Keyword: cca

2018 (1)
Martin-Löf random generalized Poisson processes. Axon, L. Annals of Pure and Applied Logic, 169(4):261–276, 2018.
Martin-Löf random generalized Poisson processes [link]Paper  doi  bibtex   
2017 (3)
On computability and disintegration. Ackerman, N. L.; Freer, C. E.; and Roy, D. M. Mathematical Structures in Computer Science, 27(8):1287–1314, Cambridge University Press, 2017.
doi  bibtex   
Five Stages of Accepting Constructive Mathematics. Bauer, A. Bulletin of Symbolic Logic, 54(3):481–498, 2017.
Five Stages of Accepting Constructive Mathematics [link]Paper  doi  bibtex   
Normal Numbers and Limit Computable Cantor Series. Beros, A. and Beros, K. Notre Dame Journal of Formal Logic, 58(2):215–220, March, 2017.
Normal Numbers and Limit Computable Cantor Series [link]Paper  doi  bibtex   
2016 (1)
Report on COST E37 Round Robin Tests – Comparison of results from laboratory and field tests. Westin, M.; Conti, E.; Creemers, J.; Flæte, P. O.; Gellerich, A.; Irbe, I.; Klamer, M.; Mazela, B.; Melcher, E.; Möller, R.; Nunes, L.; Palanti, S.; Reinprecht, L.; Suttie, E.; and Viitanen, H. In June, 2016.
doi  abstract   bibtex   
2015 (3)
Martin-Löf Randomness in Spaces of Closed Sets. Axon, L. M. 80(2):359–383, 2015.
doi  bibtex   
Computing with Infinite Data: Topological and Logical Foundations Part 2. Berger, U.; Brattka, V.; Selivanov, V.; Spreen, D.; and Tsuiki, H., editors Volume 25Cambridge University Press. Cambridge, 2015.
Computing with Infinite Data: Topological and Logical Foundations Part 2 [link]Paper  bibtex   
Computing with Infinite Data: Topological and Logical Foundations Part 1. Berger, U.; Brattka, V.; Selivanov, V.; Spreen, D.; and Tsuiki, H., editors Volume 25Cambridge University Press. Cambridge, 2015.
Computing with Infinite Data: Topological and Logical Foundations Part 1 [link]Paper  bibtex   
2014 (2)
Computability and analysis: the legacy of Alan Turing. Avigad, J. and Brattka, V. In Turing's Legacy: Developments from Turing's Ideas in Logic, volume 42, pages 1–47. Cambridge University Press, Cambridge, UK, 2014.
Computability and analysis: the legacy of Alan Turing [link]Paper  doi  bibtex   
On zeros of Martin-Löf random Brownian motion. Allen, K.; Bienvenu, L.; and Slaman, T. A. Journal of Logic and Analysis, 6:Paper 9, 34, 2014.
On zeros of Martin-Löf random Brownian motion [link]Paper  doi  bibtex   
2013 (4)
Base invariance of feasible dimension. Hitchcock, J. M. and Mayordomo, E. Inform. Process. Lett., 113(14-16):546–551, 2013.
Base invariance of feasible dimension [link]Paper  doi  bibtex   
Special Issue for the Conference Computability and Complexity in Analysis (CCA 2011). Archibald, M.; Brattka, V.; Escardó, M.; and Hertling, P., editors Volume 2013. Cape Town, South Africa, January 31-February 4, 2011
Special Issue for the Conference Computability and Complexity in Analysis (CCA 2011) [link]Paper  doi  bibtex   
First-order universality for real programs. Anberrée, T. J. Logic Comput., 23(4):729–751, 2013.
First-order universality for real programs [link]Paper  doi  bibtex   
Rate of convergence under weak contractiveness conditions. Ariza-Ruiz, D.; Martol Briseid, E.; Jiménez-Melado, A.; and López-Acedo, G. Fixed Point Theory, 14(1):11–27, 2013.
bibtex   
2012 (10)
Computable de~Finetti measures. Freer, C. E. and Roy, D. M. Annals of Pure and Applied Logic, 163(5):530–546, 2012.
bibtex   
A metastable dominated convergence theorem. Avigad, J.; Dean, E. T.; and Rute, J. J. Log. Anal., 4:Paper 3, 19, 2012.
