Keyword: cca

2019 (1)
Computability of frames in computable Hilbert spaces. Mantry, P. & Kaushik, S. K. International Journal of Computer Mathematics: Computer Systems Theory, 4(1):16–29, 2019.
Computability of frames in computable Hilbert spaces [link]Paper  doi  bibtex   
2018 (2)
Closed Sets and Operators thereon: Representations, Computability and Complexity. Rösnick-Neugebauer, C. Logical Methods in Computer Science, 14(2):2:1, 41, 2018.
Closed Sets and Operators thereon: Representations, Computability and Complexity [link]Paper  doi  bibtex   
Comparing Representations for Function Spaces in Computable Analysis. Pauly, A. & Steinberg, F. Theory of Computing Systems, 62:557–582, 2018.
Comparing Representations for Function Spaces in Computable Analysis [link]Paper  doi  bibtex   
2017 (8)
Towards a descriptive theory of cb0-spaces. Selivanov, V. Mathematical Structures in Computer Science, 27(8):1553–1580, Cambridge University Press, 2017.
doi  bibtex   
On Work of Barmpalias and Lewis-Pye: A Derivation on the D.C.E. Reals. Miller, J. S. In Day, A., Fellows, M., Greenberg, N., Khoussainov, B., Melnikov, A., & Rosamond, F., editors, Computability and Complexity: Essays Dedicated to Rodney G. Downey on the Occasion of His 60th Birthday, volume 10010, of Lecture Notes in Computer Science, pages 644–659. Springer, Cham, 2017.
On Work of Barmpalias and Lewis-Pye: A Derivation on the D.C.E. Reals [link]Paper  doi  bibtex   
On images of partial computable functions over computable Polish spaces. Korovina, M. V. & Kudinov, O. V. Sib. Èlektron. Mat. Izv., 14:418–432, 2017.
doi  bibtex   
Grilliot's trick in Nonstandard Analysis. Sanders, S. Logical Methods in Computer Science, 2017.
Grilliot's trick in Nonstandard Analysis [link]Paper  doi  bibtex   
Special issue: Continuity, computability, constructivity: from logic to algorithms 2013. Ishihara, H., Korovina, M., Pauly, A., Seisenberger, M., & Spreen, D., editors Volume 27of Mathematical Structures in Computer ScienceCambridge University Press. 2017.
doi  bibtex   
Preface to the special issue: Continuity, Computability, Constructivity: From Logic to Algorithms 2014. Bauer, A., Berger, U., Fouché, W., Spreen, D., Tsuiki, H., & Ziegler, M., editors Volume 9of The Journal of Logic & Analysis2017.
Preface to the special issue: Continuity, Computability, Constructivity: From Logic to Algorithms 2014 [link]Paper  doi  bibtex   
Properties of domain representations of spaces through dyadic subbases. Tsukamoto, Y. & Tsuiki, H. Mathematical Structures in Computer Science, 27(8):1625–1638, Cambridge University Press, 2017.
doi  bibtex   
On the Uniform Computational Content of Ramsey's Theorem. Brattka, V. & Rakotoniaina, T. Journal of Symbolic Logic, 82(4):1278–1316, 2017.
On the Uniform Computational Content of Ramsey's Theorem [link]Paper  doi  bibtex   
2015 (4)
On the existence of a connected component of a graph. Gura, K., Hirst, J. L., & Mummert, C. Computability, 4(2):103–117, 2015.
On the existence of a connected component of a graph [link]Paper  doi  bibtex   
Computing with Infinite Data: Topological and Logical Foundations Part 2. Berger, U., Brattka, V., Selivanov, V., Spreen, D., & Tsuiki, H., editors Volume 25Cambridge University Press. Cambridge, 2015.
Computing with Infinite Data: Topological and Logical Foundations Part 2 [link]Paper  bibtex   
Completeness and cocompleteness of the categories of basic pairs and concrete spaces. Ishihara, H. & Kawai, T. Mathematical Structures in Computer Science, 25:1626–1648, 12, 2015.
