generated by bibbase.org
  2019 (19)
A point estimate method-based back-off approach to robust optimization: application to pharmaceutical processes. Emenike, V. N.; Xie, X.; Krewer, U.; and Schenkendorf, R. In Computer Aided Chemical Engineering, volume 42, pages 223–228. 2019.
doi   bibtex   1 download  
Robust optimization of a pharmaceutical freeze-drying process under non-Gaussian parameter uncertainties. Xie, X.; and Schenkendorf, R. Chemical Engineering Science,S0009250919305275. June 2019.
Robust optimization of a pharmaceutical freeze-drying process under non-Gaussian parameter uncertainties [link]Paper   doi   bibtex  
An efficient polynomial chaos expansion strategy for active fault identification of chemical processes. Schenkendorf, R.; Xie, X.; and Krewer, U. Computers & Chemical Engineering, 122: 228–237. March 2019.
An efficient polynomial chaos expansion strategy for active fault identification of chemical processes [link]Paper   doi   bibtex   1 download  
Efficient sensitivity analysis and interpretation of parameter correlations in chemical engineering. Xie, X.; Schenkendorf, R.; and Krewer, U. Reliability Engineering & System Safety, 187: 159–173. July 2019.
Efficient sensitivity analysis and interpretation of parameter correlations in chemical engineering [link]Paper   doi   bibtex  
Joint structural and electrochemical modeling: Impact of porosity on lithium-ion battery performance. Laue, V.; Röder, F.; and Krewer, U. Electrochimica Acta,S0013468619309065. May 2019.
Joint structural and electrochemical modeling: Impact of porosity on lithium-ion battery performance [link]Paper   doi   bibtex   2 downloads  
Processes and their Limitations in Oxygen Depolarized Cathodes: A Dynamic Model‐Based Analysis. Röhe, M.; Kubannek, F.; and Krewer, U. ChemSusChem,cssc.201900312. April 2019.
Processes and their Limitations in Oxygen Depolarized Cathodes: A Dynamic Model‐Based Analysis [link]Paper   doi   bibtex  
Novel electrodynamic oscillation technique enables enhanced mass transfer and mixing for cultivation in micro‐bioreactor. Frey, L. J.; Vorländer, D.; Rasch, D.; Ostsieker, H.; Müller, B.; Schulze, M.; Schenkendorf, R.; Mayr, T.; Grosch, J.; and Krull, R. Biotechnology Progress,e2827. April 2019.
Novel electrodynamic oscillation technique enables enhanced mass transfer and mixing for cultivation in micro‐bioreactor [link]Paper   doi   bibtex   1 download  
Understanding nonlinearity in electrochemical systems. Wolff, N.; Harting, N.; Röder, F.; Heinrich, M.; and Krewer, U. The European Physical Journal Special Topics, 227(18): 2617–2640. April 2019.
Understanding nonlinearity in electrochemical systems [link]Paper   doi   bibtex  
Quantification of formaldehyde production during alkaline methanol electrooxidation. Haisch, T.; Kubannek, F.; Haisch, C.; Bahnemann, D. W.; and Krewer, U. Electrochemistry Communications. March 2019.
Quantification of formaldehyde production during alkaline methanol electrooxidation [link]Paper   doi   bibtex  
Model Based Multiscale Analysis of Film Formation in Lithium-Ion Batteries. Röder, F.; Laue, V.; and Krewer, U. Batteries & Supercaps. February 2019.
Model Based Multiscale Analysis of Film Formation in Lithium-Ion Batteries [link]Paper   doi   bibtex   1 download  
Design of Fuel Cell Systems for Aviation: Representative Mission Profiles and Sensitivity Analyses. Kadyk, T.; Schenkendorf, R.; Hawner, S.; Yildiz, B.; and Römer, U. Frontiers in Energy Research, 7: 35. April 2019.
Design of Fuel Cell Systems for Aviation: Representative Mission Profiles and Sensitivity Analyses [link]Paper   doi   bibtex  
Model‐based Uncertainty Quantification for the Product Properties of Lithium‐Ion Batteries. Laue, V.; Schmidt, O.; Dreger, H.; Xie, X.; Röder, F.; Schenkendorf, R.; Kwade, A.; and Krewer, U. Energy Technology. March 2019.
