F.; Wetzstein, G.; and Heidrich Kaust, W. . 2018.
Deep End-to-End Time-of-Flight Imaging (Supplemental Material) [pdf]Paper   link   bibtex   abstract  
Tackling 3D ToF Artifacts Through Learning and the FLAT Dataset. Guo, Q.; Frosio, I.; Gallo, O.; Zickler, T.; and Kautz, J. Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), 11205 LNCS: 381-396. 2018.
Tackling 3D ToF Artifacts Through Learning and the FLAT Dataset [pdf]Paper   doi   link   bibtex   abstract  
Tackling 3D ToF Artifacts Through Learning and the FLAT Dataset. Guo, Q.; Frosio, I.; Gallo, O.; Zickler, T.; and Kautz, J. In Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), 2018.
doi   link   bibtex   abstract  
Learn-to-score: Efficient 3D scene exploration by predicting view utility. Hepp, B.; Dey, D.; Sinha, S., N.; Kapoor, A.; Joshi, N.; and Hilliges, O. Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), 11219 LNCS: 455-472. 2018.
Learn-to-score: Efficient 3D scene exploration by predicting view utility [pdf]Paper   doi   link   bibtex   abstract  
PIXOR: Real-time 3D Object Detection from Point Clouds. Yang, B.; Luo, W.; and Urtasun, R. Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition,7652-7660. 2018.
PIXOR: Real-time 3D Object Detection from Point Clouds [pdf]Paper   doi   link   bibtex   abstract  
Efficient convolutions for real-time semantic segmentation of 3D point clouds. Zhang, C.; Luo, W.; and Urtasun, R. Proceedings - 2018 International Conference on 3D Vision, 3DV 2018,399-408. 2018.
Efficient convolutions for real-time semantic segmentation of 3D point clouds [pdf]Paper   doi   link   bibtex   abstract  
3d-sis: 3d semantic instance segmentation of rgb-d scans. Hou, J.; Dai, A.; and Nießner, M. 2018.
3d-sis: 3d semantic instance segmentation of rgb-d scans [pdf]Paper   link   bibtex   abstract  
GeoNet: Geometric Neural Network for Joint Depth and Surface Normal Estimation. Qi, X.; Liao, R.; Liu, Z.; Urtasun, R.; and Jia, J. Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition,283-291. 2018.
GeoNet: Geometric Neural Network for Joint Depth and Surface Normal Estimation [pdf]Paper   doi   link   bibtex   abstract  
CS229 Final Project - Improving LiDAR Point Cloud Classification of Urban Objects. Wang, P., Y.; and Gosakti, T. , (NeurIPS). 2018.
CS229 Final Project - Improving LiDAR Point Cloud Classification of Urban Objects [pdf]Paper   link   bibtex  
ODDS: Real-Time Object Detection Using Depth Sensors on Embedded GPUs. Mithun, N., C.; Munir, S.; Guo, K.; and Shelton, C. Proceedings - 17th ACM/IEEE International Conference on Information Processing in Sensor Networks, IPSN 2018,230-241. 2018.
ODDS: Real-Time Object Detection Using Depth Sensors on Embedded GPUs [pdf]Paper   doi   link   bibtex   abstract  
Deep End-to-End Time-of-Flight Imaging. Su, S.; Heide, F.; Wetzstein, G.; and Heidrich, W. . 2018.
Deep End-to-End Time-of-Flight Imaging [pdf]Paper   doi   link   bibtex  
PlaneRCNN: 3D plane detection and reconstruction from a single image. Liu, C.; Kim, K.; Gu, J.; Furukawa, Y.; and Kautz, J. arXiv,4450-4459. 2018.
PlaneRCNN: 3D plane detection and reconstruction from a single image [pdf]Paper   link   bibtex   abstract  
3D object classification via spherical projections. Cao, Z.; Huang, Q.; and Karthik, R. Proceedings - 2017 International Conference on 3D Vision, 3DV 2017,566-574. 2018.
3D object classification via spherical projections [pdf]Paper   doi   link   bibtex   abstract  
3D Object Classification Using Geometric Features and Pairwise Relationships. Ma, L.; Sacks, R.; Kattel, U.; and Bloch, T. Computer-Aided Civil and Infrastructure Engineering, 33(2): 152-164. 2018.
3D Object Classification Using Geometric Features and Pairwise Relationships [pdf]Paper   doi   link   bibtex   abstract  
An egg volume measurement system based on the microsoft kinect. Chan, T., O.; Lichti, D., D.; Jahraus, A.; Esfandiari, H.; Lahamy, H.; Steward, J.; and Glanzer, M. Sensors (Switzerland), 18(8). 2018.
An egg volume measurement system based on the microsoft kinect [pdf]Paper   doi   link   bibtex   abstract  
Minimum elastic bounding box algorithm for dimension detection of 3D objects: A case of airline baggage measurement. Gao, Q.; Yin, D.; Luo, Q.; and Liu, J. IET Image Processing, 12(8): 1313-1321. 2018.
Minimum elastic bounding box algorithm for dimension detection of 3D objects: A case of airline baggage measurement [pdf]Paper   doi   link   bibtex   abstract  
A minimalist approach to type-agnostic detection of quadrics in point clouds. Birdal, T.; Busam, B.; Navab, N.; Ilic, S.; and Sturm, P. arXiv. 2018.
A minimalist approach to type-agnostic detection of quadrics in point clouds [pdf]Paper   link   bibtex   abstract  
Shufflenet V2: Practical guidelines for efficient cnn architecture design. Ma, N.; Zhang, X.; Zheng, H., T.; and Sun, J. In Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), volume 11218 LNCS, pages 122-138, 7 2018. Springer Verlag
Shufflenet V2: Practical guidelines for efficient cnn architecture design [pdf]Paper   Shufflenet V2: Practical guidelines for efficient cnn architecture design [link]Website   doi   link   bibtex   abstract  
AMC: AutoML for model compression and acceleration on mobile devices. He, Y.; Lin, J.; Liu, Z.; Wang, H.; Li, L., J.; and Han, S. In Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), volume 11211 LNCS, pages 815-832, 2 2018. Springer Verlag
AMC: AutoML for model compression and acceleration on mobile devices [pdf]Paper   AMC: AutoML for model compression and acceleration on mobile devices [link]Website   doi   link   bibtex   abstract  
HAQ: Hardware-Aware Automated Quantization with Mixed Precision. Wang, K.; Liu, Z.; Lin, Y.; Lin, J.; and Han, S. . 11 2018.
HAQ: Hardware-Aware Automated Quantization with Mixed Precision [link]Website   link   bibtex  
Shufflenet V2: Practical guidelines for efficient cnn architecture design. Ma, N.; Zhang, X.; Zheng, H., T.; and Sun, J. In Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), volume 11218 LNCS, pages 122-138, 7 2018. Springer Verlag
Shufflenet V2: Practical guidelines for efficient cnn architecture design [link]Website   doi   link   bibtex   abstract  
MobileNetV2: Inverted Residuals and Linear Bottlenecks. Sandler, M.; Howard, A.; Zhu, M.; Zhmoginov, A.; and Chen, L., C. In Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, pages 4510-4520, 12 2018. IEEE Computer Society
MobileNetV2: Inverted Residuals and Linear Bottlenecks [link]Website   doi   link   bibtex   abstract  
ShuffleNet: An Extremely Efficient Convolutional Neural Network for Mobile Devices. Zhang, X.; Zhou, X.; Lin, M.; and Sun, J. In Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, pages 6848-6856, 12 2018. IEEE Computer Society
ShuffleNet: An Extremely Efficient Convolutional Neural Network for Mobile Devices [pdf]Paper   ShuffleNet: An Extremely Efficient Convolutional Neural Network for Mobile Devices [link]Website   doi   link   bibtex   abstract  
AMC: AutoML for model compression and acceleration on mobile devices. He, Y.; Lin, J.; Liu, Z.; Wang, H.; Li, L., J.; and Han, S. In Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), volume 11211 LNCS, pages 815-832, 2 2018. Springer Verlag
AMC: AutoML for model compression and acceleration on mobile devices [pdf]Paper   AMC: AutoML for model compression and acceleration on mobile devices [link]Website   doi   link   bibtex   abstract  
HAQ: Hardware-Aware Automated Quantization with Mixed Precision. Wang, K.; Liu, Z.; Lin, Y.; Lin, J.; and Han, S. Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, 2019-June: 8604-8612. 11 2018.
HAQ: Hardware-Aware Automated Quantization with Mixed Precision [pdf]Paper   HAQ: Hardware-Aware Automated Quantization with Mixed Precision [link]Website   link   bibtex   abstract  
ShuffleNet V2: Practical Guidelines for Efficient CNN Architecture Design. Ma, N.; Zhang, X.; Zheng, H.; and Sun, J. Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), 11218 LNCS: 122-138. 7 2018.
ShuffleNet V2: Practical Guidelines for Efficient CNN Architecture Design [link]Website   link   bibtex   abstract  
MobileNetV2: Inverted Residuals and Linear Bottlenecks. Sandler, M.; Howard, A.; Zhu, M.; Zhmoginov, A.; and Chen, L. Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition,4510-4520. 1 2018.
MobileNetV2: Inverted Residuals and Linear Bottlenecks [pdf]Paper   MobileNetV2: Inverted Residuals and Linear Bottlenecks [link]Website   link   bibtex   abstract  
ShuffleNet: An Extremely Efficient Convolutional Neural Network for Mobile Devices. Zhang, X.; Zhou, X.; Lin, M.; and Sun, J. In Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, pages 6848-6856, 12 2018. IEEE Computer Society
ShuffleNet: An Extremely Efficient Convolutional Neural Network for Mobile Devices [pdf]Paper   ShuffleNet: An Extremely Efficient Convolutional Neural Network for Mobile Devices [link]Website   doi   link   bibtex   abstract  
SpiderCNN: Deep learning on point sets with parameterized convolutional filters. Xu, Y.; Fan, T.; Xu, M.; Zeng, L.; and Qiao, Y. In Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), volume 11212 LNCS, pages 90-105, 3 2018. Springer Verlag
SpiderCNN: Deep learning on point sets with parameterized convolutional filters [pdf]Paper   SpiderCNN: Deep learning on point sets with parameterized convolutional filters [link]Website   doi   link   bibtex   abstract  
Frustum PointNets for 3D Object Detection from RGB-D Data. Qi, C., R.; Liu, W.; Wu, C.; Su, H.; and Guibas, L., J. In Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, pages 918-927, 12 2018. IEEE Computer Society
Frustum PointNets for 3D Object Detection from RGB-D Data [pdf]Paper   Frustum PointNets for 3D Object Detection from RGB-D Data [link]Website   doi   link   bibtex   abstract  
Recurrent Slice Networks for 3D Segmentation of Point Clouds. Huang, Q.; Wang, W.; and Neumann, U. In Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, pages 2626-2635, 12 2018. IEEE Computer Society
Recurrent Slice Networks for 3D Segmentation of Point Clouds [pdf]Paper   Recurrent Slice Networks for 3D Segmentation of Point Clouds [link]Website   doi   link   bibtex   abstract  
PointCNN: Convolution On $\mathcalX$-Transformed Points. Li, Y.; Bu, R.; Sun, M.; Wu, W.; Di, X.; and Chen, B. arXiv,1-11. 1 2018.
PointCNN: Convolution On $\mathcalX$-Transformed Points [pdf]Paper   PointCNN: Convolution On $\mathcalX$-Transformed Points [link]Website   link   bibtex   abstract  
GPU-Accelerated Next-Best-View Coverage of Articulated Scenes. Obwald, S.; and Bennewitz, M. IEEE International Conference on Intelligent Robots and Systems,8315-8322. 2018.
GPU-Accelerated Next-Best-View Coverage of Articulated Scenes [pdf]Paper   doi   link   bibtex   abstract  
New discretization method applied to NBV problem: Semioctree. González-DeSantos, L., M.; Martínez-Sánchez, J.; González-Jorge, H.; Díaz-Vilariño, L.; and Riveiro, B. PLoS ONE, 13(11): 1-20. 2018.
New discretization method applied to NBV problem: Semioctree [pdf]Paper   doi   link   bibtex   abstract  
A comparison of volumetric information gain metrics for active 3D object reconstruction. Delmerico, J.; Isler, S.; Sabzevari, R.; and Scaramuzza, D. Autonomous Robots, 42(2): 197-208. 2018.
A comparison of volumetric information gain metrics for active 3D object reconstruction [pdf]Paper   doi   link   bibtex   abstract  
IHuman3D: Intelligent human body 3d reconstruction using a single flying camera. Cheng, W.; Xu, L.; Han, L.; Guo, Y.; and Fang, L. MM 2018 - Proceedings of the 2018 ACM Multimedia Conference, 2: 1733-1741. 2018.
IHuman3D: Intelligent human body 3d reconstruction using a single flying camera [pdf]Paper   doi   link   bibtex   abstract  
Surfel-based next best view planning. Monica, R.; and Aleotti, J. IEEE Robotics and Automation Letters, 3(4): 3324-3331. 2018.
Surfel-based next best view planning [pdf]Paper   doi   link   bibtex   abstract  
Contour-based next-best view planning from point cloud segmentation of unknown objects. Monica, R.; and Aleotti, J. Autonomous Robots, 42(2): 443-458. 2018.
Contour-based next-best view planning from point cloud segmentation of unknown objects [pdf]Paper   doi   link   bibtex   abstract  
Surface edge explorer (see): Planning next best views directly from 3d observations. Border, R.; Gammell, J., D.; and Newman, P. arXiv,6116-6123. 2018.
Surface edge explorer (see): Planning next best views directly from 3d observations [pdf]Paper   link   bibtex   abstract  
Quantizing deep convolutional networks for efficient inference: A whitepaper. Krishnamoorthi, R. arXiv. 6 2018.
Quantizing deep convolutional networks for efficient inference: A whitepaper [pdf]Paper   Quantizing deep convolutional networks for efficient inference: A whitepaper [link]Website   link   bibtex   abstract  
Shufflenet V2: Practical guidelines for efficient cnn architecture design. Ma, N.; Zhang, X.; Zheng, H., T.; and Sun, J. In Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), volume 11218 LNCS, pages 122-138, 7 2018. Springer Verlag
Shufflenet V2: Practical guidelines for efficient cnn architecture design [pdf]Paper   Shufflenet V2: Practical guidelines for efficient cnn architecture design [link]Website   doi   link   bibtex   abstract  
6D pose estimation using an improved method based on point pair features. Vidal, J.; Lin, C., Y.; and Martí, R. arXiv,455-460. 2018.
6D pose estimation using an improved method based on point pair features [pdf]Paper   link   bibtex   abstract  
6D pose estimation using an improved method based on point pair features. Vidal, J.; Lin, C., Y.; and Martí, R. arXiv,455-460. 2018.
6D pose estimation using an improved method based on point pair features [pdf]Paper   link   bibtex   abstract  
Point pair features based object recognition with improved training pipeline. Zhu, Y.; Zhang, X.; Zhu, L.; and Cai, Y. Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), 10985 LNAI: 357-366. 2018.
Point pair features based object recognition with improved training pipeline [pdf]Paper   doi   link   bibtex   abstract  
A performance evaluation of point pair features. Kiforenko, L.; Drost, B.; Tombari, F.; Krüger, N.; and Glent Buch, A. Computer Vision and Image Understanding, 166(November 2016): 66-80. 2018.
A performance evaluation of point pair features [pdf]Paper   A performance evaluation of point pair features [link]Website   doi   link   bibtex   abstract  
Instance-based object recognition in 3D point clouds using discriminative shape primitives. Zhang, J.; and Sun, J. Machine Vision and Applications, 29(2): 285-297. 2018.
Instance-based object recognition in 3D point clouds using discriminative shape primitives [pdf]Paper   Instance-based object recognition in 3D point clouds using discriminative shape primitives [link]Website   doi   link   bibtex   abstract  
Joint representation of primitive and non-primitive objects for 3D vision. Sommer, C.; and Cremers, D. Proceedings - 2018 International Conference on 3D Vision, 3DV 2018,160-169. 2018.
Joint representation of primitive and non-primitive objects for 3D vision [pdf]Paper   doi   link   bibtex   abstract  
Learning Transferable Architectures for Scalable Image Recognition. Zoph, B.; Vasudevan, V.; Shlens, J.; and Le, Q., V. In Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, pages 8697-8710, 12 2018. IEEE Computer Society
Learning Transferable Architectures for Scalable Image Recognition [pdf]Paper   Learning Transferable Architectures for Scalable Image Recognition [link]Website   doi   link   bibtex   abstract  
PCN: Point completion network. Yuan, W.; Khot, T.; Held, D.; Mertz, C.; and Hebert, M. Proceedings - 2018 International Conference on 3D Vision, 3DV 2018,728-737. 2018.
PCN: Point completion network [pdf]Paper   doi   link   bibtex   abstract  
SPLATNet: Sparse Lattice Networks for Point Cloud Processing. Su, H.; Jampani, V.; Sun, D.; Maji, S.; Kalogerakis, E.; Yang, M., H.; and Kautz, J. Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition,2530-2539. 2018.
SPLATNet: Sparse Lattice Networks for Point Cloud Processing [pdf]Paper   doi   link   bibtex   abstract  
PointPillars: Fast Encoders for Object Detection from Point Clouds. Lang, A., H.; Vora, S.; Caesar, H.; Zhou, L.; Yang, J.; and Beijbom, O. ,12697-12705. 2018.
PointPillars: Fast Encoders for Object Detection from Point Clouds [link]Website   link   bibtex   abstract  
SECOND : Sparsely Embedded. Detection, C.; Yan, Y.; Mao, Y.; and Li, B. ,1-17. 2018.
SECOND : Sparsely Embedded [pdf]Paper   doi   link   bibtex  
PointGrid: A Deep Network for 3D Shape Understanding. Le, T.; and Duan, Y. Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition,9204-9214. 2018.
PointGrid: A Deep Network for 3D Shape Understanding [pdf]Paper   doi   link   bibtex   abstract  
SO-Net: Self-Organizing Network for Point Cloud Analysis. Li, J.; Chen, B., M.; and Lee, G., H. Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition,9397-9406. 2018.
SO-Net: Self-Organizing Network for Point Cloud Analysis [pdf]Paper   doi   link   bibtex   abstract  
SPLATNet: Sparse Lattice Networks for Point Cloud Processing. Su, H.; Jampani, V.; Sun, D.; Maji, S.; Kalogerakis, E.; Yang, M., H.; and Kautz, J. arXiv,3. 2018.
SPLATNet: Sparse Lattice Networks for Point Cloud Processing [pdf]Paper   link   bibtex   abstract  
Guided 3D point cloud filtering. Han, X., F.; Jin, J., S.; Wang, M., J.; and Jiang, W. Multimedia Tools and Applications, 77(13): 17397-17411. 2018.
Guided 3D point cloud filtering [pdf]Paper   doi   link   bibtex   abstract  
US010097813B2. Maki, A.; Gb, C.; Gb, C.; Gb, C.; and Gb, C. , 2. 2018.
US010097813B2 [pdf]Paper   link   bibtex  
US009875554B2. Giacobbe, I., R., A.; and Mountain, S. , 2. 2018.
US009875554B2 [pdf]Paper   link   bibtex  
US20180025496A1. Improved, M., F., O., R. , 1. 2018.
US20180025496A1 [pdf]Paper   link   bibtex  
DDRNet: Depth map denoising and refinement for consumer depth cameras using cascaded CNNs. Yan, S.; Wu, C.; Wang, L.; Xu, F.; An, L.; Guo, K.; and Liu, Y. Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), 11214 LNCS: 155-171. 2018.
DDRNet: Depth map denoising and refinement for consumer depth cameras using cascaded CNNs [pdf]Paper   doi   link   bibtex   abstract  
DDRNet: Depth map denoising and refinement for consumer depth cameras using cascaded CNNs. Yan, S.; Wu, C.; Wang, L.; Xu, F.; An, L.; Guo, K.; and Liu, Y. Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), 11214 LNCS: 155-171. 2018.
DDRNet: Depth map denoising and refinement for consumer depth cameras using cascaded CNNs [pdf]Paper   doi   link   bibtex   abstract  
Towards efficient large-scale graph neural network computing. Ma, L.; Yang, Z.; Miao, Y.; Xue, J.; Wu, M.; Zhou, L.; and Dai, Y. arXiv. 2018.
Towards efficient large-scale graph neural network computing [pdf]Paper   link   bibtex   abstract  
A Graph-CNN for 3D Point Cloud Classification. Zhang, Y.; and Rabbat, M. ICASSP, IEEE International Conference on Acoustics, Speech and Signal Processing - Proceedings, 2018-April: 6279-6283. 2018.
A Graph-CNN for 3D Point Cloud Classification [pdf]Paper   doi   link   bibtex   abstract  
AMC: AutoML for Model Compression and Acceleration on Mobile Devices. He, Y.; Lin, J.; Liu, Z.; Wang, H.; Li, L.; and Han, S. Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), 11211 LNCS: 815-832. 2 2018.
AMC: AutoML for Model Compression and Acceleration on Mobile Devices [pdf]Paper   AMC: AutoML for Model Compression and Acceleration on Mobile Devices [link]Website   link   bibtex   abstract  
AMC: AutoML for Model Compression and Acceleration on Mobile Devices. He, Y.; Lin, J.; Liu, Z.; Wang, H.; Li, L.; and Han, S. Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), 11211 LNCS: 815-832. 2 2018.
AMC: AutoML for Model Compression and Acceleration on Mobile Devices [pdf]Paper   AMC: AutoML for Model Compression and Acceleration on Mobile Devices [link]Website   link   bibtex   abstract  
HAQ: Hardware-Aware Automated Quantization with Mixed Precision. Wang, K.; Liu, Z.; Lin, Y.; Lin, J.; and Han, S. Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, 2019-June: 8604-8612. 11 2018.
HAQ: Hardware-Aware Automated Quantization with Mixed Precision [pdf]Paper   HAQ: Hardware-Aware Automated Quantization with Mixed Precision [link]Website   link   bibtex   abstract  
Shufflenet V2: Practical guidelines for efficient cnn architecture design. Ma, N.; Zhang, X.; Zheng, H., T.; and Sun, J. In Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), volume 11218 LNCS, pages 122-138, 7 2018. Springer Verlag
Shufflenet V2: Practical guidelines for efficient cnn architecture design [pdf]Paper   Shufflenet V2: Practical guidelines for efficient cnn architecture design [link]Website   doi   link   bibtex   abstract  
MobileNetV2: Inverted Residuals and Linear Bottlenecks. Sandler, M.; Howard, A.; Zhu, M.; Zhmoginov, A.; and Chen, L., C. In Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, pages 4510-4520, 12 2018. IEEE Computer Society
MobileNetV2: Inverted Residuals and Linear Bottlenecks [pdf]Paper   MobileNetV2: Inverted Residuals and Linear Bottlenecks [link]Website   doi   link   bibtex   abstract  
ShuffleNet: An Extremely Efficient Convolutional Neural Network for Mobile Devices. Zhang, X.; Zhou, X.; Lin, M.; and Sun, J. In Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, pages 6848-6856, 12 2018. IEEE Computer Society
ShuffleNet: An Extremely Efficient Convolutional Neural Network for Mobile Devices [pdf]Paper   ShuffleNet: An Extremely Efficient Convolutional Neural Network for Mobile Devices [link]Website   doi   link   bibtex   abstract  
Graph attention networks. Veličković, P.; Casanova, A.; Liò, P.; Cucurull, G.; Romero, A.; and Bengio, Y. 6th International Conference on Learning Representations, ICLR 2018 - Conference Track Proceedings,1-12. 2018.
Graph attention networks [pdf]Paper   link   bibtex   abstract  
Iterative Transformer Network for 3D Point Cloud. Yuan, W.; Held, D.; Mertz, C.; and Hebert, M. . 2018.
Iterative Transformer Network for 3D Point Cloud [pdf]Paper   Iterative Transformer Network for 3D Point Cloud [link]Website   link   bibtex   abstract  
DeepLab: Semantic Image Segmentation with Deep Convolutional Nets, Atrous Convolution, and Fully Connected CRFs. Chen, L., C.; Papandreou, G.; Kokkinos, I.; Murphy, K.; and Yuille, A., L. IEEE Transactions on Pattern Analysis and Machine Intelligence, 40(4): 834-848. 2018.
DeepLab: Semantic Image Segmentation with Deep Convolutional Nets, Atrous Convolution, and Fully Connected CRFs [pdf]Paper   doi   link   bibtex   abstract  
GaAN : Gated Attention Networks for Learning on Large and Spatiotemporal Graphs. Zhang, J.; Shi, X.; Chinese, T.; Kong, H.; and Kong, H. . 2018.
GaAN : Gated Attention Networks for Learning on Large and Spatiotemporal Graphs [pdf]Paper   link   bibtex  
Neural tangent kernel: Convergence and generalization in neural networks. Jacot, A.; Gabriel, F.; and Hongler, C. Advances in Neural Information Processing Systems, 2018-Decem(5): 8571-8580. 2018.
Neural tangent kernel: Convergence and generalization in neural networks [pdf]Paper   link   bibtex   abstract  
Loss surfaces, mode connectivity, and fast ensembling of DNNs. Garipov, T.; Izmailov, P.; Podoprikhin, D.; Vetrov, D.; and Wilson, A., G. Advances in Neural Information Processing Systems, 2018-Decem(Nips): 8789-8798. 2018.
Loss surfaces, mode connectivity, and fast ensembling of DNNs [pdf]Paper   link   bibtex   abstract  
PU-Net: Point Cloud Upsampling Network. Yu, L.; Li, X.; Fu, C., W.; Cohen-Or, D.; and Heng, P., A. Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition,2790-2799. 2018.
PU-Net: Point Cloud Upsampling Network [pdf]Paper   doi   link   bibtex   abstract  
Local Spectral Graph Convolution for Point Set Feature Learning. Wang, C.; Samari, B.; and Siddiqi, K. Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), 11208 LNCS: 56-71. 2018.
Local Spectral Graph Convolution for Point Set Feature Learning [pdf]Paper   doi   link   bibtex   abstract  
RGCNN: Regularized graph Cnn for point cloud segmentation. Te, G.; Zheng, A.; Hu, W.; and Guo, Z. MM 2018 - Proceedings of the 2018 ACM Multimedia Conference,746-754. 2018.
RGCNN: Regularized graph Cnn for point cloud segmentation [pdf]Paper   doi   link   bibtex   abstract  
MOTIFNET: A MOTIF-BASED GRAPH CONVOLUTIONAL NETWORK for DIRECTED GRAPHS. Monti, F.; Otness, K.; and Bronstein, M., M. 2018 IEEE Data Science Workshop, DSW 2018 - Proceedings, (1): 225-228. 2018.
MOTIFNET: A MOTIF-BASED GRAPH CONVOLUTIONAL NETWORK for DIRECTED GRAPHS [pdf]Paper   doi   link   bibtex   abstract  
Spectral Multigraph Networks for Discovering and Fusing Relationships in Molecules. Knyazev, B.; Lin, X.; Amer, M., R.; and Taylor, G., W. ,1-11. 2018.
Spectral Multigraph Networks for Discovering and Fusing Relationships in Molecules [pdf]Paper   Spectral Multigraph Networks for Discovering and Fusing Relationships in Molecules [link]Website   link   bibtex   abstract  
A Graph-CNN for 3D Point Cloud Classification. Zhang, Y.; and Rabbat, M. ICASSP, IEEE International Conference on Acoustics, Speech and Signal Processing - Proceedings, 2018-April: 6279-6283. 2018.
A Graph-CNN for 3D Point Cloud Classification [pdf]Paper   doi   link   bibtex   abstract  
Few-shot learning with graph neural networks. Garcia, V.; and Bruna, J. 6th International Conference on Learning Representations, ICLR 2018 - Conference Track Proceedings,1-13. 2018.
Few-shot learning with graph neural networks [pdf]Paper   link   bibtex   abstract  
Fast resampling of three-dimensional point clouds via graphs. Chen, S.; Tian, D.; Feng, C.; Vetro, A.; and Kovačević, J. IEEE Transactions on Signal Processing, 66(3): 666-681. 2018.
Fast resampling of three-dimensional point clouds via graphs [pdf]Paper   doi   link   bibtex   abstract  
SpiderCNN: Deep learning on point sets with parameterized convolutional filters. Xu, Y.; Fan, T.; Xu, M.; Zeng, L.; and Qiao, Y. Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), 11212 LNCS: 90-105. 2018.
SpiderCNN: Deep learning on point sets with parameterized convolutional filters [pdf]Paper   doi   link   bibtex   abstract  
Variational Autoencoders: A Brief Survey. Mittal, M.; and Behl, H. IEEE 9th International Conference on Biometrics Theory, Applications and Systems, (14376): 1-9. 2018.
Variational Autoencoders: A Brief Survey [pdf]Paper   link   bibtex   abstract  
3DTI-Net: Learn Inner Transform Invariant 3D Geometry Features using Dynamic GCN. Pan, G.; Wang, J.; Ying, R.; and Liu, P. , (1). 2018.
3DTI-Net: Learn Inner Transform Invariant 3D Geometry Features using Dynamic GCN [pdf]Paper   3DTI-Net: Learn Inner Transform Invariant 3D Geometry Features using Dynamic GCN [link]Website   link   bibtex   abstract  
Adaptive graph convolutional neural networks. Li, R.; Wang, S.; Zhu, F.; and Huang, J. 32nd AAAI Conference on Artificial Intelligence, AAAI 2018,3546-3553. 2018.