A metastable dominated convergence theorem [link]Paper  doi  bibtex   
Algorithmic randomness, reverse mathematics, and the dominated convergence theorem. Avigad, J.; Dean, E. T.; and Rute, J. Ann. Pure Appl. Logic, 163(12):1854–1864, 2012.
Algorithmic randomness, reverse mathematics, and the dominated convergence theorem [link]Paper  doi  bibtex   
Computing conformal maps of finitely connected domains onto canonical slit domains. Andreev, V. V. and McNicholl, T. H. Theory Comput. Syst., 50(2):354–369, 2012.
Computing conformal maps of finitely connected domains onto canonical slit domains [link]Paper  doi  bibtex   
Uncomputably noisy ergodic limits. Avigad, J. Notre Dame J. Form. Log., 53(3):347–350, 2012.
Uncomputably noisy ergodic limits [link]Paper  doi  bibtex   
Inverting the Furstenberg correspondence. Avigad, J. Discrete Contin. Dyn. Syst., 32(10):3421–3431, 2012.
Inverting the Furstenberg correspondence [link]Paper  doi  bibtex   
The rate of convergence of the walk on spheres algorithm. Binder, I. and Braverman, M. Geom. Funct. Anal., 22(3):558–587, 2012.
The rate of convergence of the walk on spheres algorithm [link]Paper  doi  bibtex   
Closed Choice and a Uniform Low Basis Theorem. Brattka, V.; de Brecht, M.; and Pauly, A. 163:986–1008, 2012.
Closed Choice and a Uniform Low Basis Theorem [link]Paper  doi  bibtex   
Continuity, Computability, Constructivity: From Logic to Algorithms. Berger, U.; Brattka, V.; Morozov, A. S.; and Spreen, D., editors Volume 163Elsevier. Amsterdam, 2012.
Continuity, Computability, Constructivity: From Logic to Algorithms [link]Paper  doi  bibtex   
Thurston equivalence to a rational map is decidable. Bonnot, S.; Braverman, M.; and Yampolsky, M. Mosc. Math. J., 12(4):747–763, 884, 2012.
bibtex   
2011 (4)
Noncomputable conditional distributions. Ackerman, N. L.; Freer, C. E.; and Roy, D. M. In LICS, 2011.
bibtex   
Estimating the error in the Koebe construction. Andreev, V. V. and McNicholl, T. H. Comput. Methods Funct. Theory, 11(2):707–724, 2011.
Estimating the error in the Koebe construction [link]Paper  doi  bibtex   
Computational Models of Certain Hyperspaces of Quasi-metric Spaces. Ali-Akbari, M. and Pourmahdian, M. 7:4:1, 25, 2011.
doi  bibtex   
Computability of Brolin-Lyubich measure. Binder, I.; Braverman, M.; Rojas, C.; and Yampolsky, M. Comm. Math. Phys., 308(3):743–771, 2011.
Computability of Brolin-Lyubich measure [link]Paper  doi  bibtex   
2010 (3)
Complexity theory for operators in analysis. Kawamura, A. and Cook, S. In Proceedings of the 42nd ACM symposium on Theory of computing, of STOC '10, pages 495–502, New York, 2010. ACM.
Complexity theory for operators in analysis [link]Paper  doi  bibtex   
Computing Interpolating Sequences. Andreev, V. V. and McNicholl, T. H. 46(2):340–350, 2010.
Computing Interpolating Sequences [link]Paper  doi  bibtex   
Semantical proofs of correctness for programs performing non-deterministic tests on real numbers. Anberrée, T. Math. Structures Comput. Sci., 20(5):723–751, 2010.
Semantical proofs of correctness for programs performing non-deterministic tests on real numbers [link]Paper  doi  bibtex   
2009 (6)
A divergence formula for randomness and dimension. Lutz, J. H. In Mathematical theory and computational practice, volume 5635, of Lecture Notes in Comput. Sci., pages 342–351. Springer, Berlin, 2009.
A divergence formula for randomness and dimension [link]Paper  doi  bibtex   
Computable exchangeable sequences have computable de Finetti measures. Freer, C. E. and Roy, D. M. In Mathematical theory and computational practice, volume 5635, of Lecture Notes in Comput. Sci., pages 218–231, Berlin, 2009. Springer.