Model‐based Uncertainty Quantification for the Product Properties of Lithium‐Ion Batteries [link]Paper   doi   bibtex  
Physico-chemical modeling of a Lithium-ion battery: An ageing study with Electrochemical Impedance Spectroscopy. Heinrich, M.; Wolff, N.; Harting, N.; Laue, V.; Röder, F.; Seitz, S.; and Krewer, U. Batteries & Supercaps. March 2019.
Physico-chemical modeling of a Lithium-ion battery: An ageing study with Electrochemical Impedance Spectroscopy [link]Paper   doi   bibtex   1 download  
The Effect of Correlated Kinetic Parameters on (Bio)Chemical Reaction Networks. Xie, X.; Schenkendorf, R.; and Krewer, U. Chemie Ingenieur Technik. February 2019.
The Effect of Correlated Kinetic Parameters on (Bio)Chemical Reaction Networks [link]Paper   doi   bibtex  
Stochastic back-off-based robust process design for continuous crystallization of ibuprofen. Xie, X.; and Schenkendorf, R. Computers & Chemical Engineering. February 2019.
Stochastic back-off-based robust process design for continuous crystallization of ibuprofen [link]Paper   doi   bibtex  
Modeling the Influence of Mixing Strategies on Micro Structural Properties of All-Solid State Electrodes. Laue, V.; Wolff, N.; Röder, F.; and Krewer, U. Energy Technology. January 2019.
Modeling the Influence of Mixing Strategies on Micro Structural Properties of All-Solid State Electrodes [link]Paper   doi   bibtex  
Analyzing uncertainties in model response using the point estimate method: Applications from railway asset management. Neumann, T.; Dutschk, B.; and Schenkendorf, R. Proceedings of the Institution of Mechanical Engineers, Part O: Journal of Risk and Reliability,1748006X1982559. January 2019.
Analyzing uncertainties in model response using the point estimate method: Applications from railway asset management [link]Paper   doi   bibtex  
State-of-Health Diagnosis of Lithium-Ion Batteries Using Nonlinear Frequency Response Analysis. Harting, N.; Wolff, N.; Röder, F.; and Krewer, U. Journal of The Electrochemical Society, 166(2): A277–A285. 2019.
State-of-Health Diagnosis of Lithium-Ion Batteries Using Nonlinear Frequency Response Analysis [link]Paper   doi   bibtex  
Robust dynamic optimization of enzyme-catalyzed carboligation: A point estimate-based back-off approach. Emenike, V. N.; Xie, X.; Schenkendorf, R.; Spiess, A. C.; and Krewer, U. Computers & Chemical Engineering, 121: 232–247. February 2019.
Robust dynamic optimization of enzyme-catalyzed carboligation: A point estimate-based back-off approach [link]Paper   doi   bibtex  
  2018 (33)
The Impact of Global Sensitivities and Design Measures in Model-Based Optimal Experimental Design. Schenkendorf, R.; Xie, X.; Rehbein, M.; Scholl, S.; and Krewer, U. Processes, 6(4): 27. March 2018.
The Impact of Global Sensitivities and Design Measures in Model-Based Optimal Experimental Design [link]Paper   doi   bibtex  
Identification of Lithium Plating in Lithium-Ion Batteries using Nonlinear Frequency Response Analysis (NFRA). Harting, N.; Wolff, N.; and Krewer, U. Electrochimica Acta, 281: 378–385. August 2018.
Identification of Lithium Plating in Lithium-Ion Batteries using Nonlinear Frequency Response Analysis (NFRA) [link]Paper   doi   bibtex  
Nonlinear frequency response analysis on lithium-ion batteries: Process identification and differences between transient and steady-state behavior. Wolff, N.; Harting, N.; Heinrich, M.; and Krewer, U. Electrochimica Acta. December 2018.