Adaptive graph convolutional neural networks [pdf]Paper   link   bibtex   abstract  
FoldingNet: Point Cloud Auto-encoder via Deep Grid Deformation BT - Proc. IEEE Conf. on Computer Vision and Pattern Recognition (CVPR). Yang, Y.; Feng, C.; Shen, Y.; and Tian, D. Cvpr, 3: 206-215. 2018.
FoldingNet: Point Cloud Auto-encoder via Deep Grid Deformation BT - Proc. IEEE Conf. on Computer Vision and Pattern Recognition (CVPR) [pdf]Paper   link   bibtex  
General-Purpose Deep Point Cloud Feature Extractor. Dominguez, M.; Dhamdhere, R.; Petkar, A.; Jain, S.; Sah, S.; and Ptucha, R. Proceedings - 2018 IEEE Winter Conference on Applications of Computer Vision, WACV 2018, 2018-Janua: 1972-1981. 2018.
General-Purpose Deep Point Cloud Feature Extractor [pdf]Paper   doi   link   bibtex   abstract  
Mining Point Cloud Local Structures by Kernel Correlation and Graph Pooling. Shen, Y.; Feng, C.; Yang, Y.; and Tian, D. Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition,4548-4557. 2018.
Mining Point Cloud Local Structures by Kernel Correlation and Graph Pooling [pdf]Paper   doi   link   bibtex   abstract  
Multiresolution tree networks for 3D point cloud processing. Gadelha, M.; Wang, R.; and Maji, S. Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), 11211 LNCS: 105-122. 2018.
Multiresolution tree networks for 3D point cloud processing [pdf]Paper   doi   link   bibtex   abstract  
Variational Autoencoders for Deforming 3D Mesh Models. Tan, Q.; Gao, L.; Lai, Y., K.; and Xia, S. Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition,5841-5850. 2018.
Variational Autoencoders for Deforming 3D Mesh Models [pdf]Paper   doi   link   bibtex   abstract  
A Probe Towards Understanding GAN and VAE Models. Mi, L.; Shen, M.; and Zhang, J. . 2018.
A Probe Towards Understanding GAN and VAE Models [pdf]Paper   A Probe Towards Understanding GAN and VAE Models [link]Website   link   bibtex   abstract  
3D Object Dense Reconstruction from a Single Depth View. Yang, B.; Rosa, S.; Markham, A.; Trigoni, N.; and Wen, H. IEEE Transactions on Pattern Analysis and Machine Intelligence,679-688. 2018.
3D Object Dense Reconstruction from a Single Depth View [pdf]Paper   link   bibtex   abstract  
Cross-Modal Deep Variational Hand Pose Estimation. Spurr, A.; Song, J.; Park, S.; and Hilliges, O. Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition,89-98. 2018.
Cross-Modal Deep Variational Hand Pose Estimation [pdf]Paper   doi   link   bibtex   abstract  
MT-VAE: Learning Motion Transformations to Generate Multimodal Human Dynamics. Yan, X.; Rastogi, A.; Villegas, R.; Sunkavalli, K.; Shechtman, E.; Hadap, S.; Yumer, E.; and Lee, H. Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), 11209 LNCS(1): 276-293. 2018.
MT-VAE: Learning Motion Transformations to Generate Multimodal Human Dynamics [pdf]Paper   doi   link   bibtex   abstract  
Supplementary Material for SPLATNet : Sparse Lattice Networks for Point Cloud Processing. Kautz, J. Cvpr,2-4. 2018.
Supplementary Material for SPLATNet : Sparse Lattice Networks for Point Cloud Processing [pdf]Paper   Supplementary Material for SPLATNet : Sparse Lattice Networks for Point Cloud Processing [pdf]Website   link   bibtex   abstract  
DeepLab: Semantic Image Segmentation with Deep Convolutional Nets, Atrous Convolution, and Fully Connected CRFs. Chen, L., C.; Papandreou, G.; Kokkinos, I.; Murphy, K.; and Yuille, A., L. IEEE Transactions on Pattern Analysis and Machine Intelligence, 40(4): 834-848. 2018.
DeepLab: Semantic Image Segmentation with Deep Convolutional Nets, Atrous Convolution, and Fully Connected CRFs [pdf]Paper   doi   link   bibtex   abstract  
Deeper insights into graph convolutional networks for semi-supervised learning. Li, Q.; Han, Z.; and Wu, X., M. 32nd AAAI Conference on Artificial Intelligence, AAAI 2018,3538-3545. 2018.
Deeper insights into graph convolutional networks for semi-supervised learning [pdf]Paper   link   bibtex   abstract  
Learning representations and generative models for 3d point clouds. Achlioptas, P.; Diamanti, O.; Mitliagkas, I.; and Guibas, L. 35th International Conference on Machine Learning, ICML 2018, 1: 67-85. 2018.
Learning representations and generative models for 3d point clouds [pdf]Paper   link   bibtex   abstract  
Adversarial Attack on Graph Structured Data. Dai, H.; Li, H.; Tian, T.; Huang, X.; Wang, L.; Zhu, J.; and Song, L. . 2018.
Adversarial Attack on Graph Structured Data [pdf]Paper   Adversarial Attack on Graph Structured Data [pdf]Website   link   bibtex   abstract  
Adversarial Attack and Defense on Graph Data: A Survey. Sun, L.; Dou, Y.; Yang, C.; Wang, J.; Yu, P., S.; He, L.; and Li, B. ,1-18. 2018.
Adversarial Attack and Defense on Graph Data: A Survey [pdf]Paper   Adversarial Attack and Defense on Graph Data: A Survey [link]Website   link   bibtex   abstract  
Obfuscated gradients give a false sense of security: Circumventing defenses to adversarial examples. Athalye, A.; Carlini, N.; and Wagner, D. 35th International Conference on Machine Learning, ICML 2018, 1: 436-448. 2018.
Obfuscated gradients give a false sense of security: Circumventing defenses to adversarial examples [pdf]Paper   link   bibtex   abstract  
Towards deep learning models resistant to adversarial attacks. Madry, A.; Makelov, A.; Schmidt, L.; Tsipras, D.; and Vladu, A. 6th International Conference on Learning Representations, ICLR 2018 - Conference Track Proceedings,1-28. 2018.
Towards deep learning models resistant to adversarial attacks [pdf]Paper   link   bibtex   abstract  
VoxelNet: End-to-End Learning for Point Cloud Based 3D Object Detection. Zhou, Y.; and Tuzel, O. In Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, pages 4490-4499, 2018.
VoxelNet: End-to-End Learning for Point Cloud Based 3D Object Detection [pdf]Paper   doi   link   bibtex   abstract  
CNN for IMU assisted odometry estimation using velodyne LiDAR. Velas, M.; Spanel, M.; Hradis, M.; and Herout, A. 18th IEEE International Conference on Autonomous Robot Systems and Competitions, ICARSC 2018, (621439): 71-77. 2018.
CNN for IMU assisted odometry estimation using velodyne LiDAR [pdf]Paper   doi   link   bibtex   abstract  
Introvae: Introspective variational autoencoders for photographic image synthesis. Huang, H.; Li, Z.; He, R.; Sun, Z.; and Tan, T. Advances in Neural Information Processing Systems, 2018-Decem(Nips): 52-63. 2018.
Introvae: Introspective variational autoencoders for photographic image synthesis [pdf]Paper   Introvae: Introspective variational autoencoders for photographic image synthesis [link]Website   link   bibtex   abstract  
PPF-FoldNet: Unsupervised Learning of Rotation Invariant 3D Local Descriptors. Deng, H.; Birdal, T.; and Ilic, S. Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), 11209 LNCS: 620-638. 8 2018.
PPF-FoldNet: Unsupervised Learning of Rotation Invariant 3D Local Descriptors [pdf]Paper   PPF-FoldNet: Unsupervised Learning of Rotation Invariant 3D Local Descriptors [link]Website   doi   link   bibtex   abstract  
PPFNet: Global Context Aware Local Features for Robust 3D Point Matching. Deng, H.; Birdal, T.; and Ilic, S. Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition,195-205. 2 2018.
PPFNet: Global Context Aware Local Features for Robust 3D Point Matching [pdf]Paper   PPFNet: Global Context Aware Local Features for Robust 3D Point Matching [link]Website   doi   link   bibtex   abstract  
The Perfect Match: 3D Point Cloud Matching with Smoothed Densities. Gojcic, Z.; Zhou, C.; Wegner, J., D.; and Wieser, A. Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, 2019-June: 5540-5549. 11 2018.
The Perfect Match: 3D Point Cloud Matching with Smoothed Densities [pdf]Paper   The Perfect Match: 3D Point Cloud Matching with Smoothed Densities [link]Website   doi   link   bibtex   abstract  
Isolating Sources of Disentanglement in VAEs. Chen, R., T., Q.; Li, X.; Grosse, R.; and Duvenaud, D. , (NeurIPS). 2018.
Isolating Sources of Disentanglement in VAEs [pdf]Paper   link   bibtex  
Disentangling by Factorising. Kim, H.; and Mnih, A. . 2018.
Disentangling by Factorising [pdf]Paper   link   bibtex  
Automatic segmentation of tree structure from point cloud data. Digumarti, S., T.; Nieto, J.; Cadena, C.; Siegwart, R.; and Beardsley, P. IEEE Robotics and Automation Letters, 3(4): 3043-3050. 2018.
Automatic segmentation of tree structure from point cloud data [pdf]Paper   doi   link   bibtex   abstract  
Large-Scale Point Cloud Semantic Segmentation with Superpoint Graphs. Landrieu, L.; and Simonovsky, M. Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition,4558-4567. 2018.
Large-Scale Point Cloud Semantic Segmentation with Superpoint Graphs [pdf]Paper   doi   link   bibtex   abstract  
Semantic Segmentation of Geometric Primitives in Dense 3D Point Clouds. Stanescu, A.; Fleck, P.; Schmalstieg, D.; and Arth, C. Adjunct Proceedings - 2018 IEEE International Symposium on Mixed and Augmented Reality, ISMAR-Adjunct 2018,206-211. 2018.
Semantic Segmentation of Geometric Primitives in Dense 3D Point Clouds [pdf]Paper   doi   link   bibtex   abstract  
3D Point Capsule Networks. Zhao, Y.; Birdal, T.; Deng, H.; and Tombari, F. Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, 2019-June: 1009-1018. 12 2018.
3D Point Capsule Networks [pdf]Paper   3D Point Capsule Networks [link]Website   doi   link   bibtex   abstract  
FFJORD: Free-form Continuous Dynamics for Scalable Reversible Generative Models. Grathwohl, W.; Chen, R., T., Q.; Bettencourt, J.; Sutskever, I.; and Duvenaud, D. arXiv:1810.01367 [cs, stat]. 10 2018.
FFJORD: Free-form Continuous Dynamics for Scalable Reversible Generative Models [pdf]Paper   FFJORD: Free-form Continuous Dynamics for Scalable Reversible Generative Models [link]Website   link   bibtex   abstract  
3D Fetal Skull Reconstruction from 2DUS via Deep Conditional Generative Networks. Cerrolaza, J., J.; Li, Y.; Biffi, C.; Gomez, A.; Sinclair, M.; Matthew, J.; Knight, C.; Kainz, B.; and Rueckert, D. In Frangi, A., F.; Schnabel, J., A.; Davatzikos, C.; Alberola-López, C.; and Fichtinger, G., editor(s), Medical Image Computing and Computer Assisted Intervention – MICCAI 2018, of Lecture Notes in Computer Science, pages 383-391, 2018. Springer International Publishing
doi   link   bibtex   abstract  
FiLM: Visual Reasoning with a General Conditioning Layer. Perez, E.; Strub, F.; Vries, H., d.; Dumoulin, V.; and Courville, A. Proceedings of the AAAI Conference on Artificial Intelligence, 32(1). 4 2018.
FiLM: Visual Reasoning with a General Conditioning Layer [pdf]Paper   FiLM: Visual Reasoning with a General Conditioning Layer [link]Website   link   bibtex   abstract  
Isolating Sources of Disentanglement in Variational Autoencoders. Chen, R., T., Q.; Li, X.; Grosse, R.; and Duvenaud, D. . 2 2018.
Isolating Sources of Disentanglement in Variational Autoencoders [pdf]Paper   Isolating Sources of Disentanglement in Variational Autoencoders [link]Website   link   bibtex   abstract   2 downloads  
A Large-scale RGB-D Database for Arbitrary-view Human Action Recognition. Ji, Y.; Xu, F.; Yang, Y.; Shen, F.; Shen, H., T.; and Zheng, W. In Proceedings of the 26th ACM international conference on Multimedia, of MM '18, pages 1510-1518, 10 2018. Association for Computing Machinery
A Large-scale RGB-D Database for Arbitrary-view Human Action Recognition [pdf]Paper   A Large-scale RGB-D Database for Arbitrary-view Human Action Recognition [link]Website   doi   link   bibtex   abstract  
GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. Heusel, M.; Ramsauer, H.; Unterthiner, T.; Nessler, B.; and Hochreiter, S. arXiv:1706.08500 [cs, stat]. 1 2018.
GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium [pdf]Paper   GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium [link]Website   link   bibtex   abstract  
Learning Interpretable Anatomical Features Through Deep Generative Models: Application to Cardiac Remodeling. Biffi, C.; Oktay, O.; Tarroni, G.; Bai, W.; De Marvao, A.; Doumou, G.; Rajchl, M.; Bedair, R.; Prasad, S.; Cook, S.; O’Regan, D.; and Rueckert, D. In Frangi, A., F.; Schnabel, J., A.; Davatzikos, C.; Alberola-López, C.; and Fichtinger, G., editor(s), Medical Image Computing and Computer Assisted Intervention – MICCAI 2018, of Lecture Notes in Computer Science, pages 464-471, 2018. Springer International Publishing
Learning Interpretable Anatomical Features Through Deep Generative Models: Application to Cardiac Remodeling [pdf]Paper   doi   link   bibtex   abstract  
Point2Sequence: Learning the Shape Representation of 3D Point Clouds with an Attention-based Sequence to Sequence Network. Liu, X.; Han, Z.; Liu, Y.; and Zwicker, M. arXiv:1811.02565 [cs]. 11 2018.
Point2Sequence: Learning the Shape Representation of 3D Point Clouds with an Attention-based Sequence to Sequence Network [pdf]Paper   Point2Sequence: Learning the Shape Representation of 3D Point Clouds with an Attention-based Sequence to Sequence Network [link]Website   link   bibtex   abstract  
Generating 3D Faces using Convolutional Mesh Autoencoders. Ranjan, A.; Bolkart, T.; Sanyal, S.; and Black, M., J. In pages 704-720, 2018.
Generating 3D Faces using Convolutional Mesh Autoencoders [pdf]Paper   Generating 3D Faces using Convolutional Mesh Autoencoders [link]Website   link   bibtex  
A Variational Feature Encoding Method of 3D Object for Probabilistic Semantic SLAM. Yu, H., W.; and Lee, B., H. In 2018 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), pages 3605-3612, 10 2018.
A Variational Feature Encoding Method of 3D Object for Probabilistic Semantic SLAM [pdf]Paper   doi   link   bibtex   abstract  
Understanding and Improving Interpolation in Autoencoders via an Adversarial Regularizer. Berthelot, D.; Raffel, C.; Roy, A.; and Goodfellow, I. arXiv:1807.07543 [cs, stat]. 7 2018.
Understanding and Improving Interpolation in Autoencoders via an Adversarial Regularizer [pdf]Paper   Understanding and Improving Interpolation in Autoencoders via an Adversarial Regularizer [link]Website   link   bibtex   abstract  
Neural scene representation and rendering. Eslami, S., M., A.; Jimenez Rezende, D.; Besse, F.; Viola, F.; Morcos, A., S.; Garnelo, M.; Ruderman, A.; Rusu, A., A.; Danihelka, I.; Gregor, K.; Reichert, D., P.; Buesing, L.; Weber, T.; Vinyals, O.; Rosenbaum, D.; Rabinowitz, N.; King, H.; Hillier, C.; Botvinick, M.; Wierstra, D.; Kavukcuoglu, K.; and Hassabis, D. Science, 360(6394): 1204-1210. 6 2018.
Neural scene representation and rendering [pdf]Paper   Neural scene representation and rendering [link]Website   doi   link   bibtex  
A guide to convolution arithmetic for deep learning. Dumoulin, V.; and Visin, F. arXiv:1603.07285 [cs, stat]. 1 2018.
A guide to convolution arithmetic for deep learning [pdf]Paper   A guide to convolution arithmetic for deep learning [link]Website   link   bibtex   abstract  
Hyperspherical Variational Auto-Encoders. Davidson, T., R.; Falorsi, L.; De Cao, N.; Kipf, T.; and Tomczak, J., M. arXiv:1804.00891 [cs, stat]. 9 2018.
Hyperspherical Variational Auto-Encoders [pdf]Paper   Hyperspherical Variational Auto-Encoders [link]Website   link   bibtex   abstract  
Variational image compression with a scale hyperprior. Ballé, J.; Minnen, D.; Singh, S.; Hwang, S., J.; and Johnston, N. arXiv:1802.01436 [cs, eess, math]. 5 2018.
Variational image compression with a scale hyperprior [pdf]Paper   Variational image compression with a scale hyperprior [link]Website   link   bibtex   abstract  
On the challenges of learning with inference networks on sparse, high-dimensional data. Krishnan, R.; Liang, D.; and Hoffman, M. In Proceedings of the Twenty-First International Conference on Artificial Intelligence and Statistics, pages 143-151, 3 2018. PMLR
On the challenges of learning with inference networks on sparse, high-dimensional data [pdf]Paper   On the challenges of learning with inference networks on sparse, high-dimensional data [link]Website   link   bibtex   abstract  
Supervised autoencoders: Improving generalization performance with unsupervised regularizers. Le, L.; Patterson, A.; and White, M. In Advances in Neural Information Processing Systems, volume 31, 2018. Curran Associates, Inc.
Supervised autoencoders: Improving generalization performance with unsupervised regularizers [pdf]Paper   Supervised autoencoders: Improving generalization performance with unsupervised regularizers [link]Website   link   bibtex  
Learning a Hierarchical Latent-Variable Model of 3D Shapes. Liu, S.; Giles, L.; and Ororbia, A. In 2018 International Conference on 3D Vision (3DV), pages 542-551, 9 2018.
Learning a Hierarchical Latent-Variable Model of 3D Shapes [pdf]Paper   doi   link   bibtex   abstract  
High-Resolution Image Synthesis and Semantic Manipulation With Conditional GANs. Wang, T.; Liu, M.; Zhu, J.; Tao, A.; Kautz, J.; and Catanzaro, B. In pages 8798-8807, 2018.
High-Resolution Image Synthesis and Semantic Manipulation With Conditional GANs [pdf]Paper   High-Resolution Image Synthesis and Semantic Manipulation With Conditional GANs [link]Website   link   bibtex  
FoldingNet: Point Cloud Auto-Encoder via Deep Grid Deformation. Yang, Y.; Feng, C.; Shen, Y.; and Tian, D. In pages 206-215, 2018.
FoldingNet: Point Cloud Auto-Encoder via Deep Grid Deformation [pdf]Paper   FoldingNet: Point Cloud Auto-Encoder via Deep Grid Deformation [link]Website   link   bibtex  
Understanding disentangling in \$\textbackslashbeta\$-VAE. Burgess, C., P.; Higgins, I.; Pal, A.; Matthey, L.; Watters, N.; Desjardins, G.; and Lerchner, A. arXiv:1804.03599 [cs, stat]. 4 2018.
Understanding disentangling in \$\textbackslashbeta\$-VAE [pdf]Paper   Understanding disentangling in \$\textbackslashbeta\$-VAE [link]Website   link   bibtex   abstract  
Neural Ordinary Differential Equations. Chen, R., T., Q.; Rubanova, Y.; Bettencourt, J.; and Duvenaud, D., K. In Advances in Neural Information Processing Systems, volume 31, 2018. Curran Associates, Inc.
Neural Ordinary Differential Equations [pdf]Paper   Neural Ordinary Differential Equations [link]Website   link   bibtex  
Attention U-Net: Learning Where to Look for the Pancreas. Oktay, O.; Schlemper, J.; Folgoc, L., L.; Lee, M.; Heinrich, M.; Misawa, K.; Mori, K.; McDonagh, S.; Hammerla, N., Y.; Kainz, B.; Glocker, B.; and Rueckert, D. arXiv:1804.03999 [cs]. 5 2018.
Attention U-Net: Learning Where to Look for the Pancreas [pdf]Paper   Attention U-Net: Learning Where to Look for the Pancreas [link]Website   link   bibtex   abstract  
DeepLab: Semantic Image Segmentation with Deep Convolutional Nets, Atrous Convolution, and Fully Connected CRFs. Chen, L.; Papandreou, G.; Kokkinos, I.; Murphy, K.; and Yuille, A., L. IEEE Transactions on Pattern Analysis and Machine Intelligence, 40(4): 834-848. 4 2018.
DeepLab: Semantic Image Segmentation with Deep Convolutional Nets, Atrous Convolution, and Fully Connected CRFs [pdf]Paper   doi   link   bibtex   abstract  
Variational Autoencoders: A Brief Survey. Mittal, M.; and Behl, H., S. 2018.
Variational Autoencoders: A Brief Survey [pdf]Paper   Variational Autoencoders: A Brief Survey [link]Website   link   bibtex   abstract  
Motion removal for reliable RGB-D SLAM in dynamic environments. Sun, Y.; Liu, M.; and Meng, M., Q. Robotics and Autonomous Systems, 108: 115-128. 2018.
Motion removal for reliable RGB-D SLAM in dynamic environments [link]Website   doi   link   bibtex   abstract  
SLAM-driven robotic mapping and registration of 3D point clouds. Kim, P.; Chen, J.; and Cho, Y., K. Automation in Construction, 89: 38-48. 5 2018.
SLAM-driven robotic mapping and registration of 3D point clouds [pdf]Paper   doi   link   bibtex   abstract  
iBoW-LCD: An Appearance-based Loop Closure Detection Approach using Incremental Bags of Binary Words*. Garcia-Fidalgo, E.; and Ortiz, A. . 2018.
iBoW-LCD: An Appearance-based Loop Closure Detection Approach using Incremental Bags of Binary Words* [pdf]Paper   doi   link   bibtex   abstract  
Bi-Real Net: Enhancing the performance of 1-bit CNNs with improved representational capability and advanced training algorithm. Liu, Z.; Wu, B.; Luo, W.; Yang, X.; Liu, W.; and Cheng, K., T. Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), 11219 LNCS: 747-763. 2018.
doi   link   bibtex   abstract  
PPF-FoldNet : Unsupervised Learning of Rotation Invariant 3D Local Descriptors Supplementary Material Additional Visualizations of Matching. Deng, H. Eccv,1-2. 2018.
PPF-FoldNet : Unsupervised Learning of Rotation Invariant 3D Local Descriptors Supplementary Material Additional Visualizations of Matching [pdf]Paper   link   bibtex   abstract  
Learning representations and generative models for 3D point clouds. Achlioptas, P.; Diamanti, O.; Mitliagkas, I.; and Guibas, L. 6th International Conference on Learning Representations, ICLR 2018 - Workshop Track Proceedings. 2018.
Learning representations and generative models for 3D point clouds [pdf]Paper   link   bibtex   abstract  
Which training methods for GANs do actually converge?. Mescheder, L.; Geiger, A.; and Nowozin, S. 35th International Conference on Machine Learning, ICML 2018, 8: 5589-5626. 2018.
Which training methods for GANs do actually converge? [pdf]Paper   link   bibtex   abstract  
Point Cloud GAN. Chun-Liang, L.; Yang, Z.; Póczos, B.; and Salakhutdinov, R. 2018.
link   bibtex  
Weakly supervised 3d reconstruction with adversarial constraint. Gwak, J.; Choy, C., B.; Chandraker, M.; Garg, A.; and Savarese, S. Proceedings - 2017 International Conference on 3D Vision, 3DV 2017,263-272. 2018.
Weakly supervised 3d reconstruction with adversarial constraint [pdf]Paper   doi   link   bibtex   abstract  
Progressive growing of GANs for improved quality, stability, and variation. Karras, T.; Aila, T.; Laine, S.; and Lehtinen, J. 6th International Conference on Learning Representations, ICLR 2018 - Conference Track Proceedings,1-26. 2018.
Progressive growing of GANs for improved quality, stability, and variation [pdf]Paper   link   bibtex   abstract  
Learning efficient point cloud generation for dense 3D object reconstruction. Lin, C., H.; Kong, C.; and Lucey, S. 32nd AAAI Conference on Artificial Intelligence, AAAI 2018,7114-7121. 2018.
Learning efficient point cloud generation for dense 3D object reconstruction [pdf]Paper   doi   link   bibtex   abstract  
GAL: Geometric adversarial loss for single-view 3D-object reconstruction. Jiang, L.; Shi, S.; Qi, X.; and Jia, J. Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), 11212 LNCS: 820-834. 2018.
GAL: Geometric adversarial loss for single-view 3D-object reconstruction [pdf]Paper   doi   link   bibtex   abstract  
Efficient dense point cloud object reconstruction using deformation vector fields. Li, K.; Pham, T.; Zhan, H.; and Reid, I. Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), 11216 LNCS: 508-524. 2018.
Efficient dense point cloud object reconstruction using deformation vector fields [pdf]Paper   doi   link   bibtex   abstract  
3D steerable CNNs: Learning rotationally equivariant features in volumetric data. Weiler, M.; Geiger, M.; Welling, M.; Boomsma, W.; and Cohen, T. Advances in Neural Information Processing Systems, 2018-Decem(NeurIPS): 10381-10392. 2018.
link   bibtex   abstract  
Collision Avoidance Using Spherical Harmonics. Patrick, S., D.; and Bakolas, E. , (1998). 2018.
Collision Avoidance Using Spherical Harmonics [pdf]Paper   link   bibtex  
Estimation of rotation parameters of three-dimensional images by spherical harmonics analysis. Rozhentsov, A.; Egoshina, I.; Baev, A.; and Chernishov, D. Journal of Applied Engineering Science, 16(4): 570-576. 2018.
Estimation of rotation parameters of three-dimensional images by spherical harmonics analysis [pdf]Paper   doi   link   bibtex   abstract  
Spherical Harmonics Decomposition in inverse acoustic methods involving spherical arrays. Battista, G.; Chiariotti, P.; and Castellini, P. Journal of Sound and Vibration, 433: 425-460. 2018.
Spherical Harmonics Decomposition in inverse acoustic methods involving spherical arrays [pdf]Paper   Spherical Harmonics Decomposition in inverse acoustic methods involving spherical arrays [link]Website   doi   link   bibtex   abstract  
Semi-analytical models of non-spherical particle shapes using optimised spherical harmonics. Radvilaitė, U.; Ramírez-Gómez, Á.; Rusakevičius, D.; and Kačianauskas, R. Chemical Engineering Research and Design, 137(2013): 376-394. 2018.
Semi-analytical models of non-spherical particle shapes using optimised spherical harmonics [pdf]Paper   doi   link   bibtex   abstract  
Spherical harmonics entropy for optimal 3D modeling. Jallouli, M.; Khalifa, W., B., H.; Mabrouk, A., B.; and Mahjoub, M., A. , (May 2018). 2018.
Spherical harmonics entropy for optimal 3D modeling [pdf]Paper   Spherical harmonics entropy for optimal 3D modeling [link]Website   link   bibtex   abstract  
FPGA-based high-performance embedded systems for adaptive edge computing in cyber-physical systems: The ARTICo3 framework. Rodríguez, A.; Valverde, J.; Portilla, J.; Otero, A.; Riesgo, T.; and De La Torre, E. Sensors (Switzerland), 18(6). 6 2018.
FPGA-based high-performance embedded systems for adaptive edge computing in cyber-physical systems: The ARTICo3 framework [pdf]Paper   doi   link   bibtex   abstract  
Understanding Performance Differences of FPGAs and GPUs. Cong, J.; Fang, Z.; Lo, M.; Wang, H.; Xu, J.; and Zhang, S. In Proceedings - 26th IEEE International Symposium on Field-Programmable Custom Computing Machines, FCCM 2018, pages 93-96, 9 2018. Institute of Electrical and Electronics Engineers Inc.
Understanding Performance Differences of FPGAs and GPUs [pdf]Paper   doi   link   bibtex   abstract  
  2017 (100)
Robust Estimation of Object Dimensions and External Defect Detection with a Low-Cost Sensor. Leo, M.; Natale, A.; Del-Coco, M.; Carcagnì, P.; and Distante, C. Journal of Nondestructive Evaluation, 36(1). 2017.
Robust Estimation of Object Dimensions and External Defect Detection with a Low-Cost Sensor [pdf]Paper   doi   link   bibtex   abstract  
Deep Learning for Confidence Information in Stereo and ToF Data Fusion. Agresti, G.; Minto, L.; Marin, G.; and Zanuttigh, P. Proceedings - 2017 IEEE International Conference on Computer Vision Workshops, ICCVW 2017, 2018-Janua: 697-705. 2017.
Deep Learning for Confidence Information in Stereo and ToF Data Fusion [pdf]Paper   doi   link   bibtex   abstract  
Geometric Deep Learning: Going beyond Euclidean data. Bronstein, M., M.; Bruna, J.; Lecun, Y.; Szlam, A.; and Vandergheynst, P. IEEE Signal Processing Magazine, 34(4): 18-42. 2017.
Geometric Deep Learning: Going beyond Euclidean data [pdf]Paper   doi   link   bibtex   abstract  
Robust Estimation of Object Dimensions and External Defect Detection with a Low-Cost Sensor. Leo, M.; Natale, A.; Del-Coco, M.; Carcagnì, P.; and Distante, C. Journal of Nondestructive Evaluation, 36(1): 1-16. 2017.