Computable exchangeable sequences have computable de Finetti measures [link]Paper  doi  bibtex   
The metamathematics of ergodic theory. Avigad, J. Ann. Pure Appl. Logic, 157(2-3):64–76, 2009.
The metamathematics of ergodic theory [link]Paper  doi  bibtex   
The Complexity of Simulating Brownian Motion. Binder, I. and Braverman, M. In Proceedings of the Twentieth Annual ACM-SIAM Symposium on Discrete Algorithms, of SODA '09, pages 58–67, Philadelphia, PA, USA, 2009. Society for Industrial and Applied Mathematics.
The Complexity of Simulating Brownian Motion [link]Paper  bibtex   
K-Triviality of Closed Sets and Continuous Functions. Barmpalias, G.; Cenzer, D.; Remmel, J. B.; and Weber, R. Journal of Logic and Computation, 19(1):3–16, 2009.
K-Triviality of Closed Sets and Continuous Functions [link]Paper  bibtex   
Computability and Complexity in Analysis. Brattka, V.; Collins, P.; and Rettinger, R., editors Volume 15Graz University of Technology. Graz, 2009. Selected Papers of the Fifth International Conference on Computability and Complexity in Analysis, August 21-24, 2008, Hagen, Germany
Computability and Complexity in Analysis [link]Paper  doi  bibtex   
2008 (9)
Connectivity Properties of Dimension Level Sets. Lutz, J. and Weihrauch, K. In Dillhage, R.; Grubba, T.; Sorbi, A.; Weihrauch, K.; and Zhong, N., editors, Proceedings of the Fourth International Conference on Computability and Complexity in Analysis (CCA 2007), volume 202, pages 295–304, 2008. Elsevier. CCA 2007, Siena, Italy, June 16–18, 2007
bibtex   
Effective dimensions and relative frequencies. Gu, X. and Lutz, J. H. In Logic and theory of algorithms, volume 5028, of Lecture Notes in Comput. Sci., pages 231–240, Berlin, 2008. Springer.
Effective dimensions and relative frequencies [link]Paper  doi  bibtex   
Dimensions of points in self-similar fractals. Lutz, J. H. and Mayordomo, E. SIAM J. Comput., 38(3):1080–1112, 2008.
Dimensions of points in self-similar fractals [link]Paper  doi  bibtex   
Stability for Effective Algebras. Blanck, J.; Stoltenberg-Hansen, V.; and Tucker, J. V. In Brattka, V.; Dillhage, R.; Grubba, T.; and Klutsch, A., editors, CCA 2008, Fifth International Conference on Computability and Complexity in Analysis, volume 221, pages 3–15, 2008. Elsevier. CCA 2008, Fifth International Conference, Hagen, Germany, August 21–24, 2008
Stability for Effective Algebras [link]Paper  bibtex   
Randomness with respect to the Signed-Digit Representation. Archibald, M.; Brattka, V.; and Heuberger, C. 83(1–2):1–19, 2008.
Randomness with respect to the Signed-Digit Representation [link]Paper  bibtex   
Technical Report: Computation on the Extended Complex Plane and Conformal Mapping of Multiply-connected Domains. Andreev, V. V.; Daniel, D.; and McNicholl, T. H. In Brattka, V.; Dillhage, R.; Grubba, T.; and Klutsch, A., editors, CCA 2008, Fifth International Conference on Computability and Complexity in Analysis, volume 221, pages 127–139, 2008. Elsevier. CCA 2008, Fifth International Conference, Hagen, Germany, August 21–24, 2008
Technical Report: Computation on the Extended Complex Plane and Conformal Mapping of Multiply-connected Domains [link]Paper  bibtex   
Newton's method and the Computational Complexity of the Fundamental Theorem of Algebra. Batra, P. In Dillhage, R.; Grubba, T.; Sorbi, A.; Weihrauch, K.; and Zhong, N., editors, Proceedings of the Fourth International Conference on Computability and Complexity in Analysis (CCA 2007), volume 202, pages 201–218, 2008. Elsevier. CCA 2007, Siena, Italy, June 16–18, 2007
bibtex   
Algorithmic randomness of continuous functions. Barmpalias, G.; Brodhead, P.; Cenzer, D.; Remmel, J. B.; and Weber, R. 46(7–8):533–546, 2008.