Nonlinear frequency response analysis on lithium-ion batteries: Process identification and differences between transient and steady-state behavior [link]Paper   doi   bibtex   1 download  
Parameter Identification in Cyclic Voltammetry of Alkaline Methanol Oxidation:. Clees, T.; Nikitin, I.; Nikitina, L.; Pott, S.; Krewer, U.; and Haisch, T. In Proceedings of 8th International Conference on Simulation and Modeling Methodologies, Technologies and Applications, pages 279–288, Porto, Portugal, 2018. SCITEPRESS - Science and Technology Publications
Parameter Identification in Cyclic Voltammetry of Alkaline Methanol Oxidation: [link]Paper   doi   bibtex  
Simulating Process-Product Interdependencies in Battery Production Systems. Thomitzek, M.; Schmidt, O.; Röder, F.; Krewer, U.; Herrmann, C.; and Thiede, S. Procedia CIRP, 72: 346–351. 2018.
Simulating Process-Product Interdependencies in Battery Production Systems [link]Paper   doi   bibtex  
Direct Coupling of Continuum and Kinetic Monte Carlo Models for Multiscale Simulation of Electrochemical Systems. Röder, F.; Braatz, R. D.; and Krewer, U. Computers & Chemical Engineering. December 2018.
Direct Coupling of Continuum and Kinetic Monte Carlo Models for Multiscale Simulation of Electrochemical Systems [link]Paper   doi   bibtex   1 download  
Model Based Assessment of Performance of Lithium-Ion Batteries Using Single Ion Conducting Electrolytes. Wolff, N.; Röder, F.; and Krewer, U. Electrochimica Acta, 284: 639–646. September 2018.
Model Based Assessment of Performance of Lithium-Ion Batteries Using Single Ion Conducting Electrolytes [link]Paper   doi   bibtex  
Model-based tools for optimal experiments in bioprocess engineering. Abt, V.; Barz, T.; Cruz, N.; Herwig, C.; Kroll, P.; Möller, J.; Pörtner, R.; and Schenkendorf, R. Current Opinion in Chemical Engineering, 22: 244–252. December 2018.
Model-based tools for optimal experiments in bioprocess engineering [link]Paper   doi   bibtex  
Concentration Pulse Method for the Investigation of Transformation Pathways in a Glycerol-Fed Bioelectrochemical System. Kubannek, F.; Moß, C.; Huber, K.; Overmann, J.; Schröder, U.; and Krewer, U. Frontiers in Energy Research, 6: 125. 2018.
Concentration Pulse Method for the Investigation of Transformation Pathways in a Glycerol-Fed Bioelectrochemical System [link]Paper   doi   bibtex   abstract  
Review—Dynamic Models of Li-Ion Batteries for Diagnosis and Operation: A Review and Perspective. Krewer, U.; Röder, F.; Harinath, E.; Braatz, R. D.; Bedürftig, B.; and Findeisen, R. Journal of The Electrochemical Society, 165(16): A3656–A3673. 2018.
Review—Dynamic Models of Li-Ion Batteries for Diagnosis and Operation: A Review and Perspective [link]Paper   doi   bibtex  
Multiphysics Modeling for Detailed Analysis of Multi-Layer Lithium-Ion Pouch Cells. Lin, N.; Röder, F.; and Krewer, U. Energies, 11(11): 2998. November 2018.
Multiphysics Modeling for Detailed Analysis of Multi-Layer Lithium-Ion Pouch Cells [link]Paper   doi   bibtex   abstract  
The influence of adsorbed substances on alkaline methanol electro-oxidation. Haisch, T.; Kubannek, F.; Baranton, S.; Coutanceau, C.; and Krewer, U. Electrochimica Acta. October 2018.
The influence of adsorbed substances on alkaline methanol electro-oxidation [link]Paper   doi   bibtex  
Model-based optimization of biopharmaceutical manufacturing in Pichia pastoris based on dynamic flux balance analysis. Emenike, V. N.; Schenkendorf, R.; and Krewer, U. Computers & Chemical Engineering, 118: 1–13. October 2018.
Model-based optimization of biopharmaceutical manufacturing in Pichia pastoris based on dynamic flux balance analysis [link]Paper   doi   bibtex  
Electrochemical analysis of the reaction mechanism of sulfur reduction as a function of state of charge. Schön, P.; Hintz, F.; and Krewer, U. Electrochimica Acta. October 2018.
Electrochemical analysis of the reaction mechanism of sulfur reduction as a function of state of charge [link]Paper   doi   bibtex   1 download  
Flatness-Based Design of Experiments for Model Selection. Schulze, M.; and Schenkendorf, R. IFAC-PapersOnLine, 51(15): 233–238. 2018.