Completeness and cocompleteness of the categories of basic pairs and concrete spaces [link]Paper  doi  bibtex   
Effective zero-dimensional for computable metric spaces. Kenny, R. Logical Methods in Computer Science, 11:1:11,25, 2015.
doi  bibtex   
2014 (3)
Effective genericity and differentiability. Kuyper, R. & Terwijn, S. A. J. Log. Anal., 6:Paper 4, 14, 2014.
bibtex   
Kolmogorov complexity and the asymptotic bound for error-correcting codes. Manin, Y. & Marcolli, M. J. Differential Geom., 97(1):91–108, 2014.
Kolmogorov complexity and the asymptotic bound for error-correcting codes [link]Paper  bibtex   
Analytical properties of resource-bounded real functionals. Férée, H., Gomaa, W., & Hoyrup, M. Journal of Complexity, 30(5):647–671, 2014.
Analytical properties of resource-bounded real functionals [link]Paper  doi  bibtex   
2013 (4)
Uniformly convex Banach spaces are reflexive–-constructively. Bridges, D. S., Ishihara, H., & McKubre-Jordens, M. MLQ Math. Log. Q., 59(4-5):352–356, 2013.
Uniformly convex Banach spaces are reflexive–-constructively [link]Paper  doi  bibtex   
Computation with perturbed dynamical systems. Bournez, O., Graça, D. S., & Hainry, E. J. Comput. System Sci., 79(5):714–724, 2013.
Computation with perturbed dynamical systems [link]Paper  doi  bibtex   
$K$-triviality in computable metric spaces. Melnikov, A. & Nies, A. Proc. Amer. Math. Soc., 141(8):2885–2899, 2013.
$K$-triviality in computable metric spaces [link]Paper  doi  bibtex   
Computably regular topological spaces. Weihrauch, K. 9:3:5, 24, 2013.
doi  bibtex   
2012 (5)
A hierarchy of immunity and density for sets of reals. Kihara, T. In How the world computes, volume 7318, of Lecture Notes in Comput. Sci., pages 384–394, Heidelberg, 2012. Springer.
bibtex   
Negative results of computable analysis disappear if we restrict ourselves to random (or, more generally, typical) inputs. Kreinovich, V. In Mathematical structures and modeling. Number 25 (Russian), pages 100–113, 131, Omsk, 2012. Omsk. Gos. Univ..
bibtex   
Taming the incomputable, reconstructing the nonconstructive and deciding the undecidable in mathematical economics. Velupillai, K. V. New Math. Nat. Comput., 8(1):5–51, 2012.
Taming the incomputable, reconstructing the nonconstructive and deciding the undecidable in mathematical economics [link]Paper  doi  bibtex   
Computing space-filling curves. Couch, P. J., Daniel, B. D., & McNicholl, T. H. Theory Comput. Syst., 50(2):370–386, 2012.
Computing space-filling curves [link]Paper  doi  bibtex   
Compactness and the effectivity of uniformization. Rettinger, R. In How the world computes, volume 7318, of Lecture Notes in Comput. Sci., pages 626–625, Heidelberg, 2012. Springer.
bibtex   
2011 (2)
Effective rates of convergence for Lipschitzian pseudocontractive mappings in general Banach spaces. Körnlein, D. & Kohlenbach, U. Nonlinear Anal., 74(16):5253–5267, 2011.
Effective rates of convergence for Lipschitzian pseudocontractive mappings in general Banach spaces [link]Paper  doi  bibtex   
Algorithmic randomness and capacity of closed sets. Brodhead, P., Cenzer, D., Toska, F., & Wyman, S. Log. Methods Comput. Sci., 7(3):3:16, 16, 2011.
bibtex   
2010 (2)
Locatedness and overt sublocales. Spitters, B. 162:36–54, 2010.
Locatedness and overt sublocales [link]Paper  bibtex   
Semantical proofs of correctness for programs performing non-deterministic tests on real numbers. Anberrée, T. Math. Structures Comput. Sci., 20(5):723–751, 2010.