Robust Estimation of Object Dimensions and External Defect Detection with a Low-Cost Sensor [pdf]Paper   doi   link   bibtex   abstract  
A REVIEW OF POINT CLOUDS SEGMENTATION AND CLASSIFICATION ALGORITHMS. Grilli, E.; Menna, F.; Remondino, F.; Scanning, L.; and Scanner, L. , XLII(March): 1-3. 2017.
A REVIEW OF POINT CLOUDS SEGMENTATION AND CLASSIFICATION ALGORITHMS [pdf]Paper   doi   link   bibtex  
DeepToF: Off-the-shelf real-time correction of multipath interference in time-of-flight imaging. Marco, J.; Hernandez, Q.; Muñoz, A.; Dong, Y.; Jarabo, A.; Kim, M., H.; Tong, X.; and Gutierrez, D. ACM Transactions on Graphics, 36(6). 2017.
DeepToF: Off-the-shelf real-time correction of multipath interference in time-of-flight imaging [pdf]Paper   doi   link   bibtex   abstract  
3D Point Cloud Classification and Segmentation using 3D Modified Fisher Vector Representation for Convolutional Neural Networks. Ben-Shabat, Y.; Lindenbaum, M.; and Fischer, A. . 2017.
3D Point Cloud Classification and Segmentation using 3D Modified Fisher Vector Representation for Convolutional Neural Networks [pdf]Paper   3D Point Cloud Classification and Segmentation using 3D Modified Fisher Vector Representation for Convolutional Neural Networks [link]Website   link   bibtex   abstract  
Deep projective 3D semantic segmentation. Lawin, F., J.; Danelljan, M.; Tosteberg, P.; Bhat, G.; Khan, F., S.; and Felsberg, M. Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), 10424 LNCS: 95-107. 2017.
Deep projective 3D semantic segmentation [pdf]Paper   doi   link   bibtex   abstract  
Infrared colorization using deep convolutional neural networks. Limmer, M.; and Lensch, H., P. Proceedings - 2016 15th IEEE International Conference on Machine Learning and Applications, ICMLA 2016,61-68. 2017.
Infrared colorization using deep convolutional neural networks [pdf]Paper   doi   link   bibtex   abstract  
Fusion of stereo vision for pedestrian recognition using convolutional neural networks. Pop, D., O.; Rogozan, A.; Nashashibi, F.; and Bensrhair, A. ESANN 2017 - Proceedings, 25th European Symposium on Artificial Neural Networks, Computational Intelligence and Machine Learning,47-52. 2017.
Fusion of stereo vision for pedestrian recognition using convolutional neural networks [pdf]Paper   link   bibtex   abstract  
View/state planning for three-dimensional object reconstruction under uncertainty. Vasquez-Gomez, J., I.; Sucar, L., E.; and Murrieta-Cid, R. Autonomous Robots, 41(1): 89-109. 2017.
View/state planning for three-dimensional object reconstruction under uncertainty [pdf]Paper   doi   link   bibtex   abstract  
Improving multi-view object recognition by detecting changes in point clouds. Velas, M.; Faulhammer, T.; Spanel, M.; Zillich, M.; and Vincze, M. 2016 IEEE Symposium Series on Computational Intelligence, SSCI 2016. 2017.
Improving multi-view object recognition by detecting changes in point clouds [pdf]Paper   doi   link   bibtex   abstract  
ScanNet: Richly-annotated 3D reconstructions of indoor scenes. Dai, A.; Chang, A., X.; Savva, M.; Halber, M.; Funkhouser, T.; and Nießner, M. Proceedings - 30th IEEE Conference on Computer Vision and Pattern Recognition, CVPR 2017, 2017-Janua: 2432-2443. 2017.
ScanNet: Richly-annotated 3D reconstructions of indoor scenes [pdf]Paper   doi   link   bibtex   abstract  
Semantic3D.Net: a New Large-Scale Point Cloud Classification Benchmark. Hackel, T.; Savinov, N.; Ladicky, L.; Wegner, J., D.; Schindler, K.; and Pollefeys, M. ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences, 4(1W1): 91-98. 2017.
Semantic3D.Net: a New Large-Scale Point Cloud Classification Benchmark [pdf]Paper   doi   link   bibtex   abstract  
PointNet: Deep learning on point sets for 3D classification and segmentation. Qi, C., R.; Su, H.; Mo, K.; and Guibas, L., J. In Proceedings - 30th IEEE Conference on Computer Vision and Pattern Recognition, CVPR 2017, volume 2017-Janua, pages 77-85, 11 2017. Institute of Electrical and Electronics Engineers Inc.
PointNet: Deep learning on point sets for 3D classification and segmentation [pdf]Paper   PointNet: Deep learning on point sets for 3D classification and segmentation [link]Website   doi   link   bibtex   abstract  
PointNet++: Deep Hierarchical Feature Learning on Point Sets in a Metric Space. Qi, C., R.; Yi, L.; Su, H.; and Guibas, L., J. Advances in Neural Information Processing Systems, 2017-Decem: 5100-5109. 6 2017.
PointNet++: Deep Hierarchical Feature Learning on Point Sets in a Metric Space [pdf]Paper   PointNet++: Deep Hierarchical Feature Learning on Point Sets in a Metric Space [link]Website   link   bibtex   abstract  
3D bounding box estimation using deep learning and geometry. Mousavian, A.; Anguelov, D.; Košecká, J.; and Flynn, J. Proceedings - 30th IEEE Conference on Computer Vision and Pattern Recognition, CVPR 2017, 2017-Janua: 5632-5640. 2017.
3D bounding box estimation using deep learning and geometry [pdf]Paper   doi   link   bibtex   abstract  
OctNet: Learning deep 3D representations at high resolutions. Riegler, G.; Ulusoy, A., O.; and Geiger, A. In Proceedings - 30th IEEE Conference on Computer Vision and Pattern Recognition, CVPR 2017, volume 2017-January, pages 6620-6629, 11 2017. Institute of Electrical and Electronics Engineers Inc.
OctNet: Learning deep 3D representations at high resolutions [pdf]Paper   OctNet: Learning deep 3D representations at high resolutions [link]Website   doi   link   bibtex   abstract  
Multi-view 3D object detection network for autonomous driving. Chen, X.; Ma, H.; Wan, J.; Li, B.; and Xia, T. In Proceedings - 30th IEEE Conference on Computer Vision and Pattern Recognition, CVPR 2017, volume 2017-January, pages 6526-6534, 11 2017. Institute of Electrical and Electronics Engineers Inc.
Multi-view 3D object detection network for autonomous driving [pdf]Paper   Multi-view 3D object detection network for autonomous driving [link]Website   doi   link   bibtex   abstract  
A review of algorithms for filtering the 3D point cloud. Han, X., F.; Jin, J., S.; Wang, M., J.; Jiang, W.; Gao, L.; and Xiao, L. Signal Processing: Image Communication, 57: 103-112. 9 2017.
A review of algorithms for filtering the 3D point cloud [pdf]Paper   doi   link   bibtex   abstract  
Incremental Network Quantization: Towards Lossless CNNs with Low-Precision Weights. Zhou, A.; Yao, A.; Guo, Y.; Xu, L.; and Chen, Y. arXiv. 2 2017.
Incremental Network Quantization: Towards Lossless CNNs with Low-Precision Weights [pdf]Paper   Incremental Network Quantization: Towards Lossless CNNs with Low-Precision Weights [link]Website   link   bibtex   abstract  
Incremental Network Quantization: Towards Lossless CNNs with Low-Precision Weights. Zhou, A.; Yao, A.; Guo, Y.; Xu, L.; and Chen, Y. arXiv. 2 2017.
Incremental Network Quantization: Towards Lossless CNNs with Low-Precision Weights [pdf]Paper   Incremental Network Quantization: Towards Lossless CNNs with Low-Precision Weights [link]Website   link   bibtex   abstract  
O-CNN: Octree-based Convolutional Neural Networks for 3D Shape Analysis. Wang, P.; Liu, Y.; Guo, Y.; Sun, C.; and Tong, X. ACM Transactions on Graphics, 36(4). 12 2017.
O-CNN: Octree-based Convolutional Neural Networks for 3D Shape Analysis [link]Website   doi   link   bibtex   abstract  
An Adaptable, Probabilistic, Next-Best View Algorithm for Reconstruction of Unknown 3-D Objects. Daudelin, J.; and Campbell, M. IEEE Robotics and Automation Letters, 2(3): 1540-1547. 2017.
An Adaptable, Probabilistic, Next-Best View Algorithm for Reconstruction of Unknown 3-D Objects [pdf]Paper   doi   link   bibtex   abstract  
Online inspection path planning for autonomous 3D modeling using a micro-aerial vehicle. Song, S.; and Jo, S. Proceedings - IEEE International Conference on Robotics and Automation,6217-6224. 2017.
Online inspection path planning for autonomous 3D modeling using a micro-aerial vehicle [pdf]Paper   doi   link   bibtex   abstract  
A reinforcement learning approach to the view planning problem. Kaba, M., D.; Uzunbas, M., G.; and Lim, S., N. Proceedings - 30th IEEE Conference on Computer Vision and Pattern Recognition, CVPR 2017, 2017-Janua: 5094-5102. 2017.
A reinforcement learning approach to the view planning problem [pdf]Paper   doi   link   bibtex   abstract  
Attention is all you need. Vaswani, A.; Shazeer, N.; Parmar, N.; Uszkoreit, J.; Jones, L.; Gomez, A., N.; Kaiser, Ł.; and Polosukhin, I. Advances in Neural Information Processing Systems, 2017-Decem(Nips): 5999-6009. 2017.
Attention is all you need [pdf]Paper   link   bibtex   abstract  
PCPNET learning local shape properties from raw point clouds. Guerrero, P.; Kleiman, Y.; Ovsjanikov, M.; and Mitra, N., J. arXiv, 37(2). 2017.
PCPNET learning local shape properties from raw point clouds [pdf]Paper   link   bibtex   abstract  
Feature pyramid networks for object detection. Lin, T., Y.; Dollár, P.; Girshick, R.; He, K.; Hariharan, B.; and Belongie, S. Proceedings - 30th IEEE Conference on Computer Vision and Pattern Recognition, CVPR 2017, 2017-Janua: 936-944. 2017.
Feature pyramid networks for object detection [pdf]Paper   doi   link   bibtex   abstract  
A review of algorithms for filtering the 3D point cloud. Han, X., F.; Jin, J., S.; Wang, M., J.; Jiang, W.; Gao, L.; and Xiao, L. Signal Processing: Image Communication, 57(February): 103-112. 2017.
A review of algorithms for filtering the 3D point cloud [pdf]Paper   A review of algorithms for filtering the 3D point cloud [link]Website   doi   link   bibtex   abstract  
Depth errors analysis and correction for time-of-flight (ToF) cameras. He, Y.; Liang, B.; Zou, Y.; He, J.; and Yang, J. Sensors (Switzerland), 17(1). 2017.
Depth errors analysis and correction for time-of-flight (ToF) cameras [pdf]Paper   doi   link   bibtex   abstract  
US009767598B2. Watson, M., A. . 2017.
US009767598B2 [pdf]Paper   link   bibtex  
US20170227942A1. David, M. , 1(19): 2015-2018. 2017.
US20170227942A1 [pdf]Paper   link   bibtex   abstract  
US009626767B2. Apparatus, P.; Apparatus, C.; and Medium, S. , 2(12). 2017.
US009626767B2 [pdf]Paper   link   bibtex  
Incremental Network Quantization: Towards Lossless CNNs with Low-Precision Weights. Zhou, A.; Yao, A.; Guo, Y.; Xu, L.; and Chen, Y. 5th International Conference on Learning Representations, ICLR 2017 - Conference Track Proceedings. 2 2017.
Incremental Network Quantization: Towards Lossless CNNs with Low-Precision Weights [pdf]Paper   Incremental Network Quantization: Towards Lossless CNNs with Low-Precision Weights [link]Website   link   bibtex   abstract  
MobileNets: Efficient Convolutional Neural Networks for Mobile Vision Applications. Howard, A., G.; Zhu, M.; Chen, B.; Kalenichenko, D.; Wang, W.; Weyand, T.; Andreetto, M.; and Adam, H. . 4 2017.
MobileNets: Efficient Convolutional Neural Networks for Mobile Vision Applications [pdf]Paper   MobileNets: Efficient Convolutional Neural Networks for Mobile Vision Applications [link]Website   link   bibtex   abstract  
A Survey of Model Compression and Acceleration for Deep Neural Networks. Cheng, Y.; Wang, D.; Zhou, P.; and Zhang, T. . 10 2017.
A Survey of Model Compression and Acceleration for Deep Neural Networks [pdf]Paper   A Survey of Model Compression and Acceleration for Deep Neural Networks [link]Website   link   bibtex   abstract  
SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation. Badrinarayanan, V.; Kendall, A.; and Cipolla, R. IEEE Transactions on Pattern Analysis and Machine Intelligence, 39(12): 2481-2495. 2017.
SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation [pdf]Paper   doi   link   bibtex   abstract  
Geometric deep learning on graphs and manifolds using mixture model CNNs. Monti, F.; Boscaini, D.; Masci, J.; Rodolà, E.; Svoboda, J.; and Bronstein, M., M. Proceedings - 30th IEEE Conference on Computer Vision and Pattern Recognition, CVPR 2017, 2017-Janua: 5425-5434. 2017.
Geometric deep learning on graphs and manifolds using mixture model CNNs [pdf]Paper   doi   link   bibtex   abstract  
A simple neural network module for relational reasoning. Santoro, A.; Raposo, D.; Barrett, D., G.; Malinowski, M.; Pascanu, R.; Battaglia, P.; and Lillicrap, T. Advances in Neural Information Processing Systems, 2017-Decem(Nips): 4968-4977. 2017.
A simple neural network module for relational reasoning [pdf]Paper   link   bibtex   abstract  
Semi-supervised classification with graph convolutional networks. Kipf, T., N.; and Welling, M. 5th International Conference on Learning Representations, ICLR 2017 - Conference Track Proceedings,1-14. 2017.
Semi-supervised classification with graph convolutional networks [pdf]Paper   link   bibtex   abstract  
Deep sets. Zaheer, M.; Kottur, S.; Ravanbhakhsh, S.; Póczos, B.; Salakhutdinov, R.; and Smola, A., J. Advances in Neural Information Processing Systems, 2017-Decem(ii): 3392-3402. 2017.
Deep sets [pdf]Paper   link   bibtex   abstract  
Tracking the world state with recurrent entity networks. Henaff, M.; Weston, J.; Szlam, A.; Bordes, A.; and LeCun, Y. 5th International Conference on Learning Representations, ICLR 2017 - Conference Track Proceedings,1-15. 2017.
Tracking the world state with recurrent entity networks [pdf]Paper   link   bibtex   abstract  
On large-batch training for deep learning: Generalization gap and sharp minima. Keskar, N., S.; Nocedal, J.; Tang, P., T., P.; Mudigere, D.; and Smelyanskiy, M. 5th International Conference on Learning Representations, ICLR 2017 - Conference Track Proceedings,1-16. 2017.
On large-batch training for deep learning: Generalization gap and sharp minima [pdf]Paper   link   bibtex   abstract  
PointNet++: Deep hierarchical feature learning on point sets in a metric space. Qi, C., R.; Yi, L.; Su, H.; and Guibas, L., J. Advances in Neural Information Processing Systems, 2017-Decem: 5100-5109. 2017.
PointNet++: Deep hierarchical feature learning on point sets in a metric space [pdf]Paper   link   bibtex   abstract  
Spectral graph convolutions for population-based disease prediction. Parisot, S.; Ktena, S., I.; Ferrante, E.; Lee, M.; Moreno, R., G.; Glocker, B.; and Rueckert, D. Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), 10435 LNCS(319456): 177-185. 2017.
Spectral graph convolutions for population-based disease prediction [pdf]Paper   doi   link   bibtex   abstract  
Geometric Deep Learning: Going beyond Euclidean data. Bronstein, M., M.; Bruna, J.; Lecun, Y.; Szlam, A.; and Vandergheynst, P. IEEE Signal Processing Magazine, 34(4): 18-42. 2017.
Geometric Deep Learning: Going beyond Euclidean data [pdf]Paper   doi   link   bibtex   abstract  
Attention Is All You Need. Vaswani, A.; Shazeer, N.; Parmar, N.; Uszkoreit, J.; Jones, L.; Gomez, A., N.; Kaiser, L.; and Polosukhin, I. Advances in Neural Information Processing Systems, 2017-December: 5999-6009. 6 2017.
Attention Is All You Need [pdf]Paper   Attention Is All You Need [link]Website   link   bibtex   abstract  
Attention Is All You Need. Vaswani, A.; Shazeer, N.; Parmar, N.; Uszkoreit, J.; Jones, L.; Gomez, A., N.; Kaiser, L.; and Polosukhin, I. Advances in Neural Information Processing Systems, 2017-Decem: 5999-6009. 6 2017.
Attention Is All You Need [pdf]Paper   Attention Is All You Need [link]Website   link   bibtex   abstract  
Comparison of fine-tuning and extension strategies for deep convolutional neural networks. Pittaras, N.; Markatopoulou, F.; Mezaris, V.; and Patras, I. Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), 10132 LNCS: 102-114. 2017.
Comparison of fine-tuning and extension strategies for deep convolutional neural networks [pdf]Paper   doi   link   bibtex   abstract  
Simonovsky, Komodakis - 2017 - Dynamic Edge-Conditioned Filters in Convolutional Neural Networks on Graphs.pdf. Simonovsky, M.; and Komodakis, N. Cvpr,3693-3702. 2017.
Simonovsky, Komodakis - 2017 - Dynamic Edge-Conditioned Filters in Convolutional Neural Networks on Graphs.pdf [pdf]Paper   Simonovsky, Komodakis - 2017 - Dynamic Edge-Conditioned Filters in Convolutional Neural Networks on Graphs.pdf [pdf]Website   link   bibtex   abstract  
SyncSpecCNN: Synchronized spectral CNN for 3D shape segmentation. Yi, L.; Su, H.; Guo, X.; and Guibas, L. Proceedings - 30th IEEE Conference on Computer Vision and Pattern Recognition, CVPR 2017, 2017-Janua: 6584-6592. 2017.
SyncSpecCNN: Synchronized spectral CNN for 3D shape segmentation [pdf]Paper   doi   link   bibtex   abstract  
CONTOUR-ENHANCED RESAMPLING OF 3D POINT CLOUDS VIA GRAPHS Mitsubishi Electric Research Laboratories , Cambridge , MA , USA Dept . of ECE , 3 Dept . of BME , Carnegie Mellon University , Pittsburgh , PA , USA. IEEE International Conference on Acoustics, Speech, and Signal Processing (ICASSP) 2017,2941-2945. 2017.
CONTOUR-ENHANCED RESAMPLING OF 3D POINT CLOUDS VIA GRAPHS Mitsubishi Electric Research Laboratories , Cambridge , MA , USA Dept . of ECE , 3 Dept . of BME , Carnegie Mellon University , Pittsburgh , PA , USA [pdf]Paper   link   bibtex  
Augmented variational autoencoders for collaborative filtering with auxiliary information. Lee, W.; Song, K.; and Moon, I., C. International Conference on Information and Knowledge Management, Proceedings, Part F1318: 1139-1148. 2017.
Augmented variational autoencoders for collaborative filtering with auxiliary information [pdf]Paper   doi   link   bibtex   abstract  
Fully perceptual-based 3D spatial sound individualization with an adaptive variational autoencoder. Yamamoto, K.; and Igarashi, T. ACM Transactions on Graphics, 36(6). 2017.
Fully perceptual-based 3D spatial sound individualization with an adaptive variational autoencoder [pdf]Paper   doi   link   bibtex   abstract  
Deformable Convolutional Networks. Dai, J.; Qi, H.; Xiong, Y.; Li, Y.; Zhang, G.; Hu, H.; and Wei, Y. Proceedings of the IEEE International Conference on Computer Vision, 2017-Octob: 764-773. 2017.
Deformable Convolutional Networks [pdf]Paper   doi   link   bibtex   abstract  
Escape from Cells: Deep Kd-Networks for the Recognition of 3D Point Cloud Models. Klokov, R.; and Lempitsky, V. Proceedings of the IEEE International Conference on Computer Vision, 2017-Octob: 863-872. 2017.
Escape from Cells: Deep Kd-Networks for the Recognition of 3D Point Cloud Models [pdf]Paper   doi   link   bibtex   abstract  
DeepPointSet : A Point Set Generation Network for 3D Object Reconstruction from a Single Image Supplementary Material. Fan, H.; and Guibas, L. IEEE Conference on Computer Vision and Pattern Recognition,605-613. 2017.
DeepPointSet : A Point Set Generation Network for 3D Object Reconstruction from a Single Image Supplementary Material [pdf]Paper   link   bibtex  
Multigrid neural architectures. Ke, T., W.; Maire, M.; and Yu, S., X. Proceedings - 30th IEEE Conference on Computer Vision and Pattern Recognition, CVPR 2017, 2017-Janua: 4067-4075. 2017.
Multigrid neural architectures [pdf]Paper   doi   link   bibtex   abstract  
β -VAE : L EARNING B ASIC V ISUAL C ONCEPTS WITH A C ONSTRAINED V ARIATIONAL F RAMEWORK. Higgins, I.; Matthey, L.; Pal, A.; Burgess, C.; Glorot, X.; Botvinick, M.; Mohamed, S.; and Lerchner, A. ,1-22. 2017.
β -VAE : L EARNING B ASIC V ISUAL C ONCEPTS WITH A C ONSTRAINED V ARIATIONAL F RAMEWORK [pdf]Paper   link   bibtex  
Understanding disentangling in β -VAE arXiv : 1804 . 03599v1 [ stat . ML ] 10 Apr 2018. Burgess, C., P.; Higgins, I.; Pal, A.; Matthey, L.; Watters, N.; Desjardins, G.; and Lerchner, A. , (Nips). 2017.
Understanding disentangling in β -VAE arXiv : 1804 . 03599v1 [ stat . ML ] 10 Apr 2018 [pdf]Paper   link   bibtex  
SurfNet: Generating 3D shape surfaces using deep residual networks. Sinha, A.; Unmesh, A.; Huang, Q.; and Ramani, K. Proceedings - 30th IEEE Conference on Computer Vision and Pattern Recognition, CVPR 2017, 2017-Janua: 791-800. 2017.
SurfNet: Generating 3D shape surfaces using deep residual networks [pdf]Paper   doi   link   bibtex   abstract  
deep learning English version. Goodfellow, I.; Bengio, Y.; and Courville, A. ,800. 2017.
deep learning English version [pdf]Paper   link   bibtex  
Adaptive geometry images for remeshing. Shi, L.; Kong, D.; Wang, S.; and Yin, B. International Journal of Digital Multimedia Broadcasting, 2017. 2017.
Adaptive geometry images for remeshing [pdf]Paper   doi   link   bibtex   abstract  
B-SHOT: a binary 3D feature descriptor for fast Keypoint matching on 3D point clouds. Prakhya, S., M.; Liu, B.; Lin, W.; Jakhetiya, V.; and Guntuku, S., C. Autonomous Robots, 41(7): 1501-1520. 2017.
B-SHOT: a binary 3D feature descriptor for fast Keypoint matching on 3D point clouds [pdf]Paper   doi   link   bibtex   abstract  
Graph-based Point Cloud Compression Examination Committee :. Jorge, P.; and Oliveira, R., D. . 2017.
Graph-based Point Cloud Compression Examination Committee : [pdf]Paper   link   bibtex  
The shape variational autoencoder: A deep generative model of part-segmented 3D objects. Nash, C.; and Williams, C., K. Computer Graphics Forum, 36(5): 1-12. 2017.
The shape variational autoencoder: A deep generative model of part-segmented 3D objects [pdf]Paper   doi   link   bibtex   abstract  
3D Object Reconstruction from a Single Depth View with Adversarial Learning. Yang, B.; Wen, H.; Wang, S.; Clark, R.; Markham, A.; and Trigoni, N. Proceedings - 2017 IEEE International Conference on Computer Vision Workshops, ICCVW 2017, 2018-Janua: 679-688. 2017.
3D Object Reconstruction from a Single Depth View with Adversarial Learning [pdf]Paper   doi   link   bibtex   abstract  
Improved Training of Wasserstein GANs. Gulrajani, I.; Ahmed, F.; Arjovsky, M.; Dumoulin, V.; and Courville, A., C. In Advances in Neural Information Processing Systems, volume 30, 2017. Curran Associates, Inc.
Improved Training of Wasserstein GANs [pdf]Paper   Improved Training of Wasserstein GANs [link]Website   link   bibtex  
FractalNet: Ultra-Deep Neural Networks without Residuals. Larsson, G.; Maire, M.; and Shakhnarovich, G. arXiv:1605.07648 [cs]. 5 2017.
FractalNet: Ultra-Deep Neural Networks without Residuals [pdf]Paper   FractalNet: Ultra-Deep Neural Networks without Residuals [link]Website   link   bibtex   abstract  
Regressing Robust and Discriminative 3D Morphable Models With a Very Deep Neural Network. Tuan Tran, A.; Hassner, T.; Masi, I.; and Medioni, G. In pages 5163-5172, 2017.
Regressing Robust and Discriminative 3D Morphable Models With a Very Deep Neural Network [pdf]Paper   Regressing Robust and Discriminative 3D Morphable Models With a Very Deep Neural Network [link]Website   link   bibtex  
Deep Feature Consistent Variational Autoencoder. Hou, X.; Shen, L.; Sun, K.; and Qiu, G. In 2017 IEEE Winter Conference on Applications of Computer Vision (WACV), pages 1133-1141, 3 2017.
Deep Feature Consistent Variational Autoencoder [pdf]Paper   doi   link   bibtex   abstract  
Adam: A Method for Stochastic Optimization. Kingma, D., P.; and Ba, J. arXiv:1412.6980 [cs]. 1 2017.
Adam: A Method for Stochastic Optimization [pdf]Paper   Adam: A Method for Stochastic Optimization [link]Website   link   bibtex   abstract  
3D Object Reconstruction from a Single Depth View with Adversarial Learning. Yang, B.; Wen, H.; Wang, S.; Clark, R.; Markham, A.; and Trigoni, N. In pages 679-688, 2017.
3D Object Reconstruction from a Single Depth View with Adversarial Learning [pdf]Paper   3D Object Reconstruction from a Single Depth View with Adversarial Learning [link]Website   link   bibtex  
Aff-Wild: Valence and Arousal 'In-The-Wild' Challenge. Zafeiriou, S.; Kollias, D.; Nicolaou, M., A.; Papaioannou, A.; Zhao, G.; and Kotsia, I. In pages 34-41, 2017.
Aff-Wild: Valence and Arousal 'In-The-Wild' Challenge [pdf]Paper   Aff-Wild: Valence and Arousal 'In-The-Wild' Challenge [link]Website   link   bibtex  
ScanNet: Richly-Annotated 3D Reconstructions of Indoor Scenes. Dai, A.; Chang, A., X.; Savva, M.; Halber, M.; Funkhouser, T.; and Niessner, M. In pages 5828-5839, 2017.
ScanNet: Richly-Annotated 3D Reconstructions of Indoor Scenes [pdf]Paper   ScanNet: Richly-Annotated 3D Reconstructions of Indoor Scenes [link]Website   link   bibtex  
Learning to Estimate 3D Hand Pose From Single RGB Images. Zimmermann, C.; and Brox, T. In pages 4903-4911, 2017.
Learning to Estimate 3D Hand Pose From Single RGB Images [pdf]Paper   Learning to Estimate 3D Hand Pose From Single RGB Images [link]Website   link   bibtex  
Unsupervised Anomaly Detection with Generative Adversarial Networks to Guide Marker Discovery. Schlegl, T.; Seeböck, P.; Waldstein, S., M.; Schmidt-Erfurth, U.; and Langs, G. In Niethammer, M.; Styner, M.; Aylward, S.; Zhu, H.; Oguz, I.; Yap, P.; and Shen, D., editor(s), Information Processing in Medical Imaging, of Lecture Notes in Computer Science, pages 146-157, 2017. Springer International Publishing
Unsupervised Anomaly Detection with Generative Adversarial Networks to Guide Marker Discovery [pdf]Paper   doi   link   bibtex   abstract  
The shape variational autoencoder: A deep generative model of part-segmented 3D objects. Nash, C.; and Williams, C., K., I. Computer Graphics Forum, 36(5): 1-12. 2017.
The shape variational autoencoder: A deep generative model of part-segmented 3D objects [pdf]Paper   The shape variational autoencoder: A deep generative model of part-segmented 3D objects [link]Website   doi   link   bibtex   abstract  
Least Squares Generative Adversarial Networks. Mao, X.; Li, Q.; Xie, H.; Lau, R., Y., K.; Wang, Z.; and Paul Smolley, S. In pages 2794-2802, 2017.
Least Squares Generative Adversarial Networks [pdf]Paper   Least Squares Generative Adversarial Networks [link]Website   link   bibtex  
CVAE-GAN: Fine-Grained Image Generation Through Asymmetric Training. Bao, J.; Chen, D.; Wen, F.; Li, H.; and Hua, G. In pages 2745-2754, 2017.
CVAE-GAN: Fine-Grained Image Generation Through Asymmetric Training [pdf]Paper   CVAE-GAN: Fine-Grained Image Generation Through Asymmetric Training [link]Website   link   bibtex  
The heat method for distance computation. Crane, K.; Weischedel, C.; and Wardetzky, M. Communications of the ACM, 60(11): 90-99. 10 2017.