Flatness-Based Design of Experiments for Model Selection [link]Paper   doi   bibtex  
Operating envelope of Haber–Bosch process design for power-to-ammonia. Cheema, I. I.; and Krewer, U. RSC Advances, 8(61): 34926–34936. 2018.
Operating envelope of Haber–Bosch process design for power-to-ammonia [link]Paper   doi   bibtex   2 downloads  
Toward a Comprehensive and Efficient Robust Optimization Framework for (Bio)chemical Processes. Xie, X.; Schenkendorf, R.; and Krewer, U. Processes, 6(10): 183. October 2018.
Toward a Comprehensive and Efficient Robust Optimization Framework for (Bio)chemical Processes [link]Paper   doi   bibtex  
Mikrokinetische Modellierung der Ammoniaksynthese und Katalysator-Deaktivierung im dynamischen Haber-Bosch-Verfahren. Attari Moghaddam, A.; and Krewer, U. Chemie Ingenieur Technik, 90(9): 1232–1232. September 2018.
Mikrokinetische Modellierung der Ammoniaksynthese und Katalysator-Deaktivierung im dynamischen Haber-Bosch-Verfahren [link]Paper   doi   bibtex   1 download  
Kinetics and rate limitations in a glycerol-fed microbial fuel cell. Kubannek, F.; Moß, C.; Schröder, U.; and Krewer, U. Chemie Ingenieur Technik, 90(9): 1164–1165. September 2018.
Kinetics and rate limitations in a glycerol-fed microbial fuel cell [link]Paper   doi   bibtex  
Robustes Prozessdesign in der Pharmatechnik mittels performanter Ersatzfunktionen. Xie, X.; Schenkendorf, R.; and Krewer, U. Chemie Ingenieur Technik, 90(9): 1243–1244. September 2018.
Robustes Prozessdesign in der Pharmatechnik mittels performanter Ersatzfunktionen [link]Paper   doi   bibtex  
Modelling and designing cryogenic hydrogen tanks for future aircraft applications. Winnefeld, C.; Kadyk, T.; Bensmann, B.; Krewer, U.; and Hanke-Rauschenbach, R. Energies, 11(1). 2018.
doi   bibtex   abstract  
Design Considerations for the Electrical Power Supply of Future Civil Aircraft with Active High-Lift Systems. Mueller, J.; Bensmann, A.; Bensmann, B.; Fischer, T.; Kadyk, T.; Narjes, G.; Kauth, F.; Ponick, B.; Seume, J.; Krewer, U.; Hanke-Rauschenbach, R.; and Mertens, A. Energies, 11(2): 179. January 2018.
Design Considerations for the Electrical Power Supply of Future Civil Aircraft with Active High-Lift Systems [link]Paper   doi   bibtex   abstract  
Moment-Independent Sensitivity Analysis of Enzyme-Catalyzed Reactions with Correlated Model Parameters. Xie, X.; Ohs, R.; Spiess, A.; Krewer, U.; and Schenkendorf, R. IFAC-PapersOnLine, 51(2): 753–758. 2018.
doi   bibtex   abstract  
A systematic reactor design approach for the synthesis of active pharmaceutical ingredients. Emenike, V. N.; Schenkendorf, R.; and Krewer, U. European Journal of Pharmaceutics and Biopharmaceutics, 126: 75–88. 2018.
doi   bibtex   abstract  
Revealing metabolic storage processes in electrode respiring bacteria by differential electrochemical mass spectrometry. Kubannek, F.; Schröder, U.; and Krewer, U. Bioelectrochemistry, 121: 160–168. 2018.
doi   bibtex   abstract  
Increasing Energy Densities of Sulfur Cathodes using Dispersing and Calendering Processes for Lithium–Sulfur Batteries. Titscher, P.; Schön, P.; Horst, M.; Krewer, U.; and Kwade, A. Energy Technology, 6(6): 1139–1147. 2018.
doi   bibtex   abstract  
State-of-Health Identification of Lithium-Ion Batteries Based on Nonlinear Frequency Response Analysis: First Steps with Machine Learning. Harting, N.; Schenkendorf, R.; Wolff, N.; and Krewer, U. Applied Sciences, 8(5): 821. 2018.