Algorithmic randomness of continuous functions [link]Paper  bibtex   
Effectively closed sets and enumerations. Brodhead, P. and Cenzer, D. 46(7–8):565–582, 2008.
Effectively closed sets and enumerations [link]Paper  bibtex   
2007 (5)
Audiovisual synchronization and fusion using canonical correlation analysis. Sargin, M. E.; Yemez, Y.; Erzin, E.; and Tekalp, A. M. IEEE TRANSACTIONS ON MULTIMEDIA, 9(7):1396-1403, NOV, 2007.
doi  abstract   bibtex   
Constructive analysis, types and exact real numbers. Geuvers, H.; Niqui, M.; Spitters, B.; and Wiedijk, F. 17:3–36, 2007.
Constructive analysis, types and exact real numbers [link]Paper  bibtex   
On the computational complexity of the Riemann mapping. Binder, I.; Braverman, M.; and Yampolsky, M. Ark. Mat., 45(2):221–239, 2007.
On the computational complexity of the Riemann mapping [link]Paper  doi  bibtex   
Filled Julia sets with empty interior are computable. Binder, I.; Braverman, M.; and Yampolsky, M. Found. Comput. Math., 7(4):405–416, 2007.
Filled Julia sets with empty interior are computable [link]Paper  doi  bibtex   
Polynomial differential equations compute all real computable functions on computable compact intervals. Bournez, O.; Campagnolo, M. L.; Graça, D.; and S. Hainry, E. 23(3):317–335, 2007.
Polynomial differential equations compute all real computable functions on computable compact intervals [link]Paper  bibtex   
2006 (7)
Points on computable curves. Gu, X.; Lutz, J. H.; and Mayordomo, E. In 47th Annual IEEE Symposium on Foundations of Computer Science, pages 469–474, 2006. IEEE Computer Society Press. Proceedings of FOCS 2006, Berkeley, CA, October 22–24, 2006
bibtex   
Schnorr dimension. Downey, R.; Merkle, W.; and Reimann, J. 16(5):789–811, 2006.
Schnorr dimension [link]Paper  bibtex   
Random non-cupping revisited. Barmpalias, G. 22(6):850–857, 2006.
Random non-cupping revisited [link]Paper  bibtex   
On computational complexity of Siegel Julia sets. Binder, I.; Braverman, M.; and Yampolsky, M. Comm. Math. Phys., 264(2):317–334, 2006.
On computational complexity of Siegel Julia sets [link]Paper  doi  bibtex   
Fundamental notions of analysis in subsystems of second-order arithmetic. Avigad, J. and Simic, K. 139:138–184, 2006.
bibtex   
Random Closed Sets. Brodhead, P.; Cenzer, D.; and Dashti, S. In Beckmann, A.; Berger, U.; Löwe, B.; and Tucker, J., editors, Logical Approaches to Computational Barriers, volume 3988, pages 55–64, Berlin, 2006. Springer. Second Conference on Computability in Europe, CiE 2006, Swansea, UK, June 30-July 5, 2006
Random Closed Sets [link]Paper  bibtex   
The general purpose analog computer and computable analysis are two equivalent paradigms of analog computation. Bournez, O.; Campagnolo, M. L.; Graça, D. S.; and Hainry, E. In Theory and applications of models of computation, volume 3959, of Lecture Notes in Comput. Sci., pages 631–643, Berlin, 2006. Springer.
The general purpose analog computer and computable analysis are two equivalent paradigms of analog computation [link]Paper  doi  bibtex   
2005 (6)
Effective fractal dimensions. Lutz, J. H. 51(1):62–72, 2005.
bibtex   
Constructivity, computability, and the continuum. Beeson, M. In Essays on the Foundations of Mathematics and Logic, volume 2. Polimetrica, Milan, 2005.
Constructivity, computability, and the continuum [pdf]Pdf  bibtex   2 downloads  
Kolmogorov complexity for possibly infinite computations. Becher, V. and Figueira, S. J. Log. Lang. Inf., 14(2):133–148, 2005.