The heat method for distance computation [link]Website   doi   link   bibtex   abstract  
A Mathematical Introduction to Robotic Manipulation. Murray, R., M.; Li, Z.; and Sastry, S., S. CRC Press, 9 2017.
doi   link   bibtex   abstract  
Multigrid Neural Architectures. Ke, T.; Maire, M.; and Yu, S., X. In pages 6665-6673, 2017.
Multigrid Neural Architectures [pdf]Paper   Multigrid Neural Architectures [link]Website   link   bibtex  
CLEVR: A Diagnostic Dataset for Compositional Language and Elementary Visual Reasoning. Johnson, J.; Hariharan, B.; van der Maaten, L.; Fei-Fei, L.; Lawrence Zitnick, C.; and Girshick, R. In pages 2901-2910, 2017.
CLEVR: A Diagnostic Dataset for Compositional Language and Elementary Visual Reasoning [pdf]Paper   CLEVR: A Diagnostic Dataset for Compositional Language and Elementary Visual Reasoning [link]Website   link   bibtex  
Variational Inference: A Review for Statisticians. Blei, D., M.; Kucukelbir, A.; and McAuliffe, J., D. Journal of the American Statistical Association, 112(518): 859-877. 4 2017.
Variational Inference: A Review for Statisticians [pdf]Paper   Variational Inference: A Review for Statisticians [link]Website   doi   link   bibtex   abstract  
Attention is All you Need. Vaswani, A.; Shazeer, N.; Parmar, N.; Uszkoreit, J.; Jones, L.; Gomez, A., N.; Kaiser, Ł.; and Polosukhin, I. In Advances in Neural Information Processing Systems, volume 30, 2017. Curran Associates, Inc.
Attention is All you Need [pdf]Paper   Attention is All you Need [link]Website   link   bibtex  
Wasserstein Generative Adversarial Networks. Arjovsky, M.; Chintala, S.; and Bottou, L. In Proceedings of the 34th International Conference on Machine Learning, pages 214-223, 7 2017. PMLR
Wasserstein Generative Adversarial Networks [pdf]Paper   Wasserstein Generative Adversarial Networks [link]Website   link   bibtex   abstract  
Variational Deep Embedding: An Unsupervised and Generative Approach to Clustering. Jiang, Z.; Zheng, Y.; Tan, H.; Tang, B.; and Zhou, H. arXiv:1611.05148 [cs]. 6 2017.
Variational Deep Embedding: An Unsupervised and Generative Approach to Clustering [pdf]Paper   Variational Deep Embedding: An Unsupervised and Generative Approach to Clustering [link]Website   link   bibtex   abstract  
Variational methods for conditional multimodal deep learning. Pandey, G.; and Dukkipati, A. In 2017 International Joint Conference on Neural Networks (IJCNN), pages 308-315, 5 2017.
Variational methods for conditional multimodal deep learning [pdf]Paper   doi   link   bibtex   abstract  
Embodied Hands: Modeling and Capturing Hands and Bodies Together. Romero, J.; Tzionas, D.; and Black, M., J. ACM Transactions on Graphics, 36(6): 1-17. 11 2017.
Embodied Hands: Modeling and Capturing Hands and Bodies Together [pdf]Paper   Embodied Hands: Modeling and Capturing Hands and Bodies Together [link]Website   doi   link   bibtex   abstract  
Feature axes orthogonalization in semantic face editing. Antal, L.; and Bodó, Z. ,163-169. 2017.
Feature axes orthogonalization in semantic face editing [pdf]Paper   link   bibtex  
On Convergence and Stability of GANs. Kodali, N.; Abernethy, J.; Hays, J.; and Kira, Z. . 2017.
On Convergence and Stability of GANs [pdf]Paper   On Convergence and Stability of GANs [link]Website   link   bibtex   abstract  
Stabilizing training of generative adversarial networks through regularization. Roth, K.; Lucchi, A.; Nowozin, S.; and Hofmann, T. Advances in Neural Information Processing Systems, 2017-Decem(2): 2019-2029. 2017.
Stabilizing training of generative adversarial networks through regularization [pdf]Paper   link   bibtex   abstract  
Improved Adversarial Systems for 3D Object Generation and Reconstruction. Smith, E.; and Meger, D. , (CoRL): 1-10. 2017.
Improved Adversarial Systems for 3D Object Generation and Reconstruction [pdf]Paper   Improved Adversarial Systems for 3D Object Generation and Reconstruction [link]Website   link   bibtex   abstract  
Shape Inpainting Using 3D Generative Adversarial Network and Recurrent Convolutional Networks. Wang, W.; Huang, Q.; You, S.; Yang, C.; and Neumann, U. Proceedings of the IEEE International Conference on Computer Vision, 2017-Octob: 2317-2325. 2017.
Shape Inpainting Using 3D Generative Adversarial Network and Recurrent Convolutional Networks [pdf]Paper   doi   link   bibtex   abstract  
Visual SLAM algorithms: A survey from 2010 to 2016. Taketomi, T.; Uchiyama, H.; and Ikeda, S. IPSJ Transactions on Computer Vision and Applications, 9. 2017.
Visual SLAM algorithms: A survey from 2010 to 2016 [pdf]Paper   doi   link   bibtex   abstract  
Shape generation using spatially partitioned point clouds. Gadelha, M.; Maji, S.; and Wang, R. British Machine Vision Conference 2017, BMVC 2017,1-12. 2017.
Shape generation using spatially partitioned point clouds [pdf]Paper   doi   link   bibtex   abstract  
A novel scan registration method based on the feature-less global descriptor - Spherical entropy image. Sun, B.; Zeng, Y.; Dai, H.; Xiao, J.; and Zhang, J. Industrial Robot, 44(4): 552-563. 2017.
A novel scan registration method based on the feature-less global descriptor - Spherical entropy image [pdf]Paper   doi   link   bibtex   abstract  
An iterative closest points algorithm for registration of 3D laser scanner point clouds with geometric features. He, Y.; Liang, B.; Yang, J.; Li, S.; and He, J. Sensors (Switzerland), 17(8). 2017.
An iterative closest points algorithm for registration of 3D laser scanner point clouds with geometric features [pdf]Paper   doi   link   bibtex   abstract  
  2016 (70)
Deep Cuboid Detection: Beyond 2D Bounding Boxes. Dwibedi, D.; Malisiewicz, T.; Badrinarayanan, V.; and Rabinovich, A. . 2016.
Deep Cuboid Detection: Beyond 2D Bounding Boxes [pdf]Paper   Deep Cuboid Detection: Beyond 2D Bounding Boxes [link]Website   link   bibtex   abstract  
Automatic scene parsing for generic object descriptions using shape primitives. Büttner, S.; Márton, Z., C.; and Hertkorn, K. Robotics and Autonomous Systems, 76: 93-112. 2016.
Automatic scene parsing for generic object descriptions using shape primitives [pdf]Paper   Automatic scene parsing for generic object descriptions using shape primitives [link]Website   doi   link   bibtex   abstract  
Learning to remove multipath distortions in Time-of-Flight range images for a robotic arm setup. Son, K.; Liu, M., Y.; and Taguchi, Y. Proceedings - IEEE International Conference on Robotics and Automation, 2016-June: 3390-3397. 2016.
Learning to remove multipath distortions in Time-of-Flight range images for a robotic arm setup [pdf]Paper   doi   link   bibtex   abstract  
Convolutional oriented boundaries. Maninis, K., K.; Pont-Tuset, J.; Arbeláez, P.; and Van Gool, L. Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), 9905 LNCS: 580-596. 2016.
Convolutional oriented boundaries [pdf]Paper   doi   link   bibtex   abstract  
Deep learning for robust normal estimation in unstructured point clouds. Boulch, A.; and Marlet, R. Eurographics Symposium on Geometry Processing, 35(5): 281-290. 2016.
Deep learning for robust normal estimation in unstructured point clouds [pdf]Paper   doi   link   bibtex   abstract  
Deeper depth prediction with fully convolutional residual networks. Laina, I.; Rupprecht, C.; Belagiannis, V.; Tombari, F.; and Navab, N. Proceedings - 2016 4th International Conference on 3D Vision, 3DV 2016,239-248. 2016.
Deeper depth prediction with fully convolutional residual networks [pdf]Paper   doi   link   bibtex   abstract  
Volumetric and multi-view CNNs for object classification on 3D data. Qi, C., R.; Su, H.; Niebner, M.; Dai, A.; Yan, M.; and Guibas, L., J. Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, 2016-Decem: 5648-5656. 2016.
Volumetric and multi-view CNNs for object classification on 3D data [pdf]Paper   doi   link   bibtex   abstract  
FusionNet: 3D Object Classification Using Multiple Data Representations. Hegde, V.; and Zadeh, R. . 2016.
FusionNet: 3D Object Classification Using Multiple Data Representations [pdf]Paper   FusionNet: 3D Object Classification Using Multiple Data Representations [link]Website   link   bibtex   abstract  
3D U-net: Learning dense volumetric segmentation from sparse annotation. Çiçek, Ö.; Abdulkadir, A.; Lienkamp, S., S.; Brox, T.; and Ronneberger, O. In Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), volume 9901 LNCS, pages 424-432, 6 2016. Springer Verlag
3D U-net: Learning dense volumetric segmentation from sparse annotation [pdf]Paper   3D U-net: Learning dense volumetric segmentation from sparse annotation [link]Website   doi   link   bibtex   abstract  
Deep compression: Compressing deep neural networks with pruning, trained quantization and Huffman coding. Han, S.; Mao, H.; and Dally, W., J. In 4th International Conference on Learning Representations, ICLR 2016 - Conference Track Proceedings, 10 2016. International Conference on Learning Representations, ICLR
Deep compression: Compressing deep neural networks with pruning, trained quantization and Huffman coding [link]Website   link   bibtex   abstract  
SqueezeNet: AlexNet-level accuracy with 50x fewer parameters and <0.5MB model size. Iandola, F., N.; Han, S.; Moskewicz, M., W.; Ashraf, K.; Dally, W., J.; and Keutzer, K. . 2 2016.
SqueezeNet: AlexNet-level accuracy with 50x fewer parameters and <0.5MB model size [pdf]Paper   SqueezeNet: AlexNet-level accuracy with 50x fewer parameters and <0.5MB model size [link]Website   link   bibtex   abstract  
Deep compression: Compressing deep neural networks with pruning, trained quantization and Huffman coding. Han, S.; Mao, H.; and Dally, W., J. In 4th International Conference on Learning Representations, ICLR 2016 - Conference Track Proceedings, 10 2016. International Conference on Learning Representations, ICLR
Deep compression: Compressing deep neural networks with pruning, trained quantization and Huffman coding [pdf]Paper   Deep compression: Compressing deep neural networks with pruning, trained quantization and Huffman coding [link]Website   link   bibtex   abstract  
SqueezeNet: AlexNet-level accuracy with 50x fewer parameters and <0.5MB model size. Iandola, F., N.; Han, S.; Moskewicz, M., W.; Ashraf, K.; Dally, W., J.; and Keutzer, K. . 2 2016.
SqueezeNet: AlexNet-level accuracy with 50x fewer parameters and <0.5MB model size [pdf]Paper   SqueezeNet: AlexNet-level accuracy with 50x fewer parameters and <0.5MB model size [link]Website   link   bibtex   abstract  
3D U-net: Learning dense volumetric segmentation from sparse annotation. Çiçek, Ö.; Abdulkadir, A.; Lienkamp, S., S.; Brox, T.; and Ronneberger, O. In Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), volume 9901 LNCS, pages 424-432, 6 2016. Springer Verlag
3D U-net: Learning dense volumetric segmentation from sparse annotation [pdf]Paper   3D U-net: Learning dense volumetric segmentation from sparse annotation [link]Website   doi   link   bibtex   abstract  
Receding horizon next-best-view planner for 3D exploration. Bircher, A.; Kamel, M.; Alexis, K.; Oleynikova, H.; and Siegwart, R. Proceedings - IEEE International Conference on Robotics and Automation, 2016-June: 1462-1468. 2016.
doi   link   bibtex   abstract  
Next-Best-View method based on consecutive evaluation of topological relations. Dierenbach, K., O.; Weinmann, M.; and Jutzi, B. International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences - ISPRS Archives, 41(July): 11-19. 2016.
doi   link   bibtex   abstract  
An information gain formulation for active volumetric 3D reconstruction. Isler, S.; Sabzevari, R.; Delmerico, J.; and Scaramuzza, D. Proceedings - IEEE International Conference on Robotics and Automation, 2016-June: 3477-3484. 2016.
doi   link   bibtex   abstract  
PointNet: Deep Learning on Point Sets for 3D Classification and Segmentation. Qi, C., R.; Yi, L.; Su, H.; and Guibas, L., J. Proceedings - 2016 4th International Conference on 3D Vision, 3DV 2016,601-610. 2016.
PointNet: Deep Learning on Point Sets for 3D Classification and Segmentation [pdf]Paper   doi   link   bibtex   abstract  
Deep residual learning for image recognition. He, K.; Zhang, X.; Ren, S.; and Sun, J. In Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, volume 2016-Decem, pages 770-778, 12 2016. IEEE Computer Society
Deep residual learning for image recognition [pdf]Paper   Deep residual learning for image recognition [link]Website   doi   link   bibtex   abstract  
Convolutional neural networks on graphs with fast localized spectral filtering. Defferrard, M.; Bresson, X.; and Vandergheynst, P. Advances in Neural Information Processing Systems, (Nips): 3844-3852. 2016.
Convolutional neural networks on graphs with fast localized spectral filtering [pdf]Paper   link   bibtex   abstract  
Deep compression: Compressing deep neural networks with pruning, trained quantization and Huffman coding. Han, S.; Mao, H.; and Dally, W., J. In 4th International Conference on Learning Representations, ICLR 2016 - Conference Track Proceedings, 10 2016. International Conference on Learning Representations, ICLR
Deep compression: Compressing deep neural networks with pruning, trained quantization and Huffman coding [pdf]Paper   Deep compression: Compressing deep neural networks with pruning, trained quantization and Huffman coding [link]Website   link   bibtex   abstract  
SqueezeNet: AlexNet-level accuracy with 50x fewer parameters and <0.5MB model size. Iandola, F., N.; Han, S.; Moskewicz, M., W.; Ashraf, K.; Dally, W., J.; and Keutzer, K. . 2 2016.
SqueezeNet: AlexNet-level accuracy with 50x fewer parameters and <0.5MB model size [pdf]Paper   SqueezeNet: AlexNet-level accuracy with 50x fewer parameters and <0.5MB model size [link]Website   link   bibtex   abstract  
Deep residual learning for image recognition. He, K.; Zhang, X.; Ren, S.; and Sun, J. Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, 2016-Decem: 770-778. 2016.
Deep residual learning for image recognition [pdf]Paper   doi   link   bibtex   abstract  
Local minima in training of neural networks. Swirszcz, G.; Czarnecki, W., M.; and Pascanu, R. ,1-12. 2016.
Local minima in training of neural networks [pdf]Paper   Local minima in training of neural networks [link]Website   link   bibtex   abstract  
Ship Rotated Bounding Box Space for Ship Extraction from High-Resolution Optical Satellite Images with Complex Backgrounds. Liu, Z.; Wang, H.; Weng, L.; and Yang, Y. IEEE Geoscience and Remote Sensing Letters, 13(8): 1074-1078. 2016.
Ship Rotated Bounding Box Space for Ship Extraction from High-Resolution Optical Satellite Images with Complex Backgrounds [pdf]Paper   doi   link   bibtex   abstract  
Convolutional Neural Networks on Graphs with Fast Localized Spectral Filtering. Defferrard, M.; Bresson, X.; and Vandergheynst, P. 日本建築学会北陸支部研究報告集, (59): 395-398. 2016.
Convolutional Neural Networks on Graphs with Fast Localized Spectral Filtering [pdf]Paper   Convolutional Neural Networks on Graphs with Fast Localized Spectral Filtering [link]Website   link   bibtex   abstract  
Dense human body correspondences using convolutional networks. Wei, L.; Huang, Q.; Ceylan, D.; Vouga, E.; and Li, H. Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, 2016-Decem: 1544-1553. 2016.
Dense human body correspondences using convolutional networks [pdf]Paper   doi   link   bibtex   abstract  
Recent Trends, Applications, and Perspectives in 3D Shape Similarity Assessment. Biasotti, S.; Cerri, A.; Bronstein, A.; and Bronstein, M. Computer Graphics Forum, 35(6): 87-119. 2016.
Recent Trends, Applications, and Perspectives in 3D Shape Similarity Assessment [pdf]Paper   doi   link   bibtex   abstract  
Graph-based compression of dynamic 3D point cloud sequences. Thanou, D.; Chou, P., A.; and Frossard, P. IEEE Transactions on Image Processing, 25(4): 1765-1778. 2016.
Graph-based compression of dynamic 3D point cloud sequences [pdf]Paper   doi   link   bibtex   abstract  
Efficient and flexible deformation representation for data-driven surface modeling. Gao, L.; Lai, Y., K.; Liang, D.; Chen, S., Y.; and Xia, S. ACM Transactions on Graphics, 35(5). 2016.
Efficient and flexible deformation representation for data-driven surface modeling [pdf]Paper   doi   link   bibtex   abstract  
Generative and Discriminative Voxel Modeling with Convolutional Neural Networks. Brock, A.; Lim, T.; Ritchie, J., M.; and Weston, N. . 2016.
Generative and Discriminative Voxel Modeling with Convolutional Neural Networks [pdf]Paper   Generative and Discriminative Voxel Modeling with Convolutional Neural Networks [link]Website   link   bibtex   abstract  
Group equivariant convolutional networks. Cohen, T., S.; and Welling, M. 33rd International Conference on Machine Learning, ICML 2016, 6: 4375-4386. 2016.
Group equivariant convolutional networks [pdf]Paper   link   bibtex   abstract  
Multi-scale context aggregation by dilated convolutions. Yu, F.; and Koltun, V. 4th International Conference on Learning Representations, ICLR 2016 - Conference Track Proceedings. 2016.
Multi-scale context aggregation by dilated convolutions [pdf]Paper   link   bibtex   abstract  
A Structured Variational Auto-encoder for Learning Deep Hierarchies of Sparse Features. Salimans, T. ,1-3. 2016.
A Structured Variational Auto-encoder for Learning Deep Hierarchies of Sparse Features [pdf]Paper   A Structured Variational Auto-encoder for Learning Deep Hierarchies of Sparse Features [link]Website   link   bibtex   abstract  
Improved variational inference with inverse autoregressive flow. Kingma, D., P.; Salimans, T.; Jozefowicz, R.; Chen, X.; Sutskever, I.; and Welling, M. Advances in Neural Information Processing Systems, (Nips): 4743-4751. 2016.
Improved variational inference with inverse autoregressive flow [pdf]Paper   link   bibtex   abstract  
Improved variational inference with inverse autoregressive flow. Kingma, D., P.; Salimans, T.; Jozefowicz, R.; Chen, X.; Sutskever, I.; and Welling, M. Advances in Neural Information Processing Systems, (Nips): 4743-4751. 2016.
Improved variational inference with inverse autoregressive flow [pdf]Paper   link   bibtex   abstract  
Deep Learning 3D Shape Surfaces Using Geometry Images. Ayan Sinha , JingBai, a., K., R. Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), 9906 LNCS: VII-IX. 2016.
Deep Learning 3D Shape Surfaces Using Geometry Images [pdf]Paper   doi   link   bibtex  
Deep learning 3D shape surfaces using geometry images - suplimentary mat. Sinha, A.; Bai, J.; and Ramani, K. Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), 9910 LNCS: 223-240. 2016.
Deep learning 3D shape surfaces using geometry images - suplimentary mat [pdf]Paper   doi   link   bibtex   abstract  
Unsupervised representation learning with deep convolutional generative adversarial networks. Radford, A.; Metz, L.; and Chintala, S. 4th International Conference on Learning Representations, ICLR 2016 - Conference Track Proceedings,1-16. 2016.
Unsupervised representation learning with deep convolutional generative adversarial networks [pdf]Paper   link   bibtex   abstract  
Learning a probabilistic latent space of object shapes via 3D generative-adversarial modeling. Wu, J.; Zhang, C.; Xue, T.; Freeman, W., T.; and Tenenbaum, J., B. Advances in Neural Information Processing Systems, (Nips): 82-90. 2016.
Learning a probabilistic latent space of object shapes via 3D generative-adversarial modeling [pdf]Paper   link   bibtex   abstract  
3DMatch: Learning Local Geometric Descriptors from RGB-D Reconstructions. Zeng, A.; Song, S.; Nießner, M.; Fisher, M.; Xiao, J.; and Funkhouser, T. Proceedings - 30th IEEE Conference on Computer Vision and Pattern Recognition, CVPR 2017, 2017-Janua: 199-208. 3 2016.
3DMatch: Learning Local Geometric Descriptors from RGB-D Reconstructions [pdf]Paper   3DMatch: Learning Local Geometric Descriptors from RGB-D Reconstructions [link]Website   doi   link   bibtex   abstract  
Fast Semantic Segmentation of 3D Point Clouds With Strongly Varying Density. Hackel, T.; Wegner, J., D.; and Schindler, K. ISPRS Annals of Photogrammetry, Remote Sensing and Spatial Information Sciences, III-3: 177-184. 2016.
Fast Semantic Segmentation of 3D Point Clouds With Strongly Varying Density [pdf]Paper   doi   link   bibtex   abstract  
Data Science with Graphs: A Signal Processing Perspective. Chen, S. ProQuest Dissertations and Theses,274. 2016.
Data Science with Graphs: A Signal Processing Perspective [pdf]Paper   Data Science with Graphs: A Signal Processing Perspective [link]Website   link   bibtex   abstract  
Face Alignment Across Large Poses: A 3D Solution. Zhu, X.; Lei, Z.; Liu, X.; Shi, H.; and Li, S., Z. In pages 146-155, 2016.
Face Alignment Across Large Poses: A 3D Solution [pdf]Paper   Face Alignment Across Large Poses: A 3D Solution [link]Website   link   bibtex  
Adversarial Autoencoders. Makhzani, A.; Shlens, J.; Jaitly, N.; Goodfellow, I.; and Frey, B. arXiv:1511.05644 [cs]. 5 2016.
Adversarial Autoencoders [pdf]Paper   Adversarial Autoencoders [link]Website   link   bibtex   abstract  
Deep Residual Learning for Image Recognition. He, K.; Zhang, X.; Ren, S.; and Sun, J. In pages 770-778, 2016.
Deep Residual Learning for Image Recognition [pdf]Paper   Deep Residual Learning for Image Recognition [link]Website   link   bibtex  
Unsupervised Deep Embedding for Clustering Analysis. Xie, J.; Girshick, R.; and Farhadi, A. In Proceedings of The 33rd International Conference on Machine Learning, pages 478-487, 6 2016. PMLR
Unsupervised Deep Embedding for Clustering Analysis [pdf]Paper   Unsupervised Deep Embedding for Clustering Analysis [link]Website   link   bibtex   abstract  
Theano: A Python framework for fast computation of mathematical expressions. Team, T., T., D.; Al-Rfou, R.; Alain, G.; Almahairi, A.; Angermueller, C.; Bahdanau, D.; Ballas, N.; Bastien, F.; Bayer, J.; Belikov, A.; Belopolsky, A.; Bengio, Y.; Bergeron, A.; Bergstra, J.; Bisson, V.; Snyder, J., B.; Bouchard, N.; Boulanger-Lewandowski, N.; Bouthillier, X.; de Brébisson, A.; Breuleux, O.; Carrier, P.; Cho, K.; Chorowski, J.; Christiano, P.; Cooijmans, T.; Côté, M.; Côté, M.; Courville, A.; Dauphin, Y., N.; Delalleau, O.; Demouth, J.; Desjardins, G.; Dieleman, S.; Dinh, L.; Ducoffe, M.; Dumoulin, V.; Kahou, S., E.; Erhan, D.; Fan, Z.; Firat, O.; Germain, M.; Glorot, X.; Goodfellow, I.; Graham, M.; Gulcehre, C.; Hamel, P.; Harlouchet, I.; Heng, J.; Hidasi, B.; Honari, S.; Jain, A.; Jean, S.; Jia, K.; Korobov, M.; Kulkarni, V.; Lamb, A.; Lamblin, P.; Larsen, E.; Laurent, C.; Lee, S.; Lefrancois, S.; Lemieux, S.; Léonard, N.; Lin, Z.; Livezey, J., A.; Lorenz, C.; Lowin, J.; Ma, Q.; Manzagol, P.; Mastropietro, O.; McGibbon, R., T.; Memisevic, R.; van Merriënboer, B.; Michalski, V.; Mirza, M.; Orlandi, A.; Pal, C.; Pascanu, R.; Pezeshki, M.; Raffel, C.; Renshaw, D.; Rocklin, M.; Romero, A.; Roth, M.; Sadowski, P.; Salvatier, J.; Savard, F.; Schlüter, J.; Schulman, J.; Schwartz, G.; Serban, I., V.; Serdyuk, D.; Shabanian, S.; Simon, É.; Spieckermann, S.; Subramanyam, S., R.; Sygnowski, J.; Tanguay, J.; van Tulder, G.; Turian, J.; Urban, S.; Vincent, P.; Visin, F.; de Vries, H.; Warde-Farley, D.; Webb, D., J.; Willson, M.; Xu, K.; Xue, L.; Yao, L.; Zhang, S.; and Zhang, Y. arXiv:1605.02688 [cs]. 5 2016.
Theano: A Python framework for fast computation of mathematical expressions [pdf]Paper   Theano: A Python framework for fast computation of mathematical expressions [link]Website   link   bibtex   abstract  
Generating Sentences from a Continuous Space. Bowman, S., R.; Vilnis, L.; Vinyals, O.; Dai, A., M.; Jozefowicz, R.; and Bengio, S. arXiv:1511.06349 [cs]. 5 2016.
Generating Sentences from a Continuous Space [pdf]Paper   Generating Sentences from a Continuous Space [link]Website   link   bibtex   abstract  
Keep It SMPL: Automatic Estimation of 3D Human Pose and Shape from a Single Image. Bogo, F.; Kanazawa, A.; Lassner, C.; Gehler, P.; Romero, J.; and Black, M., J. In Leibe, B.; Matas, J.; Sebe, N.; and Welling, M., editor(s), Computer Vision – ECCV 2016, of Lecture Notes in Computer Science, pages 561-578, 2016. Springer International Publishing
Keep It SMPL: Automatic Estimation of 3D Human Pose and Shape from a Single Image [pdf]Paper   doi   link   bibtex   abstract  
An Uncertain Future: Forecasting from Static Images using Variational Autoencoders. Walker, J.; Doersch, C.; Gupta, A.; and Hebert, M. arXiv:1606.07873 [cs]. 6 2016.
An Uncertain Future: Forecasting from Static Images using Variational Autoencoders [pdf]Paper   An Uncertain Future: Forecasting from Static Images using Variational Autoencoders [link]Website   link   bibtex   abstract  
Ladder Variational Autoencoders. Sø nderby, C., K.; Raiko, T.; Maalø e, L.; Sø nderby, S., r., K.; and Winther, O. In Advances in Neural Information Processing Systems, volume 29, 2016. Curran Associates, Inc.
Ladder Variational Autoencoders [pdf]Paper   Ladder Variational Autoencoders [link]Website   link   bibtex  
Fast and Accurate Deep Network Learning by Exponential Linear Units (ELUs). Clevert, D.; Unterthiner, T.; and Hochreiter, S. arXiv:1511.07289 [cs]. 2 2016.
Fast and Accurate Deep Network Learning by Exponential Linear Units (ELUs) [pdf]Paper   Fast and Accurate Deep Network Learning by Exponential Linear Units (ELUs) [link]Website   link   bibtex   abstract  
Deep Learning. Goodfellow, I.; Bengio, Y.; and Courville, A. MIT Press, 11 2016.
link   bibtex   abstract  
3D Hand Pose Tracking and Estimation Using Stereo Matching. Zhang, J.; Jiao, J.; Chen, M.; Qu, L.; Xu, X.; and Yang, Q. arXiv:1610.07214 [cs]. 10 2016.
3D Hand Pose Tracking and Estimation Using Stereo Matching [pdf]Paper   3D Hand Pose Tracking and Estimation Using Stereo Matching [link]Website   link   bibtex   abstract  
PixelVAE: A Latent Variable Model for Natural Images. Gulrajani, I.; Kumar, K.; Ahmed, F.; Taiga, A., A.; Visin, F.; Vazquez, D.; and Courville, A. arXiv:1611.05013 [cs]. 11 2016.
PixelVAE: A Latent Variable Model for Natural Images [pdf]Paper   PixelVAE: A Latent Variable Model for Natural Images [link]Website   link   bibtex   abstract  
3D Semantic Parsing of Large-Scale Indoor Spaces. Armeni, I.; Sener, O.; Zamir, A., R.; Jiang, H.; Brilakis, I.; Fischer, M.; and Savarese, S. In pages 1534-1543, 2016.
3D Semantic Parsing of Large-Scale Indoor Spaces [pdf]Paper   3D Semantic Parsing of Large-Scale Indoor Spaces [link]Website   link   bibtex  
NTU RGB+D: A Large Scale Dataset for 3D Human Activity Analysis. Shahroudy, A.; Liu, J.; Ng, T.; and Wang, G. In pages 1010-1019, 2016.