Semantical proofs of correctness for programs performing non-deterministic tests on real numbers [link]Paper  doi  bibtex   
2009 (3)
A computable approach to measure and integration theory. Edalat, A. Information and Computation, 207(5):642–659, 2009.
bibtex   
Computing domains of attraction for planar dynamics. Graça, D. S. & Zhong, N. In Unconventional computation, volume 5715, of Lecture Notes in Comput. Sci., pages 179–190, Berlin, 2009. Springer.
Computing domains of attraction for planar dynamics [link]Paper  doi  bibtex   
Representing measurement results. Pauly, A. J.UCS, 15(6):1280–1300, 2009.
bibtex   
2008 (6)
Integral of Two-dimensional Fine-computable Functions. Mori, T., Yasugi, M., & Tsujii, Y. In Brattka, V., Dillhage, R., Grubba, T., & Klutsch, A., editors, CCA 2008, Fifth International Conference on Computability and Complexity in Analysis, volume 221, pages 141–152, 2008. Elsevier. CCA 2008, Fifth International Conference, Hagen, Germany, August 21–24, 2008
Integral of Two-dimensional Fine-computable Functions [link]Paper  bibtex   
On the Wadge Reducibility of $k$-Partitions. Selivanov, V. In Dillhage, R., Grubba, T., Sorbi, A., Weihrauch, K., & Zhong, N., editors, Proceedings of the Fourth International Conference on Computability and Complexity in Analysis (CCA 2007), volume 202, pages 59–71, 2008. Elsevier. CCA 2007, Siena, Italy, June 16–18, 2007
bibtex   
Schnorr trivial reals: a construction. Franklin, J. N. 46(7–8):665–678, 2008.
Schnorr trivial reals: a construction [link]Paper  bibtex   
Proceedings of the Fifth International Conference on Computability and Complexity in Analysis. Brattka, V., Dillhage, R., Grubba, T., & Klutsch, A., editors Volume 221Elsevier. Amsterdam, 2008. CCA 2008, Hagen, Germany, August 21-24, 2008
Proceedings of the Fifth International Conference on Computability and Complexity in Analysis [link]Paper  doi  bibtex   
Uniformly computable aspects of inner functions: estimation and factorization. McNicholl, T. H. 54(5):508–518, 2008.
Uniformly computable aspects of inner functions: estimation and factorization [link]Paper  bibtex   
Complexity of Operators on Compact Sets. Zhao, X. & Müller, N. In Dillhage, R., Grubba, T., Sorbi, A., Weihrauch, K., & Zhong, N., editors, Proceedings of the Fourth International Conference on Computability and Complexity in Analysis (CCA 2007), volume 202, pages 101–119, 2008. Elsevier. CCA 2007, Siena, Italy, June 16–18, 2007
bibtex   
2007 (2)
A Continuous Derivative for Real-Valued Functions. Edalat, A. In Cooper, S. B., Löwe, B., & Sorbi, A., editors, Computation and Logic in the Real World, volume 4497, pages 248–257, Berlin, 2007. Springer. Third Conference on Computability in Europe, CiE 2007, Siena, Italy, June 18-23, 2007
A Continuous Derivative for Real-Valued Functions [link]Paper  bibtex   
A monadic, functional implementation of real numbers. O'Connor, R. 17:129–159, 2007.
A monadic, functional implementation of real numbers [link]Paper  bibtex   
2006 (7)
Relativistic computers and the Turing barrier. Németi, I. & Gyula, D. Applied Mathematics and Computation, 178(1):118–142, 2006.
Relativistic computers and the Turing barrier [link]Paper  bibtex   
Coinductive Proofs for Basic Real Computation. Hou, T. In Beckmann, A., Berger, U., Löwe, B., & Tucker, J., editors, Logical Approaches to Computational Barriers, volume 3988, pages 221–230, Berlin, 2006. Springer. Second Conference on Computability in Europe, CiE 2006, Swansea, UK, June 30-July 5, 2006
Coinductive Proofs for Basic Real Computation [link]Paper  bibtex   
Some Results in Computable Analysis and Effective Borel Measurability. Gherardi, G. Ph.D. Thesis, University of Siena, Department of Mathematics and Computer Science, Siena, 2006.
bibtex   
Recursive Analysis Characterized as a Class of Real Recursive Functions. Bournez, O. & Hainry, E. 74(4):409–433, 2006.