State-of-Health Identification of Lithium-Ion Batteries Based on Nonlinear Frequency Response Analysis: First Steps with Machine Learning [link]Paper   doi   bibtex   abstract  
Analysis and Design of Fuel Cell Systems for Aviation. Kadyk, T.; Winnefeld, C.; Hanke-Rauschenbach, R.; and Krewer, U. Energies, 11(2): 375. 2018.
Analysis and Design of Fuel Cell Systems for Aviation [link]Paper   doi   bibtex   abstract  
Robust Optimization of Dynamical Systems with Correlated Random Variables using the Point Estimate Method. Xie, X.; Krewer, U.; and Schenkendorf, R. IFAC-PapersOnLine, 51(2): 427–432. 2018.
doi   bibtex   abstract  
Efficient Global Sensitivity Analysis of 3D Multiphysics Model for Li-Ion Batteries. Lin, N.; Xie, X.; Schenkendorf, R.; and Krewer, U. Journal of The Electrochemical Society, 165(7): A1169–A1183. 2018.
Efficient Global Sensitivity Analysis of 3D Multiphysics Model for Li-Ion Batteries [link]Paper   doi   bibtex   abstract  
Impact of carbonation processes in anion exchange membrane fuel cells. Krewer, U.; Weinzierl, C.; Ziv, N.; and Dekel, D. R. Electrochimica Acta, 263: 433–446. 2018.
doi   bibtex   abstract  
Nonlinear Frequency Response Analysis on Lithium-Ion Batteries: A Model-Based Assessment. Wolff, N.; Harting, N.; Heinrich, M.; Röder, F.; and Krewer, U. Electrochimica Acta, 260: 614–622. 2018.
doi   bibtex   abstract  
Impacts of Variations in Manufacturing Parameters on Performance of Lithium-Ion-Batteries. Lenze, G.; Bockholt, H.; Schilcher, C.; Froböse, L.; Jansen, D.; Krewer, U.; and Kwade, A. Journal of The Electrochemical Society, 165(2): A314–A322. 2018.
Impacts of Variations in Manufacturing Parameters on Performance of Lithium-Ion-Batteries [link]Paper   doi   bibtex   abstract  
  2017 (9)
An Efficient Polynomial Chaos Expansion Strategy for Active Fault Identification of Chemical Processes. Schenkendorf, R.; Xie, X.; and Krewer, U. In Computer Aided Chemical Engineering, volume 40, pages 1675–1680. 2017.
An Efficient Polynomial Chaos Expansion Strategy for Active Fault Identification of Chemical Processes [link]Paper   doi   bibtex   abstract  
Nonlinear Frequency Response Analysis (NFRA) of Lithium-Ion Batteries. Harting, N.; Wolff, N.; Röder, F.; and Krewer, U. Electrochimica Acta, 248: 133–139. 2017.
doi   bibtex   abstract  
Highly integrated direct methanol fuel cell systems minimizing fuel loss with dynamic concentration control for portable applications. Na, Y.; Zenith, F.; and Krewer, U. Journal of Process Control, 57: 140–147. 2017.
doi   bibtex   abstract  
Improved PEM fuel cell system operation with cascaded stack and ejector-based recirculation. Jenssen, D.; Berger, O.; and Krewer, U. Applied Energy, 195: 324–333. 2017.
doi   bibtex   abstract  
Future Challenges in Heterogeneous Catalysis: Understanding Catalysts under Dynamic Reaction Conditions. Kalz, K. F.; Kraehnert, R.; Dvoyashkin, M.; Dittmeyer, R.; Gläser, R.; Krewer, U.; Reuter, K.; and Grunwaldt, J. D. ChemCatChem, 9(1): 17–29. 2017.
doi   bibtex   abstract  
Robust Design of Chemical Processes Based on a One-Shot Sparce Polynomial Chaos Expansion Concept. Xie, X.; Schenkendorf, R.; and Krewer, U. In Computer Aided Chemical Engineering, volume 40, pages 613–618. 2017.
doi   bibtex   abstract  
Simulation-Supported Analysis of Calendering Impacts on the Performance of Lithium-Ion-Batteries. Lenze, G.; Röder, F.; Bockholt, H.; Haselrieder, W.; Kwade, A.; and Krewer, U. Journal of The Electrochemical Society, 164(6): A1223–A1233. 2017.