NTU RGB+D: A Large Scale Dataset for 3D Human Activity Analysis [pdf]Paper   NTU RGB+D: A Large Scale Dataset for 3D Human Activity Analysis [link]Website   link   bibtex  
Deep Learning 3D Shape Surfaces Using Geometry Images. Sinha, A.; Bai, J.; and Ramani, K. In Leibe, B.; Matas, J.; Sebe, N.; and Welling, M., editor(s), Computer Vision – ECCV 2016, of Lecture Notes in Computer Science, pages 223-240, 2016. Springer International Publishing
Deep Learning 3D Shape Surfaces Using Geometry Images [pdf]Paper   doi   link   bibtex   abstract  
Autoencoding beyond pixels using a learned similarity metric. Larsen, A., B., L.; Sønderby, S., K.; Larochelle, H.; and Winther, O. In Proceedings of The 33rd International Conference on Machine Learning, pages 1558-1566, 6 2016. PMLR
Autoencoding beyond pixels using a learned similarity metric [pdf]Paper   Autoencoding beyond pixels using a learned similarity metric [link]Website   link   bibtex   abstract  
f-GAN: Training Generative Neural Samplers using Variational Divergence Minimization. Nowozin, S.; Cseke, B.; and Tomioka, R. In Advances in Neural Information Processing Systems, volume 29, 2016. Curran Associates, Inc.
f-GAN: Training Generative Neural Samplers using Variational Divergence Minimization [pdf]Paper   f-GAN: Training Generative Neural Samplers using Variational Divergence Minimization [link]Website   link   bibtex  
Attend, Infer, Repeat: Fast Scene Understanding with Generative Models. Eslami, S., M., A.; Heess, N.; Weber, T.; Tassa, Y.; Szepesvari, D.; kavukcuoglu, k.; and Hinton, G., E. In Advances in Neural Information Processing Systems, volume 29, 2016. Curran Associates, Inc.
Attend, Infer, Repeat: Fast Scene Understanding with Generative Models [pdf]Paper   Attend, Infer, Repeat: Fast Scene Understanding with Generative Models [link]Website   link   bibtex  
beta-VAE: Learning Basic Visual Concepts with a Constrained Variational Framework. Higgins, I.; Matthey, L.; Pal, A.; Burgess, C.; Glorot, X.; Botvinick, M.; Mohamed, S.; and Lerchner, A. . 11 2016.
beta-VAE: Learning Basic Visual Concepts with a Constrained Variational Framework [pdf]Paper   beta-VAE: Learning Basic Visual Concepts with a Constrained Variational Framework [link]Website   link   bibtex   abstract  
Importance Weighted Autoencoders. Burda, Y.; Grosse, R.; and Salakhutdinov, R. arXiv:1509.00519 [cs, stat]. 11 2016.
Importance Weighted Autoencoders [pdf]Paper   Importance Weighted Autoencoders [link]Website   link   bibtex   abstract  
Bayesian network modeling of early growth stages explains yam interplant yield variability and allows for agronomic improvements in West Africa. Cornet, D.; Sierra, J.; Tournebize, R.; Gabrielle, B.; and Lewis, F., I. European Journal of Agronomy, 75: 80-88. 2016.
Bayesian network modeling of early growth stages explains yam interplant yield variability and allows for agronomic improvements in West Africa [link]Website   doi   link   bibtex   abstract  
Determining the shape of agricultural materials using spherical harmonics. Radvilaitė, U.; Ramírez-Gómez, Á.; and Kačianauskas, R. Computers and Electronics in Agriculture, 128: 160-171. 2016.
doi   link   bibtex   abstract  
Determining the shape of agricultural materials using spherical harmonics. Radvilaitė, U.; Ramírez-Gómez, Á.; and Kačianauskas, R. Computers and Electronics in Agriculture, 128: 160-171. 2016.
doi   link   bibtex   abstract  
Determining the shape of agricultural materials using spherical harmonics. Ramírez-gómez, Á.; and Kac, R. , 128: 160-171. 2016.
doi   link   bibtex  
Camera rotation estimation using 3D mesh surfaces representation of spherical images. Benseddik, H., E.; Hadj-Abdelkader, H.; Cherki, B.; and Bouchafa, S. IEEE International Conference on Intelligent Robots and Systems, 2016-Novem: 2514-2520. 2016.
Camera rotation estimation using 3D mesh surfaces representation of spherical images [pdf]Paper   doi   link   bibtex   abstract  
3D mesh-based representation of spherical images for dense rotation estimation. Benseddik, H., E.; Hadj-Abdelkader, H.; Cherki, B.; and Bouchafa, S. 2016 14th International Conference on Control, Automation, Robotics and Vision, ICARCV 2016, 2016(November): 13-15. 2016.
3D mesh-based representation of spherical images for dense rotation estimation [pdf]Paper   doi   link   bibtex   abstract  
  2015 (44)
VoxNet: A 3D Convolutional Neural Network for Real-Time Object Recognition. Maturana, D.; and Scherer, S. Iros,922-928. 2015.
VoxNet: A 3D Convolutional Neural Network for Real-Time Object Recognition [pdf]Paper   doi   link   bibtex   abstract  
Efficient algorithms for Next Best View evaluation. Bissmarck, F.; Svensson, M.; and Tolt, G. In IEEE International Conference on Intelligent Robots and Systems, 2015.
Efficient algorithms for Next Best View evaluation [pdf]Paper   doi   link   bibtex   abstract  
A novel way to organize 3D LiDAR point cloud as 2D depth map height map and surface normal map. He, Y.; Chen, L.; Chen, J.; and Li, M. 2015 IEEE International Conference on Robotics and Biomimetics, IEEE-ROBIO 2015,1383-1388. 2015.
A novel way to organize 3D LiDAR point cloud as 2D depth map height map and surface normal map [pdf]Paper   doi   link   bibtex   abstract  
Estimating Surface Normals with Depth Image Gradients for Fast and Accurate Registration. Nakagawa, Y.; Uchiyama, H.; Nagahara, H.; and Taniguchi, R., I. Proceedings - 2015 International Conference on 3D Vision, 3DV 2015,640-647. 2015.
Estimating Surface Normals with Depth Image Gradients for Fast and Accurate Registration [pdf]Paper   doi   link   bibtex   abstract  
Designing deep networks for surface normal estimation. Wang, X.; Fouhey, D., F.; and Gupta, A. Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, 07-12-June(Figure 2): 539-547. 2015.
Designing deep networks for surface normal estimation [pdf]Paper   doi   link   bibtex   abstract  
Multi-view convolutional neural networks for 3D shape recognition. Su, H.; Maji, S.; Kalogerakis, E.; and Learned-Miller, E. Proceedings of the IEEE International Conference on Computer Vision, 2015 Inter: 945-953. 2015.
Multi-view convolutional neural networks for 3D shape recognition [pdf]Paper   doi   link   bibtex   abstract  
3D ShapeNets: A deep representation for volumetric shapes. Wu, Z.; Song, S.; Khosla, A.; Yu, F.; Zhang, L.; Tang, X.; and Xiao, J. Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, 07-12-June: 1912-1920. 2015.
3D ShapeNets: A deep representation for volumetric shapes [pdf]Paper   doi   link   bibtex   abstract  
Learning both Weights and Connections for Efficient Neural Networks. Han, S.; Pool, J.; Tran, J.; and Dally, W., J. Advances in Neural Information Processing Systems, 2015-January: 1135-1143. 6 2015.
Learning both Weights and Connections for Efficient Neural Networks [pdf]Paper   Learning both Weights and Connections for Efficient Neural Networks [link]Website   link   bibtex   abstract  
Fixed Point Quantization of Deep Convolutional Networks. Lin, D., D.; Talathi, S., S.; and Annapureddy, V., S. 33rd International Conference on Machine Learning, ICML 2016, 6: 4166-4175. 11 2015.
Fixed Point Quantization of Deep Convolutional Networks [pdf]Paper   Fixed Point Quantization of Deep Convolutional Networks [link]Website   link   bibtex   abstract  
Learning both Weights and Connections for Efficient Neural Networks. Han, S.; Pool, J.; Tran, J.; and Dally, W., J. Advances in Neural Information Processing Systems, 2015-January: 1135-1143. 6 2015.
Learning both Weights and Connections for Efficient Neural Networks [pdf]Paper   Learning both Weights and Connections for Efficient Neural Networks [link]Website   link   bibtex   abstract  
Fixed Point Quantization of Deep Convolutional Networks. Lin, D., D.; Talathi, S., S.; and Annapureddy, V., S. 33rd International Conference on Machine Learning, ICML 2016, 6: 4166-4175. 11 2015.
Fixed Point Quantization of Deep Convolutional Networks [pdf]Paper   Fixed Point Quantization of Deep Convolutional Networks [link]Website   link   bibtex   abstract  
Efficient next-best-scan planning for autonomous 3D surface reconstruction of unknown objects. Kriegel, S.; Rink, C.; Bodenmüller, T.; and Suppa, M. Journal of Real-Time Image Processing, 10(4): 611-631. 2015.
doi   link   bibtex   abstract  
US009117281B2. Wight, S.; Yee, J.; and Minhas, M. , 2(12). 2015.
US009117281B2 [pdf]Paper   link   bibtex  
US009043186B2. Yee, J. , 2(12). 2015.
US009043186B2 [pdf]Paper   link   bibtex  
Learning both Weights and Connections for Efficient Neural Networks. Han, S.; Pool, J.; Tran, J.; and Dally, W., J. Advances in Neural Information Processing Systems, 2015-January: 1135-1143. 6 2015.
Learning both Weights and Connections for Efficient Neural Networks [pdf]Paper   Learning both Weights and Connections for Efficient Neural Networks [link]Website   link   bibtex   abstract  
Fixed Point Quantization of Deep Convolutional Networks. Lin, D., D.; Talathi, S., S.; and Annapureddy, V., S. 33rd International Conference on Machine Learning, ICML 2016, 6: 4166-4175. 11 2015.
Fixed Point Quantization of Deep Convolutional Networks [pdf]Paper   Fixed Point Quantization of Deep Convolutional Networks [link]Website   link   bibtex   abstract  
Explaining and harnessing adversarial examples. Goodfellow, I., J.; Shlens, J.; and Szegedy, C. 3rd International Conference on Learning Representations, ICLR 2015 - Conference Track Proceedings,1-11. 2015.
Explaining and harnessing adversarial examples [pdf]Paper   link   bibtex   abstract  
Batch normalization: Accelerating deep network training by reducing internal covariate shift. Ioffe, S.; and Szegedy, C. 32nd International Conference on Machine Learning, ICML 2015, 1: 448-456. 2015.
Batch normalization: Accelerating deep network training by reducing internal covariate shift [pdf]Paper   link   bibtex   abstract  
Unitary Evolution Recurrent Neural Networks. Arjovsky, M.; Shah, A.; and Bengio, Y. , 48. 2015.
Unitary Evolution Recurrent Neural Networks [pdf]Paper   Unitary Evolution Recurrent Neural Networks [link]Website   link   bibtex   abstract  
Qualitatively characterizing neural network optimization problems. Goodfellow, I., J.; Vinyals, O.; and Saxe, A., M. 3rd International Conference on Learning Representations, ICLR 2015 - Conference Track Proceedings, (November). 2015.
Qualitatively characterizing neural network optimization problems [pdf]Paper   link   bibtex   abstract  
3D ShapeNets: A deep representation for volumetric shapes. Wu, Z.; Song, S.; Khosla, A.; Yu, F.; Zhang, L.; Tang, X.; and Xiao, J. Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, 07-12-June: 1912-1920. 2015.
3D ShapeNets: A deep representation for volumetric shapes [pdf]Paper   doi   link   bibtex   abstract  
ShapeNet: An Information-Rich 3D Model Repository. Chang, A., X.; Funkhouser, T.; Guibas, L.; Hanrahan, P.; Huang, Q.; Li, Z.; Savarese, S.; Savva, M.; Song, S.; Su, H.; Xiao, J.; Yi, L.; and Yu, F. . 2015.
ShapeNet: An Information-Rich 3D Model Repository [pdf]Paper   ShapeNet: An Information-Rich 3D Model Repository [link]Website   link   bibtex   abstract  
Geodesic Convolutional Neural Networks on Riemannian Manifolds. Masci, J.; Boscaini, D.; Bronstein, M., M.; and Vandergheynst, P. Proceedings of the IEEE International Conference on Computer Vision, 2015-Febru: 832-840. 2015.
Geodesic Convolutional Neural Networks on Riemannian Manifolds [pdf]Paper   doi   link   bibtex   abstract  
Variational Inference with Normalizing Flows. Com, S., G. , 37. 2015.
Variational Inference with Normalizing Flows [pdf]Paper   link   bibtex  
Markov Chain Monte Carlo and variational inference: Bridging the gap. Salimans, T.; Kingma, D., P.; and Welling, M. 32nd International Conference on Machine Learning, ICML 2015, 2(Mcmc): 1218-1226. 2015.
Markov Chain Monte Carlo and variational inference: Bridging the gap [pdf]Paper   link   bibtex   abstract  
Adversarial Autoencoders. Makhzani, A.; Shlens, J.; Jaitly, N.; Goodfellow, I.; and Frey, B. . 2015.
Adversarial Autoencoders [pdf]Paper   Adversarial Autoencoders [link]Website   link   bibtex   abstract  
Very deep convolutional networks for large-scale image recognition. Simonyan, K.; and Zisserman, A. 3rd International Conference on Learning Representations, ICLR 2015 - Conference Track Proceedings,1-14. 2015.
Very deep convolutional networks for large-scale image recognition [pdf]Paper   link   bibtex   abstract  
Spatial transformer networks. Jaderberg, M.; Simonyan, K.; Zisserman, A.; and Kavukcuoglu, K. Advances in Neural Information Processing Systems, 2015-Janua: 2017-2025. 2015.
Spatial transformer networks [pdf]Paper   link   bibtex   abstract  
NICE: Non-linear Independent Components Estimation. Dinh, L.; Krueger, D.; and Bengio, Y. arXiv:1410.8516 [cs]. 4 2015.
NICE: Non-linear Independent Components Estimation [pdf]Paper   NICE: Non-linear Independent Components Estimation [link]Website   link   bibtex   abstract  
Unsupervised Learning of Video Representations using LSTMs. Srivastava, N.; Mansimov, E.; and Salakhudinov, R. In Proceedings of the 32nd International Conference on Machine Learning, pages 843-852, 6 2015. PMLR
Unsupervised Learning of Video Representations using LSTMs [pdf]Paper   Unsupervised Learning of Video Representations using LSTMs [link]Website   link   bibtex   abstract  
DRAW: A Recurrent Neural Network For Image Generation. Gregor, K.; Danihelka, I.; Graves, A.; Rezende, D.; and Wierstra, D. In Proceedings of the 32nd International Conference on Machine Learning, pages 1462-1471, 6 2015. PMLR
DRAW: A Recurrent Neural Network For Image Generation [pdf]Paper   DRAW: A Recurrent Neural Network For Image Generation [link]Website   link   bibtex   abstract  
Batch Normalization: Accelerating Deep Network Training by Reducing Internal Covariate Shift. Ioffe, S.; and Szegedy, C. In Proceedings of the 32nd International Conference on Machine Learning, pages 448-456, 6 2015. PMLR
Batch Normalization: Accelerating Deep Network Training by Reducing Internal Covariate Shift [pdf]Paper   Batch Normalization: Accelerating Deep Network Training by Reducing Internal Covariate Shift [link]Website   link   bibtex   abstract  
Unsupervised Generation of a Viewpoint Annotated Car Dataset From Videos. Sedaghat, N.; and Brox, T. In pages 1314-1322, 2015.
Unsupervised Generation of a Viewpoint Annotated Car Dataset From Videos [pdf]Paper   Unsupervised Generation of a Viewpoint Annotated Car Dataset From Videos [link]Website   link   bibtex  
A bi-ventricular cardiac atlas built from 1000+ high resolution MR images of healthy subjects and an analysis of shape and motion. Bai, W.; Shi, W.; de Marvao, A.; Dawes, T., J., W.; O’Regan, D., P.; Cook, S., A.; and Rueckert, D. Medical Image Analysis, 26(1): 133-145. 12 2015.
A bi-ventricular cardiac atlas built from 1000+ high resolution MR images of healthy subjects and an analysis of shape and motion [pdf]Paper   A bi-ventricular cardiac atlas built from 1000+ high resolution MR images of healthy subjects and an analysis of shape and motion [link]Website   doi   link   bibtex   abstract  
Variational Inference with Normalizing Flows. Rezende, D.; and Mohamed, S. In International Conference on Machine Learning, pages 1530-1538, 6 2015. PMLR
Variational Inference with Normalizing Flows [pdf]Paper   Variational Inference with Normalizing Flows [link]Website   link   bibtex  
Deep Convolutional Inverse Graphics Network. Kulkarni, T., D.; Whitney, W., F.; Kohli, P.; and Tenenbaum, J. In Advances in Neural Information Processing Systems, volume 28, 2015. Curran Associates, Inc.
Deep Convolutional Inverse Graphics Network [pdf]Paper   Deep Convolutional Inverse Graphics Network [link]Website   link   bibtex  
Deep learning. LeCun, Y.; Bengio, Y.; and Hinton, G. Nature, 521(7553): 436-444. 5 2015.
Deep learning [pdf]Paper   Deep learning [link]Website   doi   link   bibtex   abstract  
B-SHOT: A binary feature descriptor for fast and efficient keypoint matching on 3D point clouds. Prakhya, S., M.; Liu, B.; and Lin, W. In 2015 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), pages 1929-1934, 9 2015.
B-SHOT: A binary feature descriptor for fast and efficient keypoint matching on 3D point clouds [pdf]Paper   doi   link   bibtex   abstract  
Learning Structured Output Representation using Deep Conditional Generative Models. Sohn, K.; Lee, H.; and Yan, X. In Advances in Neural Information Processing Systems, volume 28, 2015. Curran Associates, Inc.
Learning Structured Output Representation using Deep Conditional Generative Models [pdf]Paper   Learning Structured Output Representation using Deep Conditional Generative Models [link]Website   link   bibtex  
SMPL: a skinned multi-person linear model. Loper, M.; Mahmood, N.; Romero, J.; Pons-Moll, G.; and Black, M., J. ACM Transactions on Graphics, 34(6): 248:1--248:16. 10 2015.
SMPL: a skinned multi-person linear model [pdf]Paper   SMPL: a skinned multi-person linear model [link]Website   doi   link   bibtex   abstract  
Analysis and synthesis of 3D shape families via deep-learned generative models of surfaces. Huang, H.; Kalogerakis, E.; and Marlin, B. Computer Graphics Forum, 34(5): 25-38. 2015.
Analysis and synthesis of 3D shape families via deep-learned generative models of surfaces [pdf]Paper   Analysis and synthesis of 3D shape families via deep-learned generative models of surfaces [link]Website   doi   link   bibtex   abstract  
Dyna: a model of dynamic human shape in motion. Pons-Moll, G.; Romero, J.; Mahmood, N.; and Black, M., J. ACM Transactions on Graphics, 34(4): 120:1--120:14. 7 2015.
Dyna: a model of dynamic human shape in motion [pdf]Paper   Dyna: a model of dynamic human shape in motion [link]Website   doi   link   bibtex   abstract  
ORB-SLAM: A Versatile and Accurate Monocular SLAM System. Mur-Artal, R.; Montiel, J., M.; and Tardos, J., D. IEEE Transactions on Robotics, 31(5): 1147-1163. 2015.
ORB-SLAM: A Versatile and Accurate Monocular SLAM System [pdf]Paper   doi   link   bibtex   abstract  
Dynamic 3D avatar creation from hand-held video input. Ichim, A., E.; Bouazizy, S.; and Paulyz, M. ACM Transactions on Graphics, 34(4): 1-14. 2015.
Dynamic 3D avatar creation from hand-held video input [pdf]Paper   doi   link   bibtex   abstract  
  2014 (47)
Edge boxes: Locating object proposals from edges. Zitnick, C., L.; and Dollár, P. Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), 8693 LNCS(PART 5): 391-405. 2014.
Edge boxes: Locating object proposals from edges [pdf]Paper   doi   link   bibtex   abstract  
Recognition of 3D package shapes for single camera metrology. Lloyd, R.; and McCloskey, S. 2014 IEEE Winter Conference on Applications of Computer Vision, WACV 2014,99-106. 2014.
Recognition of 3D package shapes for single camera metrology [pdf]Paper   doi   link   bibtex   abstract  
SRA: Fast removal of general multipath for ToF sensors. Freedman, D.; Smolin, Y.; Krupka, E.; Leichter, I.; and Schmidt, M. Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), 8689 LNCS(PART 1): 234-249. 2014.
SRA: Fast removal of general multipath for ToF sensors [pdf]Paper   doi   link   bibtex   abstract  
A quantitative evaluation of surface normal estimation in point clouds. Jordan, K.; and Mordohai, P. IEEE International Conference on Intelligent Robots and Systems, (Iros): 4220-4226. 2014.
A quantitative evaluation of surface normal estimation in point clouds [pdf]Paper   doi   link   bibtex   abstract  
High quality photometric reconstruction using a depth camera. Haque, S., M.; Chatterjee, A.; and Govindu, V., M. Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition,2283-2290. 2014.
High quality photometric reconstruction using a depth camera [pdf]Paper   doi   link   bibtex   abstract  
A quantitative evaluation of surface normal estimation in point clouds. Jordan, K.; and Mordohai, P. IEEE International Conference on Intelligent Robots and Systems,4220-4226. 2014.
A quantitative evaluation of surface normal estimation in point clouds [pdf]Paper   doi   link   bibtex   abstract  
Modeling and correction of multipath interference in time of flight cameras. Jiménez, D.; Pizarro, D.; Mazo, M.; and Palazuelos, S. Image and Vision Computing, 32(1): 1-13. 2014.
Modeling and correction of multipath interference in time of flight cameras [pdf]Paper   Modeling and correction of multipath interference in time of flight cameras [link]Website   doi   link   bibtex   abstract  
A probabilistic framework for next best view estimation in a cluttered environment. Potthast, C.; and Sukhatme, G., S. Journal of Visual Communication and Image Representation, 25(1): 148-164. 2014.
A probabilistic framework for next best view estimation in a cluttered environment [link]Website   doi   link   bibtex   abstract  
Quality-driven Poisson-guided Autoscanning. Wu, S.; Cohen-or, D.; Deussen, O.; and Chen, B. , 33. 2014.
link   bibtex  
Volumetric next-best-view planning for 3D object reconstruction with positioning error. Vasquez-Gomez, J., I.; Sucar, L., E.; Murrieta-Cid, R.; and Lopez-Damian, E. International Journal of Advanced Robotic Systems, 11. 2014.
doi   link   bibtex   abstract  
Discriminatively trained dense surface normal estimation. Ladický, L.; Zeisl, B.; and Pollefeys, M. Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), 8693 LNCS(PART 5): 468-484. 2014.
Discriminatively trained dense surface normal estimation [pdf]Paper   doi   link   bibtex   abstract  
US008665267B2. Abbasinejad, F.; Jose, S.; and Data, R., U., S., A. , 2(12). 2014.
US008665267B2 [pdf]Paper   link   bibtex  
DEPTH ENHANCEMENT USING RGB-D GUIDED FILTERING Tak-Wai Hui and King Ngi Ngan Department of Electronic Engineering , The Chinese University of Hong Kong. International Conference on Image Processing(ICIP), (2): 3832-3836. 2014.
DEPTH ENHANCEMENT USING RGB-D GUIDED FILTERING Tak-Wai Hui and King Ngi Ngan Department of Electronic Engineering , The Chinese University of Hong Kong [pdf]Paper   link   bibtex  
Volumetric next-best-view planning for 3D object reconstruction with positioning error. Vasquez-Gomez, J., I.; Sucar, L., E.; Murrieta-Cid, R.; and Lopez-Damian, E. International Journal of Advanced Robotic Systems, 11. 2014.
doi   link   bibtex   abstract  
On the number of linear regions of deep neural networks. Montúfar, G.; Pascanu, R.; Cho, K.; and Bengio, Y. Advances in Neural Information Processing Systems, 4(January): 2924-2932. 2014.
On the number of linear regions of deep neural networks [pdf]Paper   link   bibtex   abstract  
Visualizing and understanding convolutional networks. Zeiler, M., D.; and Fergus, R. Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), 8689 LNCS(PART 1): 818-833. 2014.
Visualizing and understanding convolutional networks [pdf]Paper   doi   link   bibtex   abstract  
Deep Directed Generative Autoencoders. Ozair, S.; and Bengio, Y. ,1-10. 2014.
Deep Directed Generative Autoencoders [pdf]Paper   Deep Directed Generative Autoencoders [link]Website   link   bibtex   abstract  
How to construct deep recurrent neural networks. Pascanu, R.; Gulcehre, C.; Cho, K.; and Bengio, Y. 2nd International Conference on Learning Representations, ICLR 2014 - Conference Track Proceedings,1-13. 2014.
How to construct deep recurrent neural networks [pdf]Paper   link   bibtex   abstract  
Identifying and attacking the saddle point problem in high-dimensional non-convex optimization. Dauphin, Y., N.; Pascanu, R.; Gulcehre, C.; Cho, K.; Ganguli, S.; and Bengio, Y. Advances in Neural Information Processing Systems, 4(January): 2933-2941. 2014.
Identifying and attacking the saddle point problem in high-dimensional non-convex optimization [pdf]Paper   link   bibtex   abstract  
Exact solutions to the nonlinear dynamics of learning in deep linear neural networks. Saxe, A., M.; McClelland, J., L.; and Ganguli, S. 2nd International Conference on Learning Representations, ICLR 2014 - Conference Track Proceedings,1-22. 2014.
Exact solutions to the nonlinear dynamics of learning in deep linear neural networks [pdf]Paper   link   bibtex   abstract  
Siraj Ali - Reference Questionnaire.pdf. He, K. Proceedings of the IEEE International Conference on Computer Vision,1026-1034. 2014.
Siraj Ali - Reference Questionnaire.pdf [pdf]Paper   link   bibtex   abstract  
Spectral networks and deep locally connected networks on graphs. Bruna, J.; Zaremba, W.; Szlam, A.; and LeCun, Y. 2nd International Conference on Learning Representations, ICLR 2014 - Conference Track Proceedings,1-14. 2014.
Spectral networks and deep locally connected networks on graphs [pdf]Paper   link   bibtex   abstract  
Hyperspherical Variational Auto-Encoders. Auto-encoders, H., V.; Davidson, T., R.; Falorsi, L.; Cao, N., D.; and Kipf, T. . 2014.
Hyperspherical Variational Auto-Encoders [pdf]Paper   link   bibtex  
Stochastic backpropagation and approximate inference in deep generative models. Rezende, D., J.; Mohamed, S.; and Wierstra, D. 31st International Conference on Machine Learning, ICML 2014, 4: 3057-3070. 2014.
Stochastic backpropagation and approximate inference in deep generative models [pdf]Paper   link   bibtex   abstract  
Semi-supervised learning with deep generative models. Kingma, D., P.; Rezende, D., J.; Mohamed, S.; and Welling, M. Advances in Neural Information Processing Systems, 4(January): 3581-3589. 2014.
Semi-supervised learning with deep generative models [pdf]Paper   link   bibtex   abstract  
Rényi Divergence and Kullback – Leibler Divergence. Erven, T., V.; and Harremoës, P. Ieee Transactions on Information Theory, 60(7): 3797-3820. 2014.
Rényi Divergence and Kullback – Leibler Divergence [pdf]Paper   link   bibtex  
Spatial pyramid pooling in deep convolutional networks for visual recognition. He, K.; Zhang, X.; Ren, S.; and Sun, J. Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), 8691 LNCS(PART 3): 346-361. 2014.
Spatial pyramid pooling in deep convolutional networks for visual recognition [pdf]Paper   doi   link   bibtex   abstract  
SHOT: Unique signatures of histograms for surface and texture description. Salti, S.; Tombari, F.; and Di Stefano, L. Computer Vision and Image Understanding, 125: 251-264. 2014.
doi   link   bibtex   abstract  
Object detection and classification from large-scale cluttered indoor scans. Mattausch, O.; Panozzo, D.; Mura, C.; Sorkine-Hornung, O.; and Pajarola, R. Computer Graphics Forum, 33(2): 11-21. 2014.
Object detection and classification from large-scale cluttered indoor scans [pdf]Paper   doi   link   bibtex   abstract  
DeepWalk: online learning of social representations. Perozzi, B.; Al-Rfou, R.; and Skiena, S. In Proceedings of the 20th ACM SIGKDD international conference on Knowledge discovery and data mining, of KDD '14, pages 701-710, 8 2014. Association for Computing Machinery
DeepWalk: online learning of social representations [pdf]Paper   DeepWalk: online learning of social representations [link]Website   doi   link   bibtex   abstract  
Generative Adversarial Nets. Goodfellow, I.; Pouget-Abadie, J.; Mirza, M.; Xu, B.; Warde-Farley, D.; Ozair, S.; Courville, A.; and Bengio, Y. In Advances in Neural Information Processing Systems, volume 27, 2014. Curran Associates, Inc.
Generative Adversarial Nets [pdf]Paper   Generative Adversarial Nets [link]Website   link   bibtex  
Representation Learning: A Review and New Perspectives. Bengio, Y.; Courville, A.; and Vincent, P. arXiv:1206.5538 [cs]. 4 2014.
Representation Learning: A Review and New Perspectives [pdf]Paper   Representation Learning: A Review and New Perspectives [link]Website   link   bibtex   abstract  
Human3.6M: Large Scale Datasets and Predictive Methods for 3D Human Sensing in Natural Environments. Ionescu, C.; Papava, D.; Olaru, V.; and Sminchisescu, C. IEEE Transactions on Pattern Analysis and Machine Intelligence, 36(7): 1325-1339. 7 2014.