Recursive Analysis Characterized as a Class of Real Recursive Functions [link]Paper  bibtex   
How the Common Component Architecture Advances Computational Science. Kumfert, G., Bernholdt, D., Epperly, T., Kohl, J., McInnes, L., Parker, S., & Ray, J. J. Phys.: Conf. Ser., 46:479–493, 2006.
How the Common Component Architecture Advances Computational Science [pdf]Paper  bibtex   
Divergence bounded computable real numbers. Zheng, X., Lub, D., & Bao, K. 351(1):27–38, 2006.
bibtex   
The Hausdorff-Ershov Hierarchy in Euclidean Spaces. Hemmerling, A. 45:323–350, 2006.
The Hausdorff-Ershov Hierarchy in Euclidean Spaces [link]Paper  bibtex   
2005 (5)
Continuity and computability on reachable sets. Collins, P. 341:162–195, 2005.
bibtex   
Computability of a function with jumps – Effective uniformity and limiting recursion. Yasugi, M. & Tsujii, Y. 146-147:563–582, 2005.
bibtex   
Computability and computable uniqueness of Urysohn's universal metric space. Kamo, H. In Grubba, T., Hertling, P., Tsuiki, H., & Weihrauch, K., editors, Computability and Complexity in Analysis, volume 326, of Informatik Berichte, pages 149–159, July, 2005. FernUniversität in Hagen. Proccedings, Second International Conference, CCA 2005, Kyoto, Japan, August 25–29, 2005
bibtex   
Computing with Sequences, Weak Topologies and the Axiom of Choice. Brattka, V. & Schröder, M. In Computer science logic, volume 3634, pages 462–476, 2005. Springer.
Computing with Sequences, Weak Topologies and the Axiom of Choice [link]Paper  bibtex   
The computational power of continuous dynamic systems. Mycka, J. & Costa, J. F. In Machines, Computations, Universality, volume 3354, pages 163–174, Berlin, 2005. Springer. Conference on Machines, Computations, Universality, MCU 2004, Saint-Petersburg, Russia, September 21–26, 2004
bibtex   
2004 (2)
Weak computability and representation of reals. Zheng, X. & Rettinger, R. 50(4,5):431–442, 2004.
bibtex   
Hierarchies of total functionals over the reals. Normann, D. 316:137–151, 2004.
bibtex   
2003 (3)
On an ad hoc computability structure in a Hilbert space. Yoshikawa, A. Proc. Japan Acad. Ser. A, 79(3):65–70, 2003.
bibtex   
Effective Representations of the Space of Linear Bounded Operators. Brattka, V. 4(1):115–131, 2003.
Effective Representations of the Space of Linear Bounded Operators [link]Paper  doi  bibtex   
Computational complexity on computable metric spaces. Weihrauch, K. 49(1):3–21, 2003.
bibtex   
2002 (6)
On $0'$-computable Reals. Barmpalias, G. In Brattka, V., Schröder, M., & Weihrauch, K., editors, CCA 2002 Computability and Complexity in Analysis, volume 66, Amsterdam, 2002. Elsevier. 5th International Workshop, CCA 2002, Málaga, Spain, July 12–13, 2002
On $0'$-computable Reals [link]Paper  bibtex   
A Comparison of Certain Representations of Regularly Closed Sets. Hertling, P. In Brattka, V., Schröder, M., & Weihrauch, K., editors, CCA 2002 Computability and Complexity in Analysis, volume 66, Amsterdam, 2002. Elsevier. 5th International Workshop, CCA 2002, Málaga, Spain, July 12–13, 2002
A Comparison of Certain Representations of Regularly Closed Sets [link]Paper  bibtex   
Presentations of computably enumerable reals. Downey, R. G. & LaForte, G. L. 284(2):539–555, 2002.
bibtex   
Computably Enumerable Reals and Uniformly Presentable Ideals. Downey, R. & Terwijn, S. 48(Suppl. 1):29–40, 2002.
bibtex   
Non-Turing computations via Malament-Hogarth space-times. Etesi, G. & Németi, I. International Journal of Theoretical Physics, 41(2):341–370, 2002.