Kolmogorov complexity for possibly infinite computations [link]Paper  doi  bibtex   
Efficient exact computation of iterated maps. Blanck, J. 64:41–59, 2005.
bibtex   
Weak theories of nonstandard arithmetic and analysis. Avigad, J. In Reverse Mathematics 2001, pages 19–46, La Jolla, 2005. Association for Symbolic Logic.
bibtex   
Real number representations of graph-directed IFS attractors. Akama, Y. and Iizuka, S. In Grubba, T.; Hertling, P.; Tsuiki, H.; and Weihrauch, K., editors, Computability and Complexity in Analysis, volume 326, of Informatik Berichte, pages 3–24, July, 2005. FernUniversität in Hagen. Proccedings, Second International Conference, CCA 2005, Kyoto, Japan, August 25–29, 2005
bibtex   
2004 (7)
Interval Arithmetic, Affine Arithmetic, Taylor Series Methods: Why, What Next?. Nedialkov, N. S.; Kreinovich, V.; and Starks, S. A. Numerical Algorithms, 37:325–336, 2004.
bibtex   
Application of a micro-respirometric volumetric method to respiratory measurements of larvae of the Pacific oyster Crassostrea gigas. Goulletquer, P.; Wolowicz, M.; Latala, A.; Brown, C.; and Cragg, S. Aquatic living resources, 17:195-200, 2004.
Application of a micro-respirometric volumetric method to respiratory measurements of larvae of the Pacific oyster Crassostrea gigas [pdf]Paper  Application of a micro-respirometric volumetric method to respiratory measurements of larvae of the Pacific oyster Crassostrea gigas [link]Website  bibtex   
An arithmetical hierarchy of the law of excluded middle and related principles. Akama, Y.; Berardi, S.; Hayashi, S.; and Kohlenbach, U. In Proceedings of the 19th Annual IEEE Symposium on Logic in Computer Science (LICS 2004), pages 192–201, 2004. IEEE Computer Society Press.
doi  bibtex   
Limiting partial combinatory algebras. Akama, Y. 311:199–220, 2004.
bibtex   
Computability and Applications to Analysis. Barmpalias, G. Ph.D. Thesis, University of Leeds, School of Mathematics, Leeds, 2004.
bibtex   
Dynamical systems and computable information. Benci, V.; Bonanno, C.; Galatolo, S.; Menconi, G.; and Virgilio, M. Discrete and Continuous Dynamical Systems B, 4(4):935–960, 2004.
bibtex   
Equilogical spaces. Bauer, A.; Birkedal, L.; and Scott, D. S. 315:35–59, 2004.
bibtex   
2003 (2)
The approximation structure of a computably approximable real. Barmpalias, G. 68(3):885–922, 2003.
bibtex   
A transfinite hierarchy of reals. Barmpalias, G. 49(2):163–172, 2003.
bibtex   
2002 (6)
Why Computational Complexity Requires Stricter Martingales. Hitchcock, J. M. and Lutz, J. H. In Widmayer, P.; Triguero, F.; Morales, R.; Hennessy, M.; Eidenbenz, S.; and Conejo, R., editors, Automata, Languages and Programming, volume 2380, pages 549–560, Berlin, 2002. Springer. 29th International Colloquium, ICALP, Málaga, Spain, July 8–13, 2002
bibtex   
A Kolmogorov complexity characterization of constructive Hausdorff dimension. Mayordomo, E. Inform. Process. Lett., 84(1):1–3, 2002.
A Kolmogorov complexity characterization of constructive Hausdorff dimension [link]Paper  doi  bibtex   
Correspondence Principles for Effective Dimensions. Hitchcock, J. M. In Widmayer, P.; Triguero, F.; Morales, R.; Hennessy, M.; Eidenbenz, S.; and Conejo, R., editors, Automata, Languages and Programming, volume 2380, pages 561–572, Berlin, 2002. Springer. 29th International Colloquium, ICALP, Málaga, Spain, July 8–13, 2002
bibtex   
Domain representations of partial functions, with applications to spatial objects and constructive volume geometry. Blanck, J.; Stoltenberg-Hansen, V.; and Tucker, J. V. 284(2):207–240, 2002.
bibtex   
On $0'$-computable Reals. Barmpalias, G. In Brattka, V.; Schröder, M.; and Weihrauch, K., editors, CCA 2002 Computability and Complexity in Analysis, volume 66, Amsterdam, 2002. Elsevier. 5th International Workshop, CCA 2002, Málaga, Spain, July 12–13, 2002
On $0'$-computable Reals [link]Paper  bibtex   
A Relationship between Equilogical Spaces and Type Two Effectivity. Bauer, A. 48(Suppl. 1):1–15, 2002.