Human3.6M: Large Scale Datasets and Predictive Methods for 3D Human Sensing in Natural Environments [pdf]Paper   doi   link   bibtex   abstract  
Beyond PASCAL: A benchmark for 3D object detection in the wild. Xiang, Y.; Mottaghi, R.; and Savarese, S. In IEEE Winter Conference on Applications of Computer Vision, pages 75-82, 3 2014.
Beyond PASCAL: A benchmark for 3D object detection in the wild [pdf]Paper   doi   link   bibtex   abstract  
Deep AutoRegressive Networks. Gregor, K.; Danihelka, I.; Mnih, A.; Blundell, C.; and Wierstra, D. In Proceedings of the 31st International Conference on Machine Learning, pages 1242-1250, 6 2014. PMLR
Deep AutoRegressive Networks [pdf]Paper   Deep AutoRegressive Networks [link]Website   link   bibtex   abstract  
Deep Generative Stochastic Networks Trainable by Backprop. Bengio, Y.; Laufer, E.; Alain, G.; and Yosinski, J. In Proceedings of the 31st International Conference on Machine Learning, pages 226-234, 6 2014. PMLR
Deep Generative Stochastic Networks Trainable by Backprop [pdf]Paper   Deep Generative Stochastic Networks Trainable by Backprop [link]Website   link   bibtex   abstract  
FAUST: Dataset and Evaluation for 3D Mesh Registration. Bogo, F.; Romero, J.; Loper, M.; and Black, M., J. In pages 3794-3801, 2014.
FAUST: Dataset and Evaluation for 3D Mesh Registration [pdf]Paper   FAUST: Dataset and Evaluation for 3D Mesh Registration [link]Website   link   bibtex  
A Survey on Procedural Modelling for Virtual Worlds. Smelik, R., M.; Tutenel, T.; Bidarra, R.; and Benes, B. Computer Graphics Forum, 33(6): 31-50. 2014.
A Survey on Procedural Modelling for Virtual Worlds [pdf]Paper   A Survey on Procedural Modelling for Virtual Worlds [link]Website   doi   link   bibtex   abstract  
Generalized Autoencoder: A Neural Network Framework for Dimensionality Reduction. Wang, W.; Huang, Y.; Wang, Y.; and Wang, L. In pages 490-497, 2014.
Generalized Autoencoder: A Neural Network Framework for Dimensionality Reduction [pdf]Paper   Generalized Autoencoder: A Neural Network Framework for Dimensionality Reduction [link]Website   link   bibtex  
Auto-Encoding Variational Bayes. Kingma, D., P.; and Welling, M. arXiv:1312.6114 [cs, stat]. 5 2014.
Auto-Encoding Variational Bayes [pdf]Paper   Auto-Encoding Variational Bayes [link]Website   link   bibtex   abstract  
A Hierarchical Representation for Future Action Prediction. Lan, T.; Chen, T.; and Savarese, S. In Fleet, D.; Pajdla, T.; Schiele, B.; and Tuytelaars, T., editor(s), Computer Vision – ECCV 2014, of Lecture Notes in Computer Science, pages 689-704, 2014. Springer International Publishing
A Hierarchical Representation for Future Action Prediction [pdf]Paper   doi   link   bibtex   abstract  
Rényi Divergence and Kullback-Leibler Divergence. van Erven, T.; and Harremos, P. IEEE Transactions on Information Theory, 60(7): 3797-3820. 7 2014.
Rényi Divergence and Kullback-Leibler Divergence [pdf]Paper   doi   link   bibtex   abstract  
Quality relevant nonlinear batch process performance monitoring using a kernel based multiway non-Gaussian latent subspace projection approach. Mori, J.; and Yu, J. Journal of Process Control, 24(1): 57-71. 2014.
Quality relevant nonlinear batch process performance monitoring using a kernel based multiway non-Gaussian latent subspace projection approach [link]Website   doi   link   bibtex   abstract  
Conditional Generative Adversarial Nets. Mirza, M.; and Osindero, S. ,1-7. 2014.
Conditional Generative Adversarial Nets [pdf]Paper   Conditional Generative Adversarial Nets [link]Website   link   bibtex   abstract  
Generative adversarial networks. Goodfellow, I.; Pouget-Abadie, J.; Mirza, M.; Xu, B.; Warde-Farley, D.; Ozair, S.; Courville, A.; and Bengio, Y. Communications of the ACM, 63(11): 139-144. 2014.
Generative adversarial networks [pdf]Paper   doi   link   bibtex   abstract  
Grasp moduli spaces and spherical harmonics. Pokorny, F., T.; Bekiroglu, Y.; and Kragic, D. Proceedings - IEEE International Conference on Robotics and Automation,389-396. 2014.
doi   link   bibtex   abstract  
Point cloud encoding for 3D building model retrieval. Chen, J., Y.; Lin, C., H.; Hsu, P., C.; and Chen, C., H. IEEE Transactions on Multimedia, 16(2): 337-345. 2014.
Point cloud encoding for 3D building model retrieval [pdf]Paper   doi   link   bibtex   abstract  
  2013 (19)
Simulation of time-of-flight sensors using global illumination. Meister, S.; Nair, R.; and Kondermann, D. In 18th International Workshop on Vision, Modeling and Visualization, VMV 2013, 2013.
Simulation of time-of-flight sensors using global illumination [pdf]Paper   doi   link   bibtex   abstract  
Unsupervised Feature Learning for RGB-D Based Object Recognition. Bo, L.; Ren, X.; and Fox, D. ,387-402. 2013.
Unsupervised Feature Learning for RGB-D Based Object Recognition [pdf]Paper   doi   link   bibtex   abstract  
Combining object modeling and recognition for active scene exploration. Kriegel, S.; Brucker, M.; Marton, Z., C.; Bodenmuller, T.; and Suppa, M. IEEE International Conference on Intelligent Robots and Systems,2384-2391. 2013.
doi   link   bibtex   abstract  
An efficient method for fully automatic 3D digitization of unknown objects. Khalfaoui, S.; Seulin, R.; Fougerolle, Y.; and Fofi, D. Computers in Industry, 64(9): 1152-1160. 2013.
An efficient method for fully automatic 3D digitization of unknown objects [link]Website   doi   link   bibtex   abstract  
Model based training, detection and pose estimation of texture-less 3D objects in heavily cluttered scenes. Hinterstoisser, S.; Lepetit, V.; Ilic, S.; Holzer, S.; Bradski, G.; Konolige, K.; and Navab, N. Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), 7724 LNCS(PART 1): 548-562. 2013.
doi   link   bibtex   abstract  
A Best Next View Selection Algorithm Incorporating a Quality Criterion. Massios, N., A.; and Fisher, R., B. ,78.1-78.10. 2013.
A Best Next View Selection Algorithm Incorporating a Quality Criterion [pdf]Paper   doi   link   bibtex   abstract  
US008379018B2. Jose, S.; Joshi, P., P.; City, U.; Andrews, J., L.; Jose, S.; and Data, R., U., S., A. , 2(12). 2013.
US008379018B2 [pdf]Paper   link   bibtex  
Depth image filter for mixed and noisy pixel removal in RGB-D camera systems. Kim, S., Y.; Kim, M.; and Ho, Y., S. IEEE Transactions on Consumer Electronics, 59(3): 681-689. 2013.
Depth image filter for mixed and noisy pixel removal in RGB-D camera systems [pdf]Paper   doi   link   bibtex   abstract  
On the difficulty of training recurrent neural networks. Pascanu, R.; Mikolov, T.; and Bengio, Y. 30th International Conference on Machine Learning, ICML 2013, (PART 3): 2347-2355. 2013.
On the difficulty of training recurrent neural networks [pdf]Paper   link   bibtex   abstract  
On the importance of initialization and momentum in deep learning. Sutskever, I.; Martens, J.; Dahl, G.; and Hinton, G. 30th International Conference on Machine Learning, ICML 2013, (PART 3): 2176-2184. 2013.
On the importance of initialization and momentum in deep learning [pdf]Paper   link   bibtex   abstract   2 downloads  
Generating Sequences With Recurrent Neural Networks. Graves, A. ,1-43. 2013.
Generating Sequences With Recurrent Neural Networks [pdf]Paper   Generating Sequences With Recurrent Neural Networks [link]Website   link   bibtex   abstract  
Representation learning: A review and new perspectives. Bengio, Y.; Courville, A.; and Vincent, P. IEEE Transactions on Pattern Analysis and Machine Intelligence, 35(8): 1798-1828. 2013.
Representation learning: A review and new perspectives [pdf]Paper   doi   link   bibtex   abstract  
Sources of Uncertainty in Intuitive Physics. Smith, K., A.; and Vul, E. Topics in Cognitive Science, 5(1): 185-199. 2013.
Sources of Uncertainty in Intuitive Physics [pdf]Paper   Sources of Uncertainty in Intuitive Physics [link]Website   doi   link   bibtex   abstract  
Sparse localized deformation components. Neumann, T.; Varanasi, K.; Wenger, S.; Wacker, M.; Magnor, M.; and Theobalt, C. ACM Transactions on Graphics, 32(6): 179:1--179:10. 11 2013.
Sparse localized deformation components [pdf]Paper   Sparse localized deformation components [link]Website   doi   link   bibtex   abstract  
Learning part-based templates from large collections of 3D shapes. Kim, V., G.; Li, W.; Mitra, N., J.; Chaudhuri, S.; DiVerdi, S.; and Funkhouser, T. ACM Transactions on Graphics, 32(4): 70:1--70:12. 7 2013.
Learning part-based templates from large collections of 3D shapes [pdf]Paper   Learning part-based templates from large collections of 3D shapes [link]Website   doi   link   bibtex   abstract  
A Robust Method for Rotation Estimation Using Spherical Harmonics Representation. Althloothi, S.; Mahoor, M., H.; Voyles, R., M.; and Member, S. , 22(6): 2306-2316. 2013.
A Robust Method for Rotation Estimation Using Spherical Harmonics Representation [pdf]Paper   link   bibtex  
Inverse rendering of faces with a 3D morphable model. Aldrian, O.; and Smith, W., A. IEEE Transactions on Pattern Analysis and Machine Intelligence, 35(5): 1080-1093. 2013.
Inverse rendering of faces with a 3D morphable model [pdf]Paper   doi   link   bibtex   abstract  
A new invariant descriptor for action recognition based on spherical harmonics. Razzaghi, P.; Palhang, M.; and Gheissari, N. Pattern Analysis and Applications, 16(4): 507-518. 2013.
A new invariant descriptor for action recognition based on spherical harmonics [pdf]Paper   doi   link   bibtex   abstract  
Realistic Simulation of 3D Cloud. Qiu, H.; Chen, L., T.; Qiu, G., P.; and Yang, H. WSEAS Transactions on Computers, 12(8): 331-340. 2013.
Realistic Simulation of 3D Cloud [pdf]Paper   link   bibtex   abstract  
  2012 (15)
Noise modelling and uncertainty propagation for TOF sensors. Belhedi, A.; Bartoli, A.; Bourgeois, S.; Hamrouni, K.; Sayd, P.; and Gay-Bellile, V. Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), 7585 LNCS(PART 3): 476-485. 2012.
Noise modelling and uncertainty propagation for TOF sensors [pdf]Paper   doi   link   bibtex   abstract  
Fast and robust normal estimation for point clouds with sharp features. Boulch, A.; and Marlet, R. Eurographics Symposium on Geometry Processing, 31(5): 1765-1774. 2012.
Fast and robust normal estimation for point clouds with sharp features [pdf]Paper   doi   link   bibtex   abstract  
Next-best-scan planning for autonomous 3D modeling. Kriegel, S.; Rink, C.; Bodenmuller, T.; Narr, A.; Suppa, M.; and Hirzinger, G. IEEE International Conference on Intelligent Robots and Systems,2850-2856. 2012.
Next-best-scan planning for autonomous 3D modeling [pdf]Paper   doi   link   bibtex   abstract  
An autonomous six-DOF eye-in-hand system for in situ 3D object modeling. Torabi, L.; and Gupta, K. International Journal of Robotics Research, 31(1): 82-100. 2012.
doi   link   bibtex   abstract  
Depth image enhancement for Kinect using region growing and bilateral filter. Chen, L.; Lin, H.; and Li, S. Proceedings - International Conference on Pattern Recognition, (Icpr): 3070-3073. 2012.
Depth image enhancement for Kinect using region growing and bilateral filter [pdf]Paper   link   bibtex   abstract  
Methods for depth-map filtering in view-plus-depth 3D video representation. Smirnov, S.; Gotchev, A.; and Egiazarian, K. Eurasip Journal on Advances in Signal Processing, 2012(1): 1-21. 2012.
Methods for depth-map filtering in view-plus-depth 3D video representation [pdf]Paper   doi   link   bibtex   abstract  
US20120330447A1. Thomas, P.; and Walker, B. , 1(19). 2012.
US20120330447A1 [pdf]Paper   link   bibtex  
Functional maps: A flexible representation of maps between shapes. Ovsjanikov, M.; Ben-Chen, M.; Solomon, J.; Butscher, A.; and Guibas, L. ACM Transactions on Graphics, 31(4). 2012.
Functional maps: A flexible representation of maps between shapes [pdf]Paper   doi   link   bibtex   abstract  
Reeb graph computation through spectral clustering. Ma, T. Optical Engineering, 51(1): 017209. 2012.
Reeb graph computation through spectral clustering [pdf]Paper   doi   link   bibtex  
Real-time compression of point cloud streams. Kammerl, J.; Blodow, N.; Rusu, R., B.; Gedikli, S.; Beetz, M.; and Steinbach, E. Proceedings - IEEE International Conference on Robotics and Automation,778-785. 2012.
Real-time compression of point cloud streams [pdf]Paper   doi   link   bibtex   abstract  
Active co-analysis of a set of shapes. Wang, Y.; Asafi, S.; van Kaick, O.; Zhang, H.; Cohen-Or, D.; and Chen, B. ACM Transactions on Graphics, 31(6): 165:1--165:10. 11 2012.
Active co-analysis of a set of shapes [pdf]Paper   Active co-analysis of a set of shapes [link]Website   doi   link   bibtex   abstract  
UCSC - Spherical Harmonics Work Sheet. ucsc.edu , 1(5): 1-14. 2012.
UCSC - Spherical Harmonics Work Sheet [pdf]Paper   UCSC - Spherical Harmonics Work Sheet [pdf]Website   link   bibtex  
Verification of multi-view point-cloud registration for spherical harmonic cross-correlation. Larkins, R., L.; Cree, M., J.; and Dorrington, A., A. ACM International Conference Proceeding Series,358-363. 2012.
doi   link   bibtex   abstract  
Verification of multi-view point-cloud registration for spherical harmonic cross-correlation. Larkins, R., L.; Cree, M., J.; and Dorrington, A., A. ACM International Conference Proceeding Series,358-363. 2012.
Verification of multi-view point-cloud registration for spherical harmonic cross-correlation [pdf]Paper   doi   link   bibtex   abstract  
Point-based manifold harmonics. Liu, Y.; Prabhakaran, B.; and Guo, X. IEEE Transactions on Visualization and Computer Graphics, 18(10): 1693-1703. 2012.
Point-based manifold harmonics [pdf]Paper   doi   link   bibtex   abstract  
  2011 (19)
Consolidation of multiple depth maps. Reisner-Kollmann, I.; and Maierhofer, S. Proceedings of the IEEE International Conference on Computer Vision, (November 2011): 1120-1126. 2011.
Consolidation of multiple depth maps [pdf]Paper   doi   link   bibtex   abstract  
Wavelets on graphs via spectral graph theory. Hammond, D., K.; Vandergheynst, P.; and Gribonval, R. Applied and Computational Harmonic Analysis, 30(2): 129-150. 2011.
Wavelets on graphs via spectral graph theory [pdf]Paper   Wavelets on graphs via spectral graph theory [link]Website   doi   link   bibtex   abstract  
Shape google: Geometric words and expressions for invariant shape retrieval. Bronstein, A., M.; Bronstein, M., M.; Guibas, L., J.; and Ovsjanikov, M. ACM Transactions on Graphics, 30(1). 2011.
Shape google: Geometric words and expressions for invariant shape retrieval [pdf]Paper   doi   link   bibtex   abstract  
Blended intrinsic maps. Kim, V., G.; Lipman, Y.; and Funkhouser, T. ACM Transactions on Graphics, 30(4): 1-12. 2011.
Blended intrinsic maps [pdf]Paper   doi   link   bibtex   abstract  
3D is here: Point Cloud Library (PCL). Rusu, R., B.; and Cousins, S. Proceedings - IEEE International Conference on Robotics and Automation, (May). 2011.
3D is here: Point Cloud Library (PCL) [pdf]Paper   doi   link   bibtex   abstract  
Graph-based representations of point clouds. Natali, M.; Biasotti, S.; Patané, G.; and Falcidieno, B. Graphical Models, 73(5): 151-164. 2011.
Graph-based representations of point clouds [pdf]Paper   Graph-based representations of point clouds [link]Website   doi   link   bibtex   abstract  
Képi információ mérése. Attila, C., S. . 2011.
Képi információ mérése [pdf]Paper   link   bibtex  
Számítógépes látás. Kató, Z.; and Czúni, L. 2011.
Számítógépes látás [pdf]Paper   link   bibtex  
Képfeldolgozás haladóknak. Palágyi Kálmán 2011.
Képfeldolgozás haladóknak [pdf]Paper   Képfeldolgozás haladóknak [link]Website   link   bibtex  
Leveraging social media networks for classification. Tang, L.; and Liu, H. Data Mining and Knowledge Discovery, 23(3): 447-478. 11 2011.
Leveraging social media networks for classification [pdf]Paper   Leveraging social media networks for classification [link]Website   doi   link   bibtex   abstract  
BIM Handbook: A Guide to Building Information Modeling for Owners, Managers, Designers, Engineers and Contractors. Eastman, C., M.; Eastman, C.; Teicholz, P.; Sacks, R.; and Liston, K. John Wiley \& Sons, 4 2011.
link   bibtex   abstract  
BlenSor: Blender Sensor Simulation Toolbox. Gschwandtner, M.; Kwitt, R.; Uhl, A.; and Pree, W. In Bebis, G.; Boyle, R.; Parvin, B.; Koracin, D.; Wang, S.; Kyungnam, K.; Benes, B.; Moreland, K.; Borst, C.; DiVerdi, S.; Yi-Jen, C.; and Ming, J., editor(s), Advances in Visual Computing, of Lecture Notes in Computer Science, pages 199-208, 2011. Springer
doi   link   bibtex   abstract  
Adaptive Subgradient Methods for Online Learning and Stochastic Optimization. Duchi, J.; Hazan, E.; and Singer, Y. The Journal of Machine Learning Research, 12(null): 2121-2159. 7 2011.
Adaptive Subgradient Methods for Online Learning and Stochastic Optimization [pdf]Paper   link   bibtex   abstract  
Local cortical surface complexity maps from spherical harmonic reconstructions. Yotter, R., A.; Nenadic, I.; Ziegler, G.; Thompson, P., M.; and Gaser, C. NeuroImage, 56(3): 961-973. 2011.
Local cortical surface complexity maps from spherical harmonic reconstructions [link]Website   doi   link   bibtex   abstract  
Ensemble of shape functions for 3D object classification. Wohlkinger, W.; and Vincze, M. 2011 IEEE International Conference on Robotics and Biomimetics, ROBIO 2011,2987-2992. 2011.
Ensemble of shape functions for 3D object classification [pdf]Paper   doi   link   bibtex   abstract  
Spectral registration of noisy sonar data for underwater 3D Mapping. Bülow, H.; and Birk, A. Autonomous Robots, 30(3): 307-331. 2011.
Spectral registration of noisy sonar data for underwater 3D Mapping [pdf]Paper   doi   link   bibtex   abstract  
Viewpoint invariants from three-dimensional data: The role of reflection in human activity understanding. Kakarala, R.; Kaliamoorthi, P.; and Li, W. IEEE Computer Society Conference on Computer Vision and Pattern Recognition Workshops,57-62. 2011.
Viewpoint invariants from three-dimensional data: The role of reflection in human activity understanding [pdf]Paper   doi   link   bibtex   abstract  
Harmonic point cloud orientation. Seversky, L., M.; Berger, M., S.; and Yin, L. Computers and Graphics (Pergamon), 35(3): 492-499. 2011.
Harmonic point cloud orientation [pdf]Paper   Harmonic point cloud orientation [link]Website   doi   link   bibtex   abstract  
3D is here: Point Cloud Library (PCL). Rusu, R., B.; and Cousins, S. Proceedings - IEEE International Conference on Robotics and Automation,1-4. 2011.
3D is here: Point Cloud Library (PCL) [pdf]Paper   doi   link   bibtex   abstract  
  2010 (14)
Multipath interference compensation in time-of-flight camera images. Fuchs, S. Proceedings - International Conference on Pattern Recognition,3583-3586. 2010.
Multipath interference compensation in time-of-flight camera images [pdf]Paper   doi   link   bibtex   abstract  
Multipath interference compensation in time-of-flight camera images. Fuchs, S. Proceedings - International Conference on Pattern Recognition,3583-3586. 2010.
Multipath interference compensation in time-of-flight camera images [pdf]Paper   doi   link   bibtex   abstract  
Active perception and scene modeling by planning with probabilistic 6D object poses. Eidenberger, R.; and Scharinger, J. IEEE/RSJ 2010 International Conference on Intelligent Robots and Systems, IROS 2010 - Conference Proceedings,1036-1043. 2010.
doi   link   bibtex   abstract  
Scale-invariant heat kernel signatures for non-rigid shape recognition. Bronstein, M., M.; and Kokkinos, I. Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition,1704-1711. 2010.
Scale-invariant heat kernel signatures for non-rigid shape recognition [pdf]Paper   doi   link   bibtex   abstract  
Parallel Poisson Disk Sampling with Spectrum Analysis on Surfaces. Bowers, J.; Wang, R.; Maletz, D.; and Wei, L., Y. ACM Transactions on Graphics, 29(6): 1-10. 2010.
Parallel Poisson Disk Sampling with Spectrum Analysis on Surfaces [pdf]Paper   doi   link   bibtex   abstract  
High-dimensional spectral feature selection for 3D object recognition based on reeb graphs. Bonev, B.; Escolano, F.; Giorgi, D.; and Biasotti, S. Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), 6218 LNCS: 119-128. 2010.
High-dimensional spectral feature selection for 3D object recognition based on reeb graphs [pdf]Paper   doi   link   bibtex   abstract  
Rectified Linear Units Improve Restricted Boltzmann Machines. Nair, V.; and Hinton, G., E. In 1 2010.
Rectified Linear Units Improve Restricted Boltzmann Machines [pdf]Paper   Rectified Linear Units Improve Restricted Boltzmann Machines [link]Website   link   bibtex   abstract   3 downloads  
Fast Inference in Sparse Coding Algorithms with Applications to Object Recognition. Kavukcuoglu, K.; Ranzato, M.; and LeCun, Y. arXiv:1010.3467 [cs]. 10 2010.
Fast Inference in Sparse Coding Algorithms with Applications to Object Recognition [pdf]Paper   Fast Inference in Sparse Coding Algorithms with Applications to Object Recognition [link]Website   link   bibtex   abstract  
OctoMap: A probabilistic, flexible, and compact 3D map representation for robotic systems. Wurm, K., M.; Hornung, A.; Bennewitz, M.; Stachniss, C.; and Burgard, W. In In Proc. of the ICRA 2010 workshop, 2010.
OctoMap: A probabilistic, flexible, and compact 3D map representation for robotic systems [pdf]Paper   link   bibtex   abstract  
Stacked Denoising Autoencoders: Learning Useful Representations in a Deep Network with a Local Denoising Criterion. Vincent, P.; Larochelle, H.; Lajoie, I.; Bengio, Y.; and Manzagol, P. The Journal of Machine Learning Research, 11: 3371-3408. 12 2010.
Stacked Denoising Autoencoders: Learning Useful Representations in a Deep Network with a Local Denoising Criterion [pdf]Paper   link   bibtex   abstract  
Parallel Poisson disk sampling with spectrum analysis on surfaces. Bowers, J.; Wang, R.; Wei, L.; and Maletz, D. ACM Transactions on Graphics, 29(6): 166:1--166:10. 12 2010.
Parallel Poisson disk sampling with spectrum analysis on surfaces [pdf]Paper   Parallel Poisson disk sampling with spectrum analysis on surfaces [link]Website   doi   link   bibtex   abstract  
Understanding the difficulty of training deep feedforward neural networks. Glorot, X.; and Bengio, Y. In Proceedings of the Thirteenth International Conference on Artificial Intelligence and Statistics, pages 249-256, 3 2010. JMLR Workshop and Conference Proceedings
Understanding the difficulty of training deep feedforward neural networks [pdf]Paper   Understanding the difficulty of training deep feedforward neural networks [link]Website   link   bibtex   abstract  
Spherical harmonic decomposition for surfaces of arbitrary topology. Yu, W.; Ye, T.; Li, M.; and Li, X. ICCSE 2010 - 5th International Conference on Computer Science and Education, Final Program and Book of Abstracts,215-220. 2010.
Spherical harmonic decomposition for surfaces of arbitrary topology [pdf]Paper   doi   link   bibtex   abstract  
View-invariant gesture recognition using 3D optical flow and harmonic motion context. Holte, M., B.; Moeslund, T., B.; and Fihl, P. Computer Vision and Image Understanding, 114(12): 1353-1361. 2010.
View-invariant gesture recognition using 3D optical flow and harmonic motion context [pdf]Paper   View-invariant gesture recognition using 3D optical flow and harmonic motion context [link]Website   doi   link   bibtex   abstract  
  2009 (10)
Close-range Scene Segmentation and Reconstruction of 3D Point Cloud Maps for Mobile Manipulation in Domestic Environments. Rusu, R., B.; Blodow, N.; Marton, Z., C.; and Beetz, M. ,6-11. 2009.
Close-range Scene Segmentation and Reconstruction of 3D Point Cloud Maps for Mobile Manipulation in Domestic Environments [pdf]Paper   link   bibtex  
Comparison of surface normal estimation methodsfor range sensing applications. Klasing, K.; Althoff, D.; Wollherr, D.; and Buss, M. Proceedings - IEEE International Conference on Robotics and Automation, (May): 3206-3211. 2009.
Comparison of surface normal estimation methodsfor range sensing applications [pdf]Paper   doi   link   bibtex   abstract  
A novel 3D classification system for canine impactions - The KPG index. Chung, H., K.; Pan, P.; Gallerano, R., L.; and English, J., D. International Journal of Medical Robotics and Computer Assisted Surgery, 5(3): 291-296. 2009.
A novel 3D classification system for canine impactions - The KPG index [pdf]Paper   doi   link   bibtex   abstract  
Comparison of surface normal estimation methodsfor range sensing applications. Klasing, K.; Althoff, D.; Wollherr, D.; and Buss, M. Proceedings - IEEE International Conference on Robotics and Automation,3206-3211. 2009.
Comparison of surface normal estimation methodsfor range sensing applications [pdf]Paper   doi   link   bibtex   abstract  
A two-steps next-best-view algorithm for autonomous 3D object modeling by a humanoid robot. Foissotte, T.; Stasse, O.; Escande, A.; Wieber, P., B.; and Kheddar, A. Proceedings - IEEE International Conference on Robotics and Automation, (i): 1159-1164. 2009.
doi   link   bibtex   abstract  
Convolutional deep belief networks for scalable unsupervised learning of hierarchical representations. Lee, H.; Grosse, R.; Ranganath, R.; and Ng, A., Y. Proceedings of the 26th International Conference On Machine Learning, ICML 2009, (November): 609-616. 2009.
Convolutional deep belief networks for scalable unsupervised learning of hierarchical representations [pdf]Paper   doi   link   bibtex   abstract  
Fast Point Feature Histograms (FPFH) for 3D Registration. Rusu, R., B.; Blodow, N.; and Beetz, M. Proceedings - IEEE International Conference on Robotics and Automation,3212-3217. 2009.
Fast Point Feature Histograms (FPFH) for 3D Registration [pdf]Paper   doi   link   bibtex   abstract  
A 3D Face Model for Pose and Illumination Invariant Face Recognition. Paysan, P.; Knothe, R.; Amberg, B.; Romdhani, S.; and Vetter, T. In 2009 Sixth IEEE International Conference on Advanced Video and Signal Based Surveillance, pages 296-301, 9 2009.
A 3D Face Model for Pose and Illumination Invariant Face Recognition [pdf]Paper   doi   link   bibtex   abstract  
Probabilistic Graphical Models: Principles and Techniques. Koller, D.; and Friedman, N. MIT Press, 7 2009.
link   bibtex   abstract  
Fast Point Feature Histograms ( FPFH ) for 3D Registration. Rusu, R., B.; Blodow, N.; and Beetz, M. ,3212-3217. 2009.
Fast Point Feature Histograms ( FPFH ) for 3D Registration [pdf]Paper   link   bibtex  
  2008 (12)
OpenRAVE : A Planning Architecture for Autonomous Robotics. Diankov, R.; and Kuffner, J. Robotics, (July): -34. 2008.
OpenRAVE : A Planning Architecture for Autonomous Robotics [pdf]Website   link   bibtex   abstract  
Kullback-leibler divergence estimation of continuous distributions. Pérez-Cruz, F. IEEE International Symposium on Information Theory - Proceedings,1666-1670. 2008.
Kullback-leibler divergence estimation of continuous distributions [pdf]Paper   doi   link   bibtex   abstract  
Random projection trees and low dimensional manifolds. Dasgupta, S.; and Freund, Y. Proceedings of the Annual ACM Symposium on Theory of Computing, 1: 537-546. 2008.