Non-Turing computations via Malament-Hogarth space-times [link]Paper  bibtex   
Computability and Complexity in Analysis. Brattka, V., Schröder, M., & Weihrauch, K., editors Volume 66(1)Elsevier. Amsterdam, 2002. 5th International Workshop, CCA 2002, Málaga, Spain, July 12–13, 2002
Computability and Complexity in Analysis [link]Paper  doi  bibtex   
2001 (2)
Hierarchy of Monotonically Computable Real Numbers. Rettinger, R. & Zheng, X. In Sgall, J., Pultr, A., & Kolman, P., editors, Mathematical Foundations of Computer Science 2001, volume 2136, pages 633–644, Berlin, 2001. Springer. 26th International Symposium, MFCS 2001, Mariánské Lázně, Czech Republic, August 27-31, 2001
bibtex   
Computability aspects of some discontinuous functions. Yasugi, M., Brattka, V., & Washihara, M. Scientiae Mathematicae Japonicae Online, 5:405–419, 2001.
Computability aspects of some discontinuous functions [link]Paper  bibtex   
2000 (4)
Orbit computability by computable structures. Galatolo, S. 13:1531–1546, 2000.
bibtex   
Many-Valued Real Functions Computable by Finite Transducers using IFS-Representations. Konečný, M. Ph.D. Thesis, School of Computer Science, University of Birmingham, Birmingham, 2000.
bibtex   
Recursive Analytic Functions of a Complex Variable. Gärtner, T. & Hotz, G. In Blanck, J., Brattka, V., Hertling, P., & Weihrauch, K., editors, Computability and Complexity in Analysis, volume 272, of Informatik Berichte, pages 81–97, September, 2000. FernUniversität Hagen. CCA 2000 Workshop, Swansea, Wales, September 17–19, 2000
bibtex   
Computable Functions and Semicomputable Sets on Many-Sorted Algebras. Tucker, J. & Zucker, J. In Abramsky, S., Gabbay, D., & Maibaum, T., editors, Handbook of Logic in Computer Science, Volume 5, pages 317–523, Oxford, 2000. Oxford University Press.
bibtex   
1999 (5)
Binary Enumerability of Real Numbers. Zheng, X. In Asana, T., Imai, H., Lee, D., Nakano, S., & Tokuyama, T., editors, Computing and Combinatorics, volume 1627, pages 300–309, Berlin, 1999. Springer. 5th Annual Conference, COCOON'99, Tokyo, Japan, July 1999
bibtex   
Computable $p$-adic Numbers. Kapoulas, G. Technical Report 115, University of Auckland, Auckland, November, 1999.
bibtex   
Relatively recursive reals and real functions. Ho, C. 210(1):99–120, 1999.
bibtex   
Computability on Subsets of Euclidean Space I: Closed and Compact Subsets. Brattka, V. & Weihrauch, K. 219:65–93, 1999.
Computability on Subsets of Euclidean Space I: Closed and Compact Subsets [link]Paper  bibtex   
A domain-theoretic approach to computability on the real line. Edalat, A. & Sünderhauf, P. 210:73–98, 1999.
bibtex   
1998 (2)
Majorant-computability and definability over the reals. Korovina, M. & Kudinov, O. In Chesneaux, J., Jézéquel, F., Lamotte, J., & Vignes, J., editors, Third Real Numbers and Computers Conference, pages 61–80, 1998. Université Pierre et Marie Curie, Paris. Paris, France, April 27–29, 1998
bibtex   
A new approach to computability over the reals. Korovina, M. & Kudinov, O. Siberian Advances in Mathematics, 8(3):59–73, 1998.
bibtex   
1997 (2)
Effectivity and Effective Continuity of Functions between Computable Metric Spaces. Hertling, P. In Bridges, D. S., Calude, C. S., Gibbons, J., Reeves, S., & Witten, I. H., editors, Combinatorics, Complexity, and Logic, of Discrete Mathematics and Theoretical Computer Science, pages 264–275, Singapore, 1997. Springer. Proceedings of DMTCS'96
bibtex   
Computability on topological spaces by effective domain representations. Blanck, J. Ph.D. Thesis, Uppsala University, Department of Mathematics, Uppsala, Sweden, 1997.