Simulation-Supported Analysis of Calendering Impacts on the Performance of Lithium-Ion-Batteries [link]Paper   doi   bibtex   abstract  
Model-based optimization of the recombinant protein production in Pichia pastoris based on dynamic flux balance analysis and elementary process functions. Emenike, V. N.; Schulze, M.; Schenkendorf, R.; and Krewer, U. In Computer Aided Chemical Engineering, volume 40, pages 2815–2820. 2017.
doi   bibtex   abstract  
Multi-Scale Simulation of Heterogeneous Surface Film Growth Mechanisms in Lithium-Ion Batteries. Röder, F.; Braatz, R. D.; and Krewer, U. Journal of The Electrochemical Society, 164(11): E3335–E3344. 2017.
Multi-Scale Simulation of Heterogeneous Surface Film Growth Mechanisms in Lithium-Ion Batteries [link]Paper   doi   bibtex   abstract  
  2016 (8)
Degradation analysis of fibre-metal laminates under service conditions to predict their durability. Viandier, A.; Cramer, J.; Stefaniak, D.; Schröder, D.; Krewer, U.; Hühne, C.; and Sinapius, M. Bulletin of the University Politehnica of Bucharest, Series D – Mechanical Engineering, 1(1). 2016.
Degradation analysis of fibre-metal laminates under service conditions to predict their durability [link]Paper   bibtex   abstract  
Model-based analysis of water management at anode of alkaline direct methanol fuel cells. Weinzierl, C.; and Krewer, U. Chemical Engineering Science, 143: 181–193. April 2016.
Model-based analysis of water management at anode of alkaline direct methanol fuel cells [link]Paper   doi   bibtex   abstract  
Numerical simulation of gas-diffusion-electrodes with moving gas-liquid interface: A study on pulse-current operation and electrode flooding. Schröder, D.; Laue, V.; and Krewer, U. Computers and Chemical Engineering, 84: 217–225. January 2016.
Numerical simulation of gas-diffusion-electrodes with moving gas-liquid interface: A study on pulse-current operation and electrode flooding [link]Paper   doi   bibtex   abstract  
Simulating the Impact of Particle Size Distribution on the Performance of Graphite Electrodes in Lithium-Ion Batteries. Röder, F.; Sonntag, S.; Schröder, D.; and Krewer, U. Energy Technology, 4(12): 1588–1597. 2016.
Simulating the Impact of Particle Size Distribution on the Performance of Graphite Electrodes in Lithium-Ion Batteries [link]Paper   doi   bibtex   abstract  
Multi-Scale Modeling of Solid Electrolyte Interface Formation in Lithium-Ion Batteries. Röder, F.; Braatz, R. D.; and Krewer, U. In Computer Aided Chemical Engineering, volume 38, pages 157–162. 2016.
Multi-Scale Modeling of Solid Electrolyte Interface Formation in Lithium-Ion Batteries [link]Paper   doi   bibtex   abstract  
Model-Based Optimal Design of Continuous-Flow Reactors for the Synthesis of Active Pharmaceutical Ingredients. Emenike, V. N.; and Krewer, U. Chemie-Ingenieur-Technik, 88(9): 1215–1216. September 2016.
Model-Based Optimal Design of Continuous-Flow Reactors for the Synthesis of Active Pharmaceutical Ingredients [link]Paper   doi   bibtex  
Supporting the shift towards continuous pharmaceutical manufacturing by condition monitoring. Schenkendorf, R. In Conference on Control and Fault-Tolerant Systems, SysTol, volume 2016-Novem, pages 593–598, September 2016. IEEE
Supporting the shift towards continuous pharmaceutical manufacturing by condition monitoring [link]Paper   doi   bibtex   abstract  
A Cyclone Flow Cell for Quantitative Analysis of Kinetics at Porous Electrodes by Differential Electrochemical Mass Spectrometry. Kubannek, F.; and Krewer, U. Electrochimica Acta, 210: 862–873. 2016.
doi   bibtex   abstract  
  2015 (6)
Anode flooding characteristics as design boundary for a hydrogen supply system for automotive polymer electrolyte membrane fuel cells. Jenssen, D.; Berger, O.; and Krewer, U. Journal of Power Sources, 298: 249–258. 2015.