Random projection trees and low dimensional manifolds [pdf]Paper   doi   link   bibtex   abstract  
Collective Classification in Network Data. Sen, P.; Namata, G.; Bilgic, M.; Getoor, L.; Galligher, B.; and Eliassi-Rad, T. AI Magazine, 29(3): 93. 9 2008.
Collective Classification in Network Data [pdf]Paper   Collective Classification in Network Data [link]Website   doi   link   bibtex   abstract  
Kullback-Leibler divergence estimation of continuous distributions. Perez-Cruz, F. In 2008 IEEE International Symposium on Information Theory, pages 1666-1670, 7 2008.
Kullback-Leibler divergence estimation of continuous distributions [pdf]Paper   doi   link   bibtex   abstract  
Articulated mesh animation from multi-view silhouettes. Vlasic, D.; Baran, I.; Matusik, W.; and Popović, J. In ACM SIGGRAPH 2008 papers, of SIGGRAPH '08, pages 1-9, 8 2008. Association for Computing Machinery
Articulated mesh animation from multi-view silhouettes [pdf]Paper   Articulated mesh animation from multi-view silhouettes [link]Website   doi   link   bibtex   abstract  
Spacetime Faces: High-Resolution Capture for\textasciitildeModeling and Animation. Zhang, L.; Snavely, N.; Curless, B.; and Seitz, S., M. Data-Driven 3D Facial Animation, pages 248-276. Deng, Z.; and Neumann, U., editor(s). Springer, 2008.
Data-Driven 3D Facial Animation [pdf]Paper   Data-Driven 3D Facial Animation [link]Website   doi   link   bibtex  
Learning informative point classes for the acquisition of object model maps. Rusu, R., B.; Marton, Z., C.; Blodow, N.; and Beetz, M. 2008 10th International Conference on Control, Automation, Robotics and Vision, ICARCV 2008,643-650. 2008.
Learning informative point classes for the acquisition of object model maps [pdf]Paper   doi   link   bibtex   abstract  
Self-similarity based compression of point set surfaces with application to ray tracing. Hubo, E.; Mertens, T.; Haber, T.; and Bekaert, P. Computers and Graphics (Pergamon), 32(2): 221-234. 2008.
Self-similarity based compression of point set surfaces with application to ray tracing [pdf]Paper   doi   link   bibtex   abstract  
Toward an efficient triangle-based spherical harmonics representation of 3D objects. Mousa, M., H.; Chaine, R.; Akkouche, S.; and Galin, E. Computer Aided Geometric Design, 25(8): 561-575. 2008.
Toward an efficient triangle-based spherical harmonics representation of 3D objects [pdf]Paper   doi   link   bibtex   abstract  
Spherical harmonics-based parametric deconvolution of 3D surface images using bending energy minimization. Khairy, K.; and Howard, J. Medical Image Analysis, 12(2): 217-227. 2008.
Spherical harmonics-based parametric deconvolution of 3D surface images using bending energy minimization [pdf]Paper   doi   link   bibtex   abstract  
VIEW INVARIANT GESTURE RECOGNITION USING 3D MOTION PRIMITIVES M . B . Holte and T . B . Moeslund. , 2: 797-800. 2008.
VIEW INVARIANT GESTURE RECOGNITION USING 3D MOTION PRIMITIVES M . B . Holte and T . B . Moeslund [pdf]Paper   link   bibtex  
  2007 (5)
Environmental effects on measurement uncertainties of time-of-flight cameras. Guomundsson, S., Á.; Aanæs, H.; and Larsen, R. ISSCS 2007 - International Symposium on Signals, Circuits and Systems, Proceedings, 1: 113-116. 2007.
Environmental effects on measurement uncertainties of time-of-flight cameras [pdf]Paper   doi   link   bibtex   abstract  
Improved Techniques for Grid Mapping With Rao-Blackwellized Particle Filters. Grisetti, G.; Stachniss, C.; and Burgard, W. IEEE Transactions on Robotics, 23(1): 34-46. 2 2007.
Improved Techniques for Grid Mapping With Rao-Blackwellized Particle Filters [pdf]Paper   Improved Techniques for Grid Mapping With Rao-Blackwellized Particle Filters [link]Website   doi   link   bibtex   abstract  
As-Rigid-As-Possible Surface Modeling. Sorkine, O.; and Alexa, M. 1 2007.
doi   link   bibtex   abstract  
Efficient spherical harmonics representation of 3D objects. Mousa, M.; Chaine, R.; Akkouche, S.; and Galin, E. Proceedings - Pacific Conference on Computer Graphics and Applications,248-255. 2007.
doi   link   bibtex   abstract  
A spectral approach to shape-based retrieval of articulated 3D models. Jain, V.; and Zhang, H. CAD Computer Aided Design, 39(5): 398-407. 2007.
A spectral approach to shape-based retrieval of articulated 3D models [pdf]Paper   doi   link   bibtex   abstract  
  2006 (2)
Generalized multidimensional scaling: A framework for isometry-invariant partial matching. Bronstein, A., M.; Bronstein, M., M.; and Kimmel, R. Proceedings of the National Academy of Sciences of the United States of America, 103(5): 1168-1172. 2006.
Generalized multidimensional scaling: A framework for isometry-invariant partial matching [pdf]Paper   doi   link   bibtex   abstract  
FST-based reconstruction of SB-models from non-uniformly sampled datasets on the sphere. Tosic, I.; and Frossard, P. 25th PCS Proceedings: Picture Coding Symposium 2006, PCS2006, 2006. 2006.
FST-based reconstruction of SB-models from non-uniformly sampled datasets on the sphere [pdf]Paper   link   bibtex   abstract  
  2005 (6)
On the normal vector estimation for point cloud data from smooth surfaces. Ouyang, D.; and Feng, H., Y. CAD Computer Aided Design, 37(10): 1071-1079. 2005.
On the normal vector estimation for point cloud data from smooth surfaces [pdf]Paper   doi   link   bibtex   abstract  
Vision sensor planning for 3-D model acquisition. Chen, S., Y.; and Li, Y., F. IEEE Transactions on Systems, Man, and Cybernetics, Part B: Cybernetics, 35(5): 894-904. 2005.
doi   link   bibtex   abstract  
What Can Neural Networks Reason About?. Keyulu Xu , (January): 13-19. 2005.
What Can Neural Networks Reason About? [pdf]Paper   link   bibtex   abstract  
Improving Grid-based SLAM with Rao-Blackwellized Particle Filters by Adaptive Proposals and Selective Resampling. Grisetti, G.; Stachniss, C.; and Burgard, W. In Proceedings of the 2005 IEEE International Conference on Robotics and Automation, pages 2432-2437, 2005. IEEE
Improving Grid-based SLAM with Rao-Blackwellized Particle Filters by Adaptive Proposals and Selective Resampling [pdf]Paper   Improving Grid-based SLAM with Rao-Blackwellized Particle Filters by Adaptive Proposals and Selective Resampling [link]Website   doi   link   bibtex   abstract  
SCAPE: shape completion and animation of people. Anguelov, D.; Srinivasan, P.; Koller, D.; Thrun, S.; Rodgers, J.; and Davis, J. In ACM SIGGRAPH 2005 Papers, of SIGGRAPH '05, pages 408-416, 7 2005. Association for Computing Machinery
SCAPE: shape completion and animation of people [pdf]Paper   SCAPE: shape completion and animation of people [link]Website   doi   link   bibtex   abstract  
Pose Estimation of Randomly Organized Stator Housings using Structured Light and Harmonic Shape Contexts. Kirkegaard, J. . 2005.
Pose Estimation of Randomly Organized Stator Housings using Structured Light and Harmonic Shape Contexts [pdf]Paper   link   bibtex  
  2004 (3)
Parts-based 3D object classification. Huber, D.; Kapuria, A.; Donamukkala, R.; and Hebert, M. Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, 2. 2004.
Parts-based 3D object classification [pdf]Paper   doi   link   bibtex   abstract  
Using aromatese inhibitors to induce ovulation in breast Ca Survivors. Mitwally, M., F.; and Casper, R., F. Contemporary Ob/Gyn, 49(1): 73-83. 2004.
Using aromatese inhibitors to induce ovulation in breast Ca Survivors [pdf]Paper   link   bibtex  
Deformation transfer for triangle meshes. Sumner, R., W.; and Popović, J. ACM Transactions on Graphics, 23(3): 399-405. 8 2004.
Deformation transfer for triangle meshes [pdf]Paper   Deformation transfer for triangle meshes [link]Website   doi   link   bibtex   abstract  
  2003 (10)
Estimating Surface Normals in Noisy Point Cloud Data. Mitra, N., J.; and Nguyen, A. SCG '03: Proceedings of the nineteenth annual symposium on Computational geometry,322-328. 2003.
Estimating Surface Normals in Noisy Point Cloud Data [pdf]Paper   doi   link   bibtex   abstract  
Pollen flora of Pakistan- XXXIII. Buxaceae. Perveen, A.; and Qaiser, M. Bangladesh Journal of Botany, 32(1): 61-62. 2003.
Pollen flora of Pakistan- XXXIII. Buxaceae [pdf]Paper   link   bibtex  
NRC Publications Archive ( NPArC ) Archives des publications du CNRC ( NPArC ) View Planning for Automated 3D Object Reconstruction Inspection View Planning for Automated 3D Object Reconstruction and Inspection *. Terms, R., T. , (October). 2003.
NRC Publications Archive ( NPArC ) Archives des publications du CNRC ( NPArC ) View Planning for Automated 3D Object Reconstruction Inspection View Planning for Automated 3D Object Reconstruction and Inspection * [pdf]Paper   link   bibtex  
NRC Publications Archive ( NPArC ) Archives des publications du CNRC ( NPArC ) View Planning for Automated 3D Object Reconstruction Inspection View Planning for Automated 3D Object Reconstruction and Inspection *. Terms, R., T. . 2003.
link   bibtex  
Next best view system in a 3D object modeling task. Wong, L.; Dumont, C.; and Abidi, M. ,306-311. 2003.
Next best view system in a 3D object modeling task [pdf]Paper   doi   link   bibtex   abstract  
Inductive Representation Learning on Large Graphs. Hamilton, W., L. Revue Pratique du Froid et du Conditionnement d'Air, (920): 59. 2003.
Inductive Representation Learning on Large Graphs [pdf]Paper   link   bibtex  
Instant architecture. Wonka, P.; Wimmer, M.; Sillion, F.; and Ribarsky, W. ACM Transactions on Graphics, 22(3): 669-677. 7 2003.
Instant architecture [pdf]Paper   Instant architecture [link]Website   doi   link   bibtex   abstract  
Real-time simultaneous localisation and mapping with a single camera. Davison, A., J. Proceedings of the IEEE International Conference on Computer Vision, 2: 1403-1410. 2003.
Real-time simultaneous localisation and mapping with a single camera [pdf]Paper   doi   link   bibtex   abstract  
Rotation invariant spherical harmonic representation of 3D shape descriptors. Kazhdan, M.; Funkhouser, T.; and Rusinkiewicz, S. Proceedings of the 2003 …,156-165. 2003.
Rotation invariant spherical harmonic representation of 3D shape descriptors [link]Website   link   bibtex   abstract  
View planning for automated three-dimensional object reconstruction and inspection. Scott, W., R.; Roth, G.; and Rivest, J., F. ACM Computing Surveys, 35(1): 64-96. 2003.
View planning for automated three-dimensional object reconstruction and inspection [pdf]Paper   doi   link   bibtex   abstract  
  2002 (3)
Geometry images. Gu, X.; Gortler, S., J.; and Hoppe, H. Proceedings of the 29th Annual Conference on Computer Graphics and Interactive Techniques, SIGGRAPH '02,355-361. 2002.
Geometry images [pdf]Paper   doi   link   bibtex   abstract  
Geometry images. Gu, X.; Gortler, S., J.; and Hoppe, H. In Proceedings of the 29th annual conference on Computer graphics and interactive techniques, of SIGGRAPH '02, pages 355-361, 7 2002. Association for Computing Machinery
Geometry images [link]Website   doi   link   bibtex   abstract  
Cumulated Gain-based Evaluation of IR Techniques. Järvelin, K.; and Kekäläinen, J. ACM Transactions on Information Systems, 20: 2002. 2002.
Cumulated Gain-based Evaluation of IR Techniques [pdf]Paper   link   bibtex   abstract  
  2001 (2)
Introduction of the Radial Basis Function (RBF) Networks. Bors, A. Volume 1 . pages 1-7. 2 2001.
 [pdf]Paper   link   bibtex   abstract  
Laplacian Eigenmaps and Spectral Techniques for Embedding and Clustering. Belkin, M.; and Niyogi, P. In Advances in Neural Information Processing Systems, volume 14, 2001. MIT Press
Laplacian Eigenmaps and Spectral Techniques for Embedding and Clustering [pdf]Paper   Laplacian Eigenmaps and Spectral Techniques for Embedding and Clustering [link]Website   link   bibtex  
  2000 (3)
A next-best-view system for autonomous 3-D object reconstruction. Banta, J., E.; Wong, L., M.; Dumont, C.; and Abidi, M., A. IEEE Transactions on Systems, Man, and Cybernetics Part A:Systems and Humans., 30(5): 589-598. 2000.
doi   link   bibtex   abstract  
Deformable Shape Completion with Graph Convolutional Autoencoders supplementary material. Litany, O.; Bronstein, A.; Bronstein, M.; and Makadia, A. ,1-7. 2000.
Deformable Shape Completion with Graph Convolutional Autoencoders supplementary material [pdf]Paper   link   bibtex  
The Earth Mover's Distance as a Metric for Image Retrieval. Rubner, Y.; Tomasi, C.; and Guibas, L. International Journal of Computer Vision, 40: 99-121. 11 2000.
The Earth Mover's Distance as a Metric for Image Retrieval [pdf]Paper   doi   link   bibtex   abstract  
  1999 (1)
A solution to the next best view problem for automated surface acquisition. Pito, R. IEEE Transactions on Pattern Analysis and Machine Intelligence, 21(10): 1016-1030. 1999.
doi   link   bibtex   abstract  
  1997 (5)
Frontier-based approach for autonomous exploration. Yamauchi, B. Proceedings of IEEE International Symposium on Computational Intelligence in Robotics and Automation, CIRA,146-151. 1997.
Frontier-based approach for autonomous exploration [pdf]Paper   doi   link   bibtex   abstract  
Long Short-Term Memory. Hochreiter, S.; and Schmidhuber, J. Neural Computation, 9(8): 1735-1780. 1997.
Long Short-Term Memory [pdf]Paper   doi   link   bibtex   abstract  
Long Short-Term Memory. Hochreiter, S.; and Schmidhuber, J. Neural Computation, 9(8): 1735-1780. 11 1997.
Long Short-Term Memory [pdf]Paper   doi   link   bibtex   abstract  
Learning and recognizing human dynamics in video sequences. Bregler, C. In Proceedings of IEEE Computer Society Conference on Computer Vision and Pattern Recognition, pages 568-574, 6 1997.
Learning and recognizing human dynamics in video sequences [pdf]Paper   doi   link   bibtex   abstract  
Surface simplification using quadric error metrics. Garland, M.; and Heckbert, P., S. In Proceedings of the 24th annual conference on Computer graphics and interactive techniques, of SIGGRAPH '97, pages 209-216, 8 1997. ACM Press/Addison-Wesley Publishing Co.
Surface simplification using quadric error metrics [pdf]Paper   Surface simplification using quadric error metrics [link]Website   doi   link   bibtex  
  1996 (1)
A sensor-based solution to the "next best view" problem. Pito, R. Proceedings - International Conference on Pattern Recognition, 1: 941-945. 1996.
A sensor-based solution to the "next best view" problem [pdf]Paper   doi   link   bibtex   abstract  
  1995 (3)
A Survey of Sensor Planning in Computer Vision. Tarabanis, K., A.; and Allen, P., K. IEEE Transactions on Robotics and Automation, 11(1): 86-104. 1995.
A Survey of Sensor Planning in Computer Vision [pdf]Paper   doi   link   bibtex   abstract  
The Helmholtz Machine. Dayan, P.; Hinton, G., E.; Neal, R., M.; and Zemel, R., S. Neural Computation, 7(5): 889-904. 9 1995.
The Helmholtz Machine [pdf]Paper   The Helmholtz Machine [link]Website   doi   link   bibtex   abstract   1 download  
The "wake-sleep" algorithm for unsupervised neural networks. Hinton, G.; Dayan, P.; Frey, B.; and Neal, R. Science, 268(5214): 1158-1161. 5 1995.
The "wake-sleep" algorithm for unsupervised neural networks [pdf]Paper   The "wake-sleep" algorithm for unsupervised neural networks [link]Website   doi   link   bibtex   abstract   2 downloads  
  1994 (1)
US005283837A. Surface, E., O., F. , (19). 1994.
US005283837A [pdf]Paper   link   bibtex  
  1993 (2)
Occlusions as a Guide for Planning the Next View. Maver, J.; and Bajcsy, R. , 15(5). 1993.
Occlusions as a Guide for Planning the Next View [pdf]Paper   link   bibtex  
Statistical Analysis of Spherical Data. Fisher, N., I.; Lewis, T.; and Embleton, B., J., J. Cambridge University Press, 8 1993.
link   bibtex   abstract  
  1992 (1)
Surface reconstruction from unorganized points. Hoppe, H.; DeRose, T.; Duchamp, T.; McDonald, J.; and Stuetzle, W. Computer Graphics (ACM), 26(2): 71-78. 1992.
Surface reconstruction from unorganized points [pdf]Paper   doi   link   bibtex   abstract  
  1991 (1)
Nonlinear principal component analysis using autoassociative neural networks. Kramer, M., A. AIChE Journal, 37(2): 233-243. 1991.
Nonlinear principal component analysis using autoassociative neural networks [pdf]Paper   Nonlinear principal component analysis using autoassociative neural networks [link]Website   doi   link   bibtex   abstract  
  1990 (2)
An Implementation of the “algorithme à trous” to Compute the Wavelet Transform. Dutilleux, P. In Combes, J.; Grossmann, A.; and Tchamitchian, P., editor(s), Wavelets, of inverse problems and theoretical imaging, pages 298-304, 1990. Springer
doi   link   bibtex   abstract  
The multilayer perceptron as an approximation to a Bayes optimal discriminant function. Ruck, D., W.; Rogers, S., K.; Kabrisky, M.; Oxley, M., E.; and Suter, B., W. IEEE Transactions on Neural Networks, 1(4): 296-298. 12 1990.
The multilayer perceptron as an approximation to a Bayes optimal discriminant function [pdf]Paper   doi   link   bibtex   abstract  
  1987 (1)
GLOBAL AND LOCAL DEFORMATIONS OF SOLID PRIMITIVES. Barr, A., H. Readings in Computer Vision, pages 661-670. Fischler, M., A.; and Firschein, O., editor(s). Morgan Kaufmann, 1 1987.
Readings in Computer Vision [pdf]Paper   Readings in Computer Vision [link]Website   doi   link   bibtex   abstract  
  1985 (2)
The Determination of Next Best Views. C.I.Connolly ,432-435. 1985.
The Determination of Next Best Views [pdf]Paper   link   bibtex  
The determination elastin. Logan, A. ,432-435. 1985.
The determination elastin [pdf]Paper   link   bibtex  
  1975 (1)
Generalized procrustes analysis. Gower, J., C. Psychometrika, 40(1): 33-51. 3 1975.
Generalized procrustes analysis [pdf]Paper   Generalized procrustes analysis [link]Website   doi   link   bibtex   abstract  
  1951 (1)
On Information and Sufficiency. Kullback, S.; and Leibler, R., A. The Annals of Mathematical Statistics, 22(1): 79-86. 1951.
On Information and Sufficiency [link]Website   link   bibtex  
  undefined (148)
VOLUMNECT - Measuring Volumes with Kinect T M - PDF Free Download.pdf.
VOLUMNECT - Measuring Volumes with Kinect T M - PDF Free Download.pdf [pdf]Paper   link   bibtex  
Tackling 3D ToF Artifacts Through Learning and the FLAT Dataset - Supplementary. Guo, Q.; Frosio, I.; Gallo, O.; Zickler, T.; and Kautz, J. , (4): 1-10. .
Tackling 3D ToF Artifacts Through Learning and the FLAT Dataset - Supplementary [pdf]Paper   link   bibtex  
Recognition of 3D Package Shapes for Single Camera Metrology. Lloyd, R.; and Mccloskey, S. ,99-106. .
Recognition of 3D Package Shapes for Single Camera Metrology [pdf]Paper   link   bibtex  
JSIS3D: Joint Semantic-Instance Segmentation of 3D Point Clouds with Multi-Task Pointwise Networks and Multi-Value Conditional Random Fields. Networks, M., P.; and Fields, M., C., R. . .
JSIS3D: Joint Semantic-Instance Segmentation of 3D Point Clouds with Multi-Task Pointwise Networks and Multi-Value Conditional Random Fields [pdf]Paper   link   bibtex  
Joint 2D-3D-Semantic Data for Indoor Scene Understanding. Armeni, I.; Sax, A.; Zamir, A., R.; and Savarese, S. . .
Joint 2D-3D-Semantic Data for Indoor Scene Understanding [pdf]Paper   link   bibtex  
Real-time Fusion Network for RGB-D Semantic Segmentation Incorporating Unexpected Obstacle Detection for Road-driving Images. Sun, L.; Yang, K.; Hu, X.; Hu, W.; and Wang, K. . .
Real-time Fusion Network for RGB-D Semantic Segmentation Incorporating Unexpected Obstacle Detection for Road-driving Images [pdf]Paper   link   bibtex  
Kaolin : A PyTorch Library for Accelerating 3D Deep Learning Research. J, K., M.; Smith, E.; Lafleche, J.; Tsang, C., F.; Chen, W.; Xiang, T.; Lebaredian, R.; and Fidler, S. ,1-7. .
Kaolin : A PyTorch Library for Accelerating 3D Deep Learning Research [pdf]Paper   link   bibtex  
PointNet: Deep Learning on Point Sets for 3D Classification and Segmentation. Qi, C., R. . .
PointNet: Deep Learning on Point Sets for 3D Classification and Segmentation [pdf]Paper   link   bibtex  
Real-time Progressive 3D Semantic Segmentation for Indoor Scenes. Pham, Q.; and Hua, B. . .
Real-time Progressive 3D Semantic Segmentation for Indoor Scenes [pdf]Paper   link   bibtex  
Torch-Points3D : A Modular Multi-Task Framework for Reproducible Deep Learning on 3D Point Clouds. Chaton, T.; Chaulet, N.; and Horache, S. . .
Torch-Points3D : A Modular Multi-Task Framework for Reproducible Deep Learning on 3D Point Clouds [pdf]Paper   link   bibtex  
Denoising 3D Time-Of-Flight Data. Gupta, K.; and Xu, Y. . .
Denoising 3D Time-Of-Flight Data [pdf]Paper   link   bibtex  
3D Point Cloud Classification , Segmentation , and Normal estimation using Modified Fisher Vector and CNNs. Ben-shabat, Y., I. . .
3D Point Cloud Classification , Segmentation , and Normal estimation using Modified Fisher Vector and CNNs [pdf]Paper   link   bibtex  
eitelIROS15. Eitel, A.; Spinello, L.; and Riedmiller, M. . .
eitelIROS15 [pdf]Paper   link   bibtex  
Multi-view Convolutional Neural Networks for 3D Shape Recognition. Su, H.; Maji, S.; Kalogerakis, E.; and Learned-Miller, E. Technical Report .
Multi-view Convolutional Neural Networks for 3D Shape Recognition [pdf]Paper   Multi-view Convolutional Neural Networks for 3D Shape Recognition [link]Website   link   bibtex   abstract  
Deep Learning for Generic Object Detection: A Survey. Liu, L.; Ouyang, W.; Wang, ·., X.; Fieguth, P.; Chen, ·., J.; Liu, ·., X.; and Pietikäinen, M. Technical Report .
Deep Learning for Generic Object Detection: A Survey [pdf]Paper   link   bibtex   abstract  
VoxSegNet: Volumetric CNNs for Semantic Part Segmentation of 3D Shapes. Wang, Z.; and Lu, F. Technical Report .
VoxSegNet: Volumetric CNNs for Semantic Part Segmentation of 3D Shapes [pdf]Paper   link   bibtex   abstract  
Self-Supervised Deep Depth Denoising ( Supplementary Material ). Sterzentsenko, V.; Saroglou, L.; and Zioulis, N. ,1242-1251. .
Self-Supervised Deep Depth Denoising ( Supplementary Material ) [pdf]Paper   link   bibtex  
Point Cloud Noise and Outlier Removal for Image-Based 3D Reconstruction. Wolff, K.; Kim, C.; Zimmer, H.; Schroers, C.; Botsch, M.; and Alexander, O., S. . .
Point Cloud Noise and Outlier Removal for Image-Based 3D Reconstruction [pdf]Paper   link   bibtex   abstract  
Robust Unsupervised Cleaning of Underwater Bathymetric Point Cloud Data. Chen, C. ,1-14. .
Robust Unsupervised Cleaning of Underwater Bathymetric Point Cloud Data [pdf]Paper   link   bibtex  
Workshop track-ICLR 2016 RESNET IN RESNET: GENERALIZING RESIDUAL ARCHITECTURES. Targ, S.; Almeida, D.; and Enlitic, K., L. Technical Report .
Workshop track-ICLR 2016 RESNET IN RESNET: GENERALIZING RESIDUAL ARCHITECTURES [pdf]Paper   link   bibtex   abstract  
Image Restoration Using Convolutional Auto-encoders with Symmetric Skip Connections. Mao, X.; Shen, C.; and Yang, Y. ,1-17. .
Image Restoration Using Convolutional Auto-encoders with Symmetric Skip Connections [pdf]Paper   link   bibtex  
About the Application of Autoencoders for Visual Defect. Egyetem, P.; and Egyetem, P. . .
About the Application of Autoencoders for Visual Defect [pdf]Paper   link   bibtex  
Neural Message Passing for Quantum Chemistry. Gilmer, J.; Schoenholz, S., S.; Riley, P., F.; Vinyals, O.; and Dahl, G., E. . .
Neural Message Passing for Quantum Chemistry [pdf]Paper   link   bibtex  
Relational inductive biases , deep learning , and graph networks. Hamrick, J., B.; Bapst, V.; Sanchez-gonzalez, A.; Zambaldi, V.; Malinowski, M.; Tacchetti, A.; Raposo, D.; Santoro, A.; Faulkner, R.; Gulcehre, C.; Song, F.; Ballard, A.; Gilmer, J.; Dahl, G.; Vaswani, A.; Allen, K.; Nash, C.; Langston, V.; Dyer, C.; Heess, N.; Wierstra, D.; Kohli, P.; and Botvinick, M. ,1-40. .
Relational inductive biases , deep learning , and graph networks [pdf]Paper   link   bibtex  
Interaction Networks for Learning about Objects , Relations and Physics arXiv : 1612 . 00222v1 [ cs . AI ] 1 Dec 2016. Battaglia, P., W.; and Lai, M. . .
Interaction Networks for Learning about Objects , Relations and Physics arXiv : 1612 . 00222v1 [ cs . AI ] 1 Dec 2016 [pdf]Paper   link   bibtex  
How to use Machine Learning models to build training sets?. Rybak, P. . .
How to use Machine Learning models to build training sets? [pdf]Paper   link   bibtex  
Self-supervised learning of visual representations from video and natural language Josef Šivic Visual recognition. . .
Self-supervised learning of visual representations from video and natural language Josef Šivic Visual recognition [pdf]Paper   link   bibtex  
" I : aa. Fan, R. . .
" I : aa [pdf]Paper   link   bibtex  
Understanding Generalization in Deep Learning Gintar e. Dˇ, K. . .
Understanding Generalization in Deep Learning Gintar e [pdf]Paper   link   bibtex  
IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE 1 Deep Learning for 3D Point Clouds: A Survey. Guo, Y.; Wang, H.; Hu, Q.; Liu, H.; Liu, L.; and Bennamoun, M. . .
IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE 1 Deep Learning for 3D Point Clouds: A Survey [pdf]Paper   IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE 1 Deep Learning for 3D Point Clouds: A Survey [link]Website   link   bibtex   abstract  
Self-Attention Generative Adversarial Networks. Zhang, H.; Goodfellow, I.; Metaxas, D.; and Odena, A. . .
Self-Attention Generative Adversarial Networks [pdf]Paper   link   bibtex  
Dynamic Convolution for 3D Point Cloud Instance Segmentation. - Prophy.
Dynamic Convolution for 3D Point Cloud Instance Segmentation. - Prophy [link]Website   link   bibtex  
Exploring Self-attention for Image Recognition. Zhao, H.; Jiaya, C.; Cuhk, J.; and Koltun, V. . .
Exploring Self-attention for Image Recognition [pdf]Paper   link   bibtex   abstract  
Improving Variational Auto-Encoders using Householder Flow. Tomczak, J., M.; and Welling, M. , 2. .
Improving Variational Auto-Encoders using Householder Flow [pdf]Paper   link   bibtex  
Variational Graph Auto-Encoders. Auto-encoders, V., G.; Kipf, T., N.; and Welling, M. , (2): 1-3. .
Variational Graph Auto-Encoders [pdf]Paper   link   bibtex  
Variational Autoencoders for Collaborative Filtering. Liang, D.; Hoffman, M., D.; and Ai, G. . .
Variational Autoencoders for Collaborative Filtering [pdf]Paper   link   bibtex  
Auto-Encoding Variational Bayes. Kingma, D., P.; and Welling, M. , (Ml): 1-14. .