bibtex   
1996 (1)
Analysing Proofs in Analysis. Kohlenbach, U. In Hodges, W., Hyland, M., Steinhorn, C., & Truss, J., editors, Logic: from Foundations to Applications, pages 225–260, Oxford, 1996. Clarendon Press. European Logic Colloquium
bibtex   
1995 (1)
Computational complexity of fixed points and intersection points. Ko, K. 11:265–292, 1995.
bibtex   
1994 (1)
Computability with low-dimensional dynamical systems. Koiran, P., Cosnard, M., & Garzon, M. Theoret. Comput. Sci., 132(1-2):113–128, 1994.
Computability with low-dimensional dynamical systems [link]Paper  doi  bibtex   
1993 (4)
Topologische Komplexitätsgrade von Funktionen mit endlichem Bild. Hertling, P. Technical Report 152, FernUniversität Hagen, Hagen, December, 1993.
bibtex   
Computability on computable metric spaces. Weihrauch, K. 113:191–210, 1993. Fundamental Study
bibtex   
A Functional Approach to Computability on Real Numbers. Di Gianantonio, P. Ph.D. Thesis, Università di Pisa-Genova-Udine, Udine, June, 1993.
bibtex   
Computability in unitary representations of compact groups. Ge, X. & Richards, J. I. In Crossley, J. N., Remmel, J. B., Shore, R. A., & Sweedler, M. E., editors, Logical Methods in Honor of Anil Nerode's Sixtieth Birthday, volume 12, of Progress in Computer Science and Applied Logic, pages 386–421, Boston, 1993. Birkhäuser.
bibtex   
1992 (1)
Comparing the theory of representations and constructive mathematics. Troelstra, A. In Börger, E., Jäger, G., Kleine Büning, H., & Richter, M., editors, Computer Science Logic, volume 626, pages 382–395, Berlin, 1992. Springer. Proceedings of the 5th Workshop, CSL'91, Berne Switzerland, October 1991
bibtex   
1990 (1)
Feasible real functions and arithmetic circuits. Hoover, H. J. 19(1):182–204, 1990.
bibtex   
1989 (1)
Why integration is hard. Hoover, H. J. In Kaltofen, E. & Watt, S. M., editors, Computers and mathematics, pages 172–181, 1989. Springer. Conference held at the Massachusetts Institute of Technology, Cambridge, Massachusetts, June 13–17, 1989
bibtex   
1985 (2)
Effective extensions of linear forms on a recursive vector space over a recursive field. Downey, R. & Kalantari, I. 31(3):193–200, 1985.
bibtex   
Theory of representations. Kreitz, C. & Weihrauch, K. 38:35–53, 1985.
bibtex   
1983 (1)
Degrees of recursively enumerable topological spaces. Kalantari, I. & Remmel, J. 48:610–622, 1983.
bibtex   
1975 (1)
On a simple definition of computable functions of a real variable - with applications to functions of a complex variable. Pour-El, M. B. & Caldwell, J. 21:1–19, 1975.
bibtex   
1973 (1)
Berechenbare reelle Funktionen. Hauck, J. 19:121–140, 1973.
bibtex   
1971 (1)
Ein Kriterium für die Annahme des Maximums in der Berechenbaren Analysis. Hauck, J. 17:193–196, 1971.
bibtex   
1961 (1)
Konstruktive Analysis. Klaua, D. Deutscher Verlag der Wissenschaften, Berlin, 1961.
bibtex   
1960 (1)
Berechenbare Reihen. Klaua, D. 6:143–161, 1960.
Berechenbare Reihen [link]Paper  bibtex   
1957 (1)
On the definitions of computable real continuous functions. Grzegorczyk, A. 44:61–71, 1957.
bibtex   
2000/01 (1)
Computational complexity of fractal sets. Kamo, H., Kawamura, K., & Takeuti, I. Real Analysis Exchange, 26(2):773–793, 2000/01.
bibtex