bibtex   
2001 (2)
A Relationship between Equilogical Spaces and Type Two Effectivity. Bauer, A. In Brooks, S. and Mislove, M., editors, Seventeenth Conference on the Mathematical Foundations of Programming Semantics, volume 45, Amsterdam, 2001. Elsevier. MFPS 2001, Aarhus, Denmark May 23–26, 2001
bibtex   
Computability and Complexity in Analysis. Blanck, J.; Brattka, V.; and Hertling, P., editors Volume 2064Springer. Berlin, 2001. 4th International Workshop, CCA 2000, Swansea, UK, September 17-19, 2000. Selected Papers
Computability and Complexity in Analysis [link]Paper  doi  bibtex   
2000 (4)
Predictive habitat distribution models in ecology. Guisan, a. Ecological Modelling, 135(2-3):147-186, 12, 2000.
Predictive habitat distribution models in ecology [pdf]Paper  Predictive habitat distribution models in ecology [link]Website  bibtex   
Domain representations of topological spaces. Blanck, J. 247:229–255, 2000.
bibtex   
The Realizability Approach to Computable Analysis and Topology. Bauer, A. Ph.D. Thesis, School of Computer Science, Carnegie Mellon University, Pittsburgh, 2000.
bibtex   
Weakly Computable Real Numbers. Ambos-Spies, K.; Weihrauch, K.; and Zheng, X. 16(4):676–690, 2000.
bibtex   
1999 (4)
Degree Theoretic Aspects of Computably Enumerable Reals. Calude, C. S.; Coles, R.; Hertling, P. H.; and Khoussainov, B. In Cooper, S. B. and Truss, J. K., editors, Models and Computability, volume 259, of London Math.\ Society Lecture Note Series, pages 23–39, Cambridge, 1999. Cambridge University Press. Invited Papers from Logic Colloquium 1997, Leeds.
bibtex   
Analytic machines. Chadzelek, T. and Hotz, G. 219:151–167, 1999.
bibtex   
On the inductive inference of recursive real-valued functions. Apsītis, K.; Arikawa, S.; Freivalds, R.; Hirowatari, E.; and Smith, C. H. 219:3–17, 1999.
bibtex   
Effectively Given Continuous Domains: A Computable Interval Analysis. Bedregal, B. R. C. and Acióly, B. M. Electronic Journal on Mathematics of Computation, 1999.
bibtex   
1997 (1)
Domain representability of metric spaces. Blanck, J. 83:225–247, 1997.
bibtex   
1990 (1)
Exact real arithmetic, formulating real numbers as functions. Boehm, H. and Cartwright, R. In Research topics in functional programming, pages 43–64, 1990. Addison-Wesley.
bibtex   
1989 (1)
Computability in analysis and physics. Pour-El, M. B. and Richards, J. I. Springer-Verlag, Berlin, 1989.
bibtex   
1983 (1)
Recursivity in quantum mechanics. Baez, J. 280:339–350, 1983.
bibtex   
1980 (1)
Computable Analysis. Aberth, O. McGraw-Hill, New York, 1980.
bibtex   
1971 (1)
The failure in computable analysis of a classical existence theorem for differential equations. Aberth, O. Proceedings of the American Mathematical Society, 30:151–156, 1971.
bibtex   
1970 (1)
Computable analysis and differential equations. Aberth, O. In Kino, A.; Myhill, J.; and Vesley, R., editors, Intuitionism and Proof Theory, pages 47–52, Amsterdam, 1970. North-Holland. Proc. of the Summer Conf. at Buffalo N.Y. 1968
bibtex   
1969 (2)
A Chain of Inclusion Relations in Computable Analysis. Aberth, O. Proceedings of the American Mathematical Society, 22:539–548, 1969.
bibtex   
Some recursively unsolvable problems in analysis. Adler, A. Proceedings of the American Mathematical Society, 22:523–526, 1969.
Some recursively unsolvable problems in analysis [link]Paper  bibtex   
1968 (1)
Analysis in the Computable Number Field. Aberth, O. 15:275–299, 1968.
bibtex   
1957 (1)
On computable sequences. Mostowski, A. 44:37–51, 1957.
bibtex