Auto-Encoding Variational Bayes [pdf]Paper   link   bibtex  
PCT: Point Cloud Transformer. Guo, H.; Cai, J.; Liu, Z.; Mu, T.; Martin, R., R.; and Hu, S. . .
PCT: Point Cloud Transformer [pdf]Paper   link   bibtex   abstract  
End-to-End Object Detection with Transformers. . .
End-to-End Object Detection with Transformers [pdf]Paper   End-to-End Object Detection with Transformers [link]Website   link   bibtex   abstract  
Point Transformer. Engel, N.; Belagiannis, V.; and Dietmayer, K. . .
Point Transformer [pdf]Paper   link   bibtex   abstract  
Efficient Transformers: A Survey. Tay, Y.; Research, G.; Dehghani, M.; Bahri, D.; and Metzler, D. . .
Efficient Transformers: A Survey [pdf]Paper   link   bibtex   abstract  
Appendix for: Graph Attention Convolution for Point Cloud Segmentation. Wang, L.; Huang, Y.; Hou, Y.; Zhang, S.; and Shan, J. Cvpr. .
Appendix for: Graph Attention Convolution for Point Cloud Segmentation [pdf]Paper   Appendix for: Graph Attention Convolution for Point Cloud Segmentation [pdf]Website   link   bibtex  
View fusion for 3D Shape Recognition. Zhao, Y.; Jiao, J.; Zhang, T.; Chen, X.; Wang, C.; and Cui, W. . .
View fusion for 3D Shape Recognition [pdf]Paper   link   bibtex  
Variational Autoencoder for 3D Voxel Compression.pdf. Al., L., e.
Variational Autoencoder for 3D Voxel Compression.pdf [pdf]Paper   link   bibtex  
Learning Sparse High Dimensional Filters: Image Filtering, Dense CRFs and Bilateral Neural Networks. Jampani, V.; Kiefel, M.; and Gehler, P., V. . .
Learning Sparse High Dimensional Filters: Image Filtering, Dense CRFs and Bilateral Neural Networks [pdf]Paper   link   bibtex   abstract  
Point Cloud Augmentation with Weighted Local Transformations. Hwang, D.; Lee, S.; Kim, S.; Lee, J.; Hwang, S., J.; and Kim, H., J. ,548-557. .
Point Cloud Augmentation with Weighted Local Transformations [pdf]Paper   link   bibtex  
Graph-based Asynchronous Event Processing for Rapid Object Recognition. Li, Y.; Zhou, H.; Yang, B.; Zhang, Y.; Cui, Z.; Bao, H.; and Zhang, G. , (61822310): 934-943. .
Graph-based Asynchronous Event Processing for Rapid Object Recognition [pdf]Paper   link   bibtex  
Dance with Self-Attention : A New Look of Conditional Random Fields on Anomaly Detection in Videos. Purwanto, D.; Chen, Y.; and Fang, W. ,173-183. .
Dance with Self-Attention : A New Look of Conditional Random Fields on Anomaly Detection in Videos [pdf]Paper   link   bibtex  
???????????? ???????? ?? ???? ????????? ?????????? ??? ?? ????? ?????? ?? ?? ?????????? ????????. Morphology, T., C. , 1: 12466-12477. .
???????????? ???????? ?? ???? ????????? ?????????? ??? ?? ????? ?????? ?? ?? ?????????? ???????? [pdf]Paper   link   bibtex   abstract  
A Robust Loss for Point Cloud Registration. Deng, Z.; Yao, Y.; Deng, B.; and Zhang, J. ,6138-6147. .
A Robust Loss for Point Cloud Registration [pdf]Paper   link   bibtex  
Augmenting Depth Estimation with Geospatial Context. Workman, S.; and Blanton, H. ,4562-4571. .
Augmenting Depth Estimation with Geospatial Context [pdf]Paper   link   bibtex  
VENet : Voting Enhancement Network for 3D Object Detection. Xie, Q.; Lai, Y.; Wu, J.; Wang, Z.; Lu, D.; Wei, M.; and Wang, J. ,3712-3721. .
VENet : Voting Enhancement Network for 3D Object Detection [pdf]Paper   link   bibtex  
Domain-Invariant Disentangled Network for Generalizable Object Detection. Lin, C.; Zhao, S.; and Wang, C. ,8771-8780. .
Domain-Invariant Disentangled Network for Generalizable Object Detection [pdf]Paper   link   bibtex   abstract  
Learning to Hallucinate Examples from Extrinsic and Intrinsic Supervision. Gui, L.; Bardes, A.; Salakhutdinov, R.; Hauptmann, A.; Hebert, M.; and Wang, Y. ,8701-8711. .
Learning to Hallucinate Examples from Extrinsic and Intrinsic Supervision [pdf]Paper   link   bibtex  
Attention is not Enough : Mitigating the Distribution Discrepancy in Asynchronous Multimodal Sequence Fusion. Lin, G.; Feng, L.; Zhang, Y.; and Lv, F. ,8148-8156. .
Attention is not Enough : Mitigating the Distribution Discrepancy in Asynchronous Multimodal Sequence Fusion [pdf]Paper   link   bibtex  
Can Shape Structure Features Improve Model Robustness under Diverse Adversarial Settings ?. Sun, M.; Li, Z.; Xiao, C.; Qiu, H.; Kailkhura, B.; Liu, M.; and Li, B. . .
Can Shape Structure Features Improve Model Robustness under Diverse Adversarial Settings ? [pdf]Paper   link   bibtex  
Towards Better Explanations of Class Activation Mapping. Jung, H. ,1336-1344. .
Towards Better Explanations of Class Activation Mapping [pdf]Paper   link   bibtex  
Towards Rotation Invariance in Object Detection. Kalra, A.; Stoppi, G.; Brown, B.; Agarwal, R.; and Kadambi, A. . .
Towards Rotation Invariance in Object Detection [pdf]Paper   link   bibtex   abstract  
TOOD : Task-aligned One-stage Object Detection. Feng, C.; and Scott, M., R. ,3510-3519. .
TOOD : Task-aligned One-stage Object Detection [pdf]Paper   link   bibtex  
Oriented R-CNN for Object Detection. Xie, X.; Cheng, G.; Wang, J.; Yao, X.; and Han, J. ,3520-3529. .
Oriented R-CNN for Object Detection [pdf]Paper   link   bibtex  
3DVG-Transformer : Relation Modeling for Visual Grounding on Point Clouds. Zhao, L.; Cai, D.; Sheng, L.; and Xu, D. ,2928-2937. .
3DVG-Transformer : Relation Modeling for Visual Grounding on Point Clouds [pdf]Paper   link   bibtex  
GLiT: Neural Architecture Search for Global and Local Image Transformer. Chen, B.; Li, P.; Li, C.; Li, B.; Bai, L.; Lin, C.; Sun, M.; Yan, J.; and Ouyang, W. . .
GLiT: Neural Architecture Search for Global and Local Image Transformer [pdf]Paper   GLiT: Neural Architecture Search for Global and Local Image Transformer [link]Website   link   bibtex   abstract  
Incorporating Convolution Designs into Visual Transformers. Yuan, K.; Guo, S.; Liu, Z.; Zhou, A.; Yu, F.; and Wu, W. . .
Incorporating Convolution Designs into Visual Transformers [pdf]Paper   link   bibtex   abstract  
An End-to-End Transformer Model for 3D Object Detection. Misra, I.; Girdhar, R.; and Joulin, A. . .
An End-to-End Transformer Model for 3D Object Detection [pdf]Paper   An End-to-End Transformer Model for 3D Object Detection [link]Website   link   bibtex   abstract  
TempNet : Online Semantic Segmentation on Large-scale Point Cloud Series. Zhou, Y.; Zhu, H.; Li, C.; Cui, T.; Chang, S.; and Guo, M. . .
TempNet : Online Semantic Segmentation on Large-scale Point Cloud Series [pdf]Paper   link   bibtex  
Pyramid Point Cloud Transformer for Large-Scale Place Recognition. Hui, L.; Yang, H.; Cheng, M.; Xie, J.; and Yang, J. ,6098-6107. .
Pyramid Point Cloud Transformer for Large-Scale Place Recognition [pdf]Paper   link   bibtex  
No Title. . .
No Title [pdf]Website   link   bibtex  
Learning Spatio-Temporal Transformer for Visual Tracking. Yan, B.; Peng, H.; Fu, J.; Wang, D.; and Lu, H. . .
Learning Spatio-Temporal Transformer for Visual Tracking [pdf]Paper   link   bibtex   abstract  
Cloud Transformers: A Universal Approach To Point Cloud Processing Tasks. Mazur, K.; and Lempitsky, V. . .
Cloud Transformers: A Universal Approach To Point Cloud Processing Tasks [pdf]Paper   link   bibtex   abstract  
AutoFormer: Searching Transformers for Visual Recognition. Chen, M.; Peng, H.; Fu, J.; and Ling, H. . .
AutoFormer: Searching Transformers for Visual Recognition [pdf]Paper   AutoFormer: Searching Transformers for Visual Recognition [link]Website   link   bibtex   abstract  
Understanding Robustness of Transformers for Image Classification. Bhojanapalli, S.; Chakrabarti, A.; Glasner, D.; Li, D.; Unterthiner, T.; and Veit, A. . .
Understanding Robustness of Transformers for Image Classification [pdf]Paper   link   bibtex   abstract  
Evaluation of Latent Space Learning with Procedurally-Generated Datasets of Shapes. Ali, S.; and Kaick, O., V. ,2086-2094. .
Evaluation of Latent Space Learning with Procedurally-Generated Datasets of Shapes [pdf]Paper   link   bibtex  
Discriminative Regularization of the Latent Manifold of. Auto-encoders, V. . .
Discriminative Regularization of the Latent Manifold of [pdf]Paper   link   bibtex  
3D Semantic Label Transfer in Human-Robot Collaboration. Szeier, S.; and Labs, N., B. ,2602-2611. .
3D Semantic Label Transfer in Human-Robot Collaboration [pdf]Paper   link   bibtex  
The multilayer perceptron as an approximation to a Bayes optimal discriminant function. Morphology, T., C. . .
The multilayer perceptron as an approximation to a Bayes optimal discriminant function [pdf]Paper   link   bibtex   abstract  
Amplitude-Phase Recombination : Rethinking Robustness of Convolutional Neural Networks in Frequency Domain. Chen, G.; Peng, P.; Ma, L.; Li, J.; Du, L.; and Tian, Y. ,458-467. .
Amplitude-Phase Recombination : Rethinking Robustness of Convolutional Neural Networks in Frequency Domain [pdf]Paper   link   bibtex  
Occlude Them All : Occlusion-Aware Attention Network for Occluded Person Re-ID. Chen, P.; Liu, W.; Dai, P.; Liu, J.; Ye, Q.; Xu, M.; and Ji, R. ,11833-11842. .
Occlude Them All : Occlusion-Aware Attention Network for Occluded Person Re-ID [pdf]Paper   link   bibtex  
MAAS : Multi-modal Assignation for Active Speaker Detection. Le, J.; Heilbron, F., C.; Thabet, A., K.; and Ghanem, B. ,265-274. .
MAAS : Multi-modal Assignation for Active Speaker Detection [pdf]Paper   link   bibtex  
Aggregation with Feature Detection. Sun, S.; Yue, X.; Qi, X.; Ouyang, W.; Prisacariu, V.; and Torr, P. ,527-536. .
Aggregation with Feature Detection [pdf]Paper   link   bibtex  
Self-supervised Geometric Features Discovery via Interpretable Attention for Vehicle Re-Identification and Beyond. Li, M. ,194-204. .
Self-supervised Geometric Features Discovery via Interpretable Attention for Vehicle Re-Identification and Beyond [pdf]Paper   link   bibtex  
Guided Point Contrastive Learning for Semi-supervised Point Cloud Semantic Segmentation. Jiang, L. ,6423-6432. .
Guided Point Contrastive Learning for Semi-supervised Point Cloud Semantic Segmentation [pdf]Paper   link   bibtex  
DWKS : A Local Descriptor of Deformations Between Meshes and Point Clouds : Supplementary material. Magnet, R. ,0-5. .
DWKS : A Local Descriptor of Deformations Between Meshes and Point Clouds : Supplementary material [pdf]Paper   link   bibtex   abstract  
Compressed Object Detection. Muhawenayo, G.; and Gkioxari, G. ,2-4. .
link   bibtex  
Mesh R-CNN. Gkioxari, G.; and Ai, F. ,9785-9795. .
link   bibtex  
Kimera : an Open-Source Library for Real-Time Metric-Semantic Localization and Mapping. Rosinol, A.; Abate, M.; Chang, Y.; and Carlone, L. . .
link   bibtex  
Point3D : tracking actions as moving points with 3D CNNs. Mo, S. ,1-14. .
Point3D : tracking actions as moving points with 3D CNNs [pdf]Paper   link   bibtex  
Local and Global Point Cloud Reconstruction for 3D Hand Pose Estimation. Yu, Z. ,1-15. .
Local and Global Point Cloud Reconstruction for 3D Hand Pose Estimation [pdf]Paper   link   bibtex  
Rethinking Local and Global Feature Representation for Semantic Segmentation. Chen, M. ,1-14. .
Rethinking Local and Global Feature Representation for Semantic Segmentation [pdf]Paper   link   bibtex  
DeepUME : Learning the Universal Manifold Embedding for Robust Point Cloud. Lang, N.; and Francos, J., M. ,1-14. .
DeepUME : Learning the Universal Manifold Embedding for Robust Point Cloud [pdf]Paper   link   bibtex  
On Automatic Data Augmentation for 3D Point Cloud Classification. Zhang, W. . .
On Automatic Data Augmentation for 3D Point Cloud Classification [pdf]Paper   link   bibtex  
3D Object Tracking with Transformer. Cui, Y.; Fang, Z.; Shan, J.; Gu, Z.; and Zhou, S. . .
3D Object Tracking with Transformer [pdf]Paper   3D Object Tracking with Transformer [link]Website   link   bibtex   abstract  
Sparse Adversarial Video Attacks with Spatial Transformations. Marcolino, S. . .
Sparse Adversarial Video Attacks with Spatial Transformations [pdf]Paper   Sparse Adversarial Video Attacks with Spatial Transformations [link]Website   link   bibtex   abstract  
Sparse-to-Dense Feature Matching. Germain, H.; Bourmaud, G.; and Lepetit, V. ,11-13. .
Sparse-to-Dense Feature Matching [pdf]Paper   link   bibtex  
Self-Supervised 3D Keypoint Learning for Ego-Motion Estimation. Tang, J.; Guizilini, V.; Pillai, S.; Kim, H.; Jensfelt, P.; and Gaidon, A. ,1-18. .
Self-Supervised 3D Keypoint Learning for Ego-Motion Estimation [pdf]Paper   link   bibtex  
Measuring Distance between Reeb Graphs [ Extended abstract ]. Bauer, U.; and Wang, Y. ,464-473. .
Measuring Distance between Reeb Graphs [ Extended abstract ] [pdf]Paper   link   bibtex  
RGB-D Scene Understanding. Fan, Q.; and Berkeley, U., C. , 1. .
link   bibtex  
RandLA-Net : Efficient Semantic Segmentation of Large-Scale Point Clouds. Hu, Q.; Yang, B.; Xie, L.; Rosa, S.; Guo, Y.; Wang, Z.; Trigoni, N.; and Markham, A. . .
link   bibtex  
Geometric Capsule Autoencoders for 3D Point Clouds. Srivastava, N.; Goh, H.; and Salakhutdinov, R. . .
link   bibtex  
Context-Aware Dynamic Feature Extraction for 3D Object Detection in Point Clouds. Tian, Y.; Huang, L.; Li, X.; Wang, K.; Wang, Z.; and Wang, F. . .
Context-Aware Dynamic Feature Extraction for 3D Object Detection in Point Clouds [pdf]Paper   link   bibtex   abstract  
3D Object Detection From LiDAR Data Using Distance Dependent Feature Extraction. Engels, G.; Aranjuelo, N.; Arganda-Carreras, I.; Nieto, M.; and Otaegui, O. . .
3D Object Detection From LiDAR Data Using Distance Dependent Feature Extraction [pdf]Paper   link   bibtex   abstract  
Fully Convolutional Geometric Features. Choy, C.; Park, J.; and Vladlen Koltun, P. . .
Fully Convolutional Geometric Features [pdf]Paper   link   bibtex   abstract  
PCPNET Learning Local Shape Properties from Raw Point Clouds. Guerrero, P.; Kleiman, Y.; Ovsjanikov, M.; and Mitra, N., J. . .
PCPNET Learning Local Shape Properties from Raw Point Clouds [pdf]Paper   link   bibtex   abstract  
Feature axes orthogonalization in semantic face editing. . .
Feature axes orthogonalization in semantic face editing [pdf]Paper   link   bibtex  
Grid-GCN for Fast and Scalable Point Cloud Learning. Xu, Q.; Sun, X.; Wu, C.; Wang, P.; and Neumann, U. . .
Grid-GCN for Fast and Scalable Point Cloud Learning [pdf]Paper   Grid-GCN for Fast and Scalable Point Cloud Learning [link]Website   link   bibtex   abstract  
PointASNL: Robust Point Clouds Processing using Nonlocal Neural Networks with Adaptive Sampling. Yan, X.; Zheng, C.; Li, Z.; Wang, S.; and Cui, S. . .
PointASNL: Robust Point Clouds Processing using Nonlocal Neural Networks with Adaptive Sampling [pdf]Paper   link   bibtex   abstract  
KPConv: Flexible and Deformable Convolution for Point Clouds. Thomas, H.; Qi, C., R.; Deschaud, J.; Marcotegui, B.; Goulette, F.; and Guibas, L., J. . .
KPConv: Flexible and Deformable Convolution for Point Clouds [pdf]Paper   link   bibtex   abstract  
3D Local Features for Direct Pairwise Registration. Deng, H.; Birdal, T.; and Ilic, S. . .
3D Local Features for Direct Pairwise Registration [pdf]Paper   link   bibtex   abstract  
3D3L: Deep Learned 3D Keypoint Detection and Description for LiDARs. Streiff, D.; Bernreiter, L.; Tschopp, F.; Fehr, M.; and Siegwart, R. . .
3D3L: Deep Learned 3D Keypoint Detection and Description for LiDARs [pdf]Paper   link   bibtex   abstract  
Fully Convolutional Geometric Features. Choy, C.; Park, J.; and Vladlen Koltun, P. . .
Fully Convolutional Geometric Features [pdf]Paper   link   bibtex   abstract  
Fully Convolutional Geometric Features. Choy, C.; Park, J.; and Vladlen Koltun, P. . .
Fully Convolutional Geometric Features [pdf]Paper   link   bibtex   abstract  
D3Feat: Joint Learning of Dense Detection and Description of 3D Local Features. Bai, X.; Luo, Z.; Zhou, L.; Fu, H.; Quan, L.; and Tai, C. . .
D3Feat: Joint Learning of Dense Detection and Description of 3D Local Features [pdf]Paper   link   bibtex   abstract  
Efficient 3D Point Cloud Feature Learning for Large-Scale Place Recognition. Hui, L.; Cheng, M.; Xie, J.; and Yang, J. . .
Efficient 3D Point Cloud Feature Learning for Large-Scale Place Recognition [pdf]Paper   Efficient 3D Point Cloud Feature Learning for Large-Scale Place Recognition [link]Website   link   bibtex   abstract  
5 Keypoints Is All You Need. Snower, M.; Kadav, A.; Farley, ;.; Hans, L., ;.; and Graf, P. . .
5 Keypoints Is All You Need [pdf]Paper   link   bibtex   abstract  
Representing Shape Collections With Alignment-Aware Linear Models. Loiseau, R. . .
Representing Shape Collections With Alignment-Aware Linear Models [pdf]Paper   link   bibtex  
Crossing Nets : Combining GANs and VAEs with a Shared Latent Space for Hand Pose Estimation. Wan, C.; Probst, T.; Gool, L., V.; and Yao, A. . .
Crossing Nets : Combining GANs and VAEs with a Shared Latent Space for Hand Pose Estimation [pdf]Paper   link   bibtex  
Task-Generic Hierarchical Human Motion Prior using VAEs. Li, JiamanKuang, Z.; Li, H.; and Zhao, Y. . .
Task-Generic Hierarchical Human Motion Prior using VAEs [pdf]Paper   link   bibtex  
PREDATOR: Registration of 3D Point Clouds with Low Overlap. Huang, S.; Gojcic, Z.; Usvyatsov, M.; Wieser, A.; Schindler, K.; and Zurich, E. . .
PREDATOR: Registration of 3D Point Clouds with Low Overlap [pdf]Paper   link   bibtex   abstract  
Adjacency Matrix. Weisstein, E., W.
Adjacency Matrix [pdf]Paper   Adjacency Matrix [link]Website   link   bibtex   abstract  
Neighborhood-aware Geometric Encoding Network for Point Cloud Registration. Zhu, L.; Guan, H.; Lin, C.; and Han, R. . .
Neighborhood-aware Geometric Encoding Network for Point Cloud Registration [pdf]Paper   Neighborhood-aware Geometric Encoding Network for Point Cloud Registration [link]Website   link   bibtex   abstract  
Position-based Hash Embeddings For Scaling Graph Neural Networks. Kalantzi, M.; and Karypis, G. . .
link   bibtex  
Distilling Knowledge from Graph Convolutional Networks. Yang, Y.; Qiu, J.; Song, M.; Tao, D.; and Wang, X. . .
Distilling Knowledge from Graph Convolutional Networks [pdf]Paper   link   bibtex  
Progressive Point Cloud Deconvolution Generation Network. Hui, L.; Xu, R.; Xie, J.; Qian, J.; and Yang, J. . .
Progressive Point Cloud Deconvolution Generation Network [pdf]Paper   link   bibtex  
$ LUSODQH. Zhiheng, K.; and Ning, L. ,1-8. .
$ LUSODQH [pdf]Paper   link   bibtex  
diffConv : Analyzing Irregular Point Clouds with an Irregular View. Lin, M. . .
diffConv : Analyzing Irregular Point Clouds with an Irregular View [pdf]Paper   link   bibtex  
Weakly Supervised Semantic Point Cloud Segmentation : Towards 10 × Fewer Labels. Xu, X.; and Lee, G., H. . .
Weakly Supervised Semantic Point Cloud Segmentation : Towards 10 × Fewer Labels [pdf]Paper   link   bibtex  
Generalized Graph Convolutional Networks for Skeleton-based Action Recognition. Gao, X.; Hu, W.; Tang, J.; Pan, P.; Liu, J.; and Guo, Z. . .
Generalized Graph Convolutional Networks for Skeleton-based Action Recognition [pdf]Paper   link   bibtex  
Node Similarity Preserving Graph Convolutional Networks. Derr, T.; and Wang, Y. . .
Node Similarity Preserving Graph Convolutional Networks [pdf]Paper   link   bibtex  
Towards Efficient Point Cloud Graph Neural Networks Through Architectural Simplification. Tailor, S., A. . .
Towards Efficient Point Cloud Graph Neural Networks Through Architectural Simplification [pdf]Paper   link   bibtex  
3D Local Features for Direct Pairwise Registration. Deng, H.; Birdal, T.; and Ilic, S. . .
3D Local Features for Direct Pairwise Registration [pdf]Paper   link   bibtex   abstract  
Pairwise Point Cloud Registration Using Graph Matching and Rotation-invariant Features. Huang, R.; Yao, W.; Xu, Y.; Ye, Z.; and Stilla, U. . .
Pairwise Point Cloud Registration Using Graph Matching and Rotation-invariant Features [pdf]Paper   link   bibtex   abstract  
LiDAR-based point clouds registration for localization in indoor environments. Favre, K. . .
LiDAR-based point clouds registration for localization in indoor environments [pdf]Paper   LiDAR-based point clouds registration for localization in indoor environments [link]Website   link   bibtex  
End-to-End 3D Point Cloud Learning for Registration Task Using Virtual Correspondences. Qiao, Z.; Wei, H.; Liu, Z.; Suo, C.; and Wang, H. . .
End-to-End 3D Point Cloud Learning for Registration Task Using Virtual Correspondences [pdf]Paper   End-to-End 3D Point Cloud Learning for Registration Task Using Virtual Correspondences [link]Website   link   bibtex   abstract  
OverlapNet: Loop Closing for LiDAR-based SLAM. Chen, X.; Läbe, T.; Milioto, A.; Röhling, T.; Vysotska, O.; Haag, A.; Behley, J.; and Stachniss, C. . .
OverlapNet: Loop Closing for LiDAR-based SLAM [pdf]Paper   OverlapNet: Loop Closing for LiDAR-based SLAM [link]Website   link   bibtex   abstract  
SLAM-Loop Closing with Visually Salient Features. Newman, P.; and Ho, K. . .
SLAM-Loop Closing with Visually Salient Features [pdf]Paper   link   bibtex   abstract  
Loop Closure Detection with RGB-D Feature Pyramid Siamese Networks. Qianhao, Z.; Mai, A.; Menke, J.; and Yang, A. . .
Loop Closure Detection with RGB-D Feature Pyramid Siamese Networks [pdf]Paper   link   bibtex   abstract  
Fast and Effective Loop Closure Detection to Improve SLAM Performance. Guclu, O.; and Can, A., B. . .
Fast and Effective Loop Closure Detection to Improve SLAM Performance [pdf]Paper   Fast and Effective Loop Closure Detection to Improve SLAM Performance [link]Website   doi   link   bibtex   abstract  
Loop Closure Detection with RGB-D Feature Pyramid Siamese Networks. Qianhao, Z.; Mai, A.; Menke, J.; and Yang, A. . .
Loop Closure Detection with RGB-D Feature Pyramid Siamese Networks [pdf]Paper   link   bibtex   abstract  
A Benchmark for the Evaluation of RGB-D SLAM Systems. Sturm, J.; Engelhard, N.; Endres, F.; Burgard, W.; and Cremers, D. . .
A Benchmark for the Evaluation of RGB-D SLAM Systems [pdf]Paper   A Benchmark for the Evaluation of RGB-D SLAM Systems [link]Website   link   bibtex   abstract  
VG-VAE: A Venatus Geometry Point-Cloud Variational Auto-Encoder. Anvekar, T.; Tabib, R., A.; and Hegde, D. ,2978-2985. .
VG-VAE: A Venatus Geometry Point-Cloud Variational Auto-Encoder [pdf]Paper   link   bibtex   abstract  
Point-BERT : Pre-training 3D Point Cloud Transformers with Masked Point Modeling. Yu, X.; Tang, L.; Rao, Y.; Huang, T.; Zhou, J.; and Lu, J. ,19313-19322. .
Point-BERT : Pre-training 3D Point Cloud Transformers with Masked Point Modeling [pdf]Paper   link   bibtex  
The Devil is in the Pose: Ambiguity-free 3D Rotation-invariant Learning via Pose-aware Convolution. Chen, R.; and Cong, Y. ,7472-7481. .
The Devil is in the Pose: Ambiguity-free 3D Rotation-invariant Learning via Pose-aware Convolution [pdf]Paper   link   bibtex   abstract  
Exploring the Devil in Graph Spectral Domain. Attacks, C.; Hu, Q.; Liu, D.; and Hu, W. , (128). .
Exploring the Devil in Graph Spectral Domain [pdf]Paper   link   bibtex  
Mastering Chess and Shogi by Self-Play with a General Reinforcement Learning Algorithm arXiv : 1712 . 01815v1 [ cs . AI ] 5 Dec 2017. Silver, D.; Hubert, T.; Schrittwieser, J.; Antonoglou, I.; Lai, M.; Guez, A.; Lanctot, M.; Sifre, L.; Kumaran, D.; Graepel, T.; Lillicrap, T.; Simonyan, K.; and Hassabis, D. ,1-19. .
Mastering Chess and Shogi by Self-Play with a General Reinforcement Learning Algorithm arXiv : 1712 . 01815v1 [ cs . AI ] 5 Dec 2017 [pdf]Paper   link   bibtex  
LARGE SCALE GAN TRAINING FOR HIGH FIDELITY NATURAL IMAGE SYNTHESIS. Andrew Brock, J., D.; and Simonyan, K.
link   bibtex  
Learning Accurate 3D Shape Based on Stereo Polarimetric Imaging. Huang, T.; Li, H.; He, K.; Sui, C.; and Li, B. ,17287-17296. .
Learning Accurate 3D Shape Based on Stereo Polarimetric Imaging [pdf]Paper   link   bibtex  
Proceedings of the 2018 19th International Carpathian Control Conference (ICCC) : La Contessa Castle Hotel, Szilvásvárad, Hungary, May 28-31, 2018. Drótos, D.; Miskolci Egyetem (Hungary). Institute of Automation and Infocommunication; IEEE Industry Applications Society; and Institute of Electrical and Electronics Engineers .
Proceedings of the 2018 19th International Carpathian Control Conference (ICCC) : La Contessa Castle Hotel, Szilvásvárad, Hungary, May 28-31, 2018 [pdf]Paper   link   bibtex   abstract  
Why is FPGA-GPU Heterogeneity the Best Option for Embedded Deep Neural Networks?. Carballo-Hernández, W.; Pelcat, M.; and Berry, F. Technical Report .
Why is FPGA-GPU Heterogeneity the Best Option for Embedded Deep Neural Networks? [pdf]Paper   link   bibtex   abstract  
2019 IEEE International Conference on Embedded Software and Systems (ICESS). Institute of Electrical and Electronics Engineers; and IEEE Computer Society .
2019 IEEE International Conference on Embedded Software and Systems (ICESS). [pdf]Paper   link   bibtex   abstract