Anode flooding characteristics as design boundary for a hydrogen supply system for automotive polymer electrolyte membrane fuel cells [link]Paper   doi   bibtex   abstract  
Performance losses at H2/O2alkaline membrane fuel cell. Khadke, P. S.; and Krewer, U. Electrochemistry Communications, 51: 117–120. February 2015.
Performance losses at H2/O2alkaline membrane fuel cell [link]Paper   doi   bibtex   abstract  
Optimal concentration control for direct methanol fuel cells. Zenith, F.; Na, Y.; and Krewer, U. In IFAC-PapersOnLine, volume 28, pages 722–727, 2015.
doi   bibtex   abstract  
Increasing fuel efficiency of direct methanol fuel cell systems with feedforward control of the operating concentration. Na, Y.; Zenith, F.; and Krewer, U. Energies, 8(9): 10409–10429. September 2015.
Increasing fuel efficiency of direct methanol fuel cell systems with feedforward control of the operating concentration [link]Paper   doi   bibtex   abstract  
Performance of zinc air batteries with added K2CO3 in the alkaline electrolyte. Schröder, D.; Sinai Borker, N. N.; König, M.; and Krewer, U. Journal of Applied Electrochemistry, 45(5): 427–437. 2015.
Performance of zinc air batteries with added K2CO3 in the alkaline electrolyte [link]Paper   doi   bibtex   abstract  
Real-time model predictive control for the optimal charging of a lithium-ion battery. Torchio, M.; Wolff, N. A.; Raimondo, D. M.; Magni, L.; Krewer, U.; Gopaluni, R. B.; Paulson, J. A.; and Braatz, R. D. In Proceedings of the American Control Conference, volume 2015-July, pages 4536–4541, 2015.
doi   bibtex   abstract  
  2014 (7)
Model based quantification of air-composition impact on secondary zinc air batteries. Schröder, D.; and Krewer, U. Electrochimica Acta, 117: 541–553. 2014.
doi   bibtex   abstract  
Analyzing transport paths in the air electrode of a zinc air battery using X-ray tomography. Schröder, D.; Arlt, T.; Krewer, U.; and Manke, I. Electrochemistry Communications, 40: 88–91. 2014.
doi   bibtex   abstract  
Mass-Transport characteristics of oxygen at pt/anion exchange ionomer interface. Khadke, P. S.; and Krewer, U. Journal of Physical Chemistry C, 118(21): 11215–11223. 2014.
doi   bibtex   abstract  
Model-based analysis of anion-exchanger positioning in direct methanol fuel cell systems. Kraus, M.; Schröder, D.; and Krewer, U. Journal of Power Sources, 262: 364–371. 2014.
doi   bibtex   abstract  
Model-based analysis of water management in alkaline direct methanol fuel cells. Weinzierl, C.; and Krewer, U. Journal of Power Sources, 268: 911–921. 2014.
doi   bibtex   abstract  
In operando monitoring of the state of charge and species distribution in zinc air batteries using X-ray tomography and model-based simulations. Arlt, T.; Schröder, D.; Krewer, U.; and Manke, I. Physical Chemistry Chemical Physics, 16(40): 22273–22280. 2014.
doi   bibtex   abstract  
Scenario-based analysis of potential and constraints of alkaline electrochemical cells. Krewer, U.; Schröder, D.; and Weinzierl, C. Computer Aided Chemical Engineering, 33: 1237–1242. 2014.
doi   bibtex   abstract  
  2013 (2)
Total harmonic distortion analysis of oxygen reduction reaction in proton exchange membrane fuel cells. Mao, Q.; and Krewer, U. Electrochimica Acta, 103: 188–198. 2013.
doi   bibtex   abstract  
Energy Storage Based on Electrochemical Conversion of Ammonia. Fuhrmann, J.; Hülsebrock, M.; and Krewer, U. 2013.
Energy Storage Based on Electrochemical Conversion of Ammonia [link]Paper   doi   bibtex   abstract  
  2012 (7)
Sensing methanol concentration in direct methanol fuel cell with total harmonic distortion: Theory and application. Mao, Q.; and Krewer, U. Electrochimica Acta, 68: 60–68. April 2012.
Sensing methanol concentration in direct methanol fuel cell with total harmonic distortion: Theory and application [link]Paper   doi   bibtex  
Model predictive control of a hybrid fuel cell & battery power system. Behrendt, M.; Bajcinca, N.; Zenith, F.; and Krewer, U. In IFAC Proceedings Volumes (IFAC-PapersOnline), volume 8, pages 131–136, 2012.
doi   bibtex   abstract  
Effects of process integration in an active direct methanol fuel-cell system. Zenith, F.; Na, Y.; and Krewer, U. Chemical Engineering and Processing: Process Intensification, 59: 43–51. 2012.
doi   bibtex   abstract  
Direct oxidation alkaline fuelcells: from materials to systems. Yu, E. H.; Wang, X.; Krewer, U.; Li, L.; and Scott, K. Energy Environ. Sci., 5(2): 5668–5680. 2012.
Direct oxidation alkaline fuelcells: from materials to systems [link]Paper   doi   bibtex   abstract  
Feasibility Study of a Fossile Fueled Zero Emission Vehicle. Stenger, S.; Köhler, S.; Nasch, A.; Leithner, R.; Scholl, S.; Krewer, U.; and Eilts, P. SAE International Journal of Alternative Powertrains, 1(2): 2012–01–1650. 2012.
Feasibility Study of a Fossile Fueled Zero Emission Vehicle [link]Paper   doi   bibtex   abstract  
Model-based analysis of micro-separators for portable direct methanol fuel-cell systems. Zenith, F.; Kraus, M.; and Krewer, U. Computers and Chemical Engineering, 38: 64–73. 2012.
doi   bibtex   abstract  
Adsorptionshysterese von Phosphorsäure in Polybenzimidazol- Hochtemperatur-Polymerelektrolytmembran-Brennstoffzellen. Kamat, A.; Klein, O.; Herrmann, M.; Krewer, U.; and Scholl, S. Chemie-Ingenieur-Technik, 84(12): 2198–2203. 2012.
doi   bibtex  
  2011 (5)
Experimental investigations into phosphoric acid adsorption on platinum catalysts in a high temperature PEM Fuel cell. Kamat, A.; Herrmann, M.; Ternes, D.; Klein, O.; Krewer, U.; and Scholl, S. In Fuel Cells, volume 11, pages 511–517, 2011.
doi   bibtex   abstract  
Electrochemical oxidation of carbon-containing fuels and their dynamics in low-temperature fuel cells. Krewer, U.; Vidakovic-Koch, T.; and Rihko-Struckmann, L. Volume 12 2011.
doi   bibtex   abstract  
Portable Energiesysteme: Von elektrochemischer Wandlung bis Energy Harvesting. Krewer, U. Volume 83 2011.
doi   bibtex   abstract  
Simple and reliable model for estimation of methanol cross-over in direct methanol fuel cells and its application on methanol-concentration control. Zenith, F.; and Krewer, U. Energy and Environmental Science, 4(2): 519–527. 2011.
doi   bibtex   abstract  
Model-based Analysis of the Environmental Operating Range of Direct Methanol Fuel Cell Systems. Krewer, U.; Zenith, F.; and Weinzierl, C. In Proceedings of the European Fuel Cell Forum 2011, pages 1–7, 2011.
bibtex  
  2010 (5)
Principles and Materials Aspects of Direct Alkaline Alcohol Fuel Cells. Yu, E. H.; Krewer, U.; and Scott, K. Energies, 3(8): 1499–1528. August 2010.
Principles and Materials Aspects of Direct Alkaline Alcohol Fuel Cells [link]Paper   doi   bibtex  
Modelling, dynamics and control of a portable DMFC system. Zenith, F.; and Krewer, U. Journal of Process Control, 20(5): 630–642. 2010.
doi   bibtex   abstract  
Total harmonic distortion analysis for direct methanol fuel cell anode. Mao, Q.; Krewer, U.; and Hanke-Rauschenbach, R. Electrochemistry Communications, 12(11): 1517–1519. 2010.
doi   bibtex   abstract  
Model-based analysis of the feasibility envelope for autonomous operation of a portable direct methanol fuel-cell system. Zenith, F.; Weinzierl, C.; and Krewer, U. Chemical Engineering Science, 65(15): 4411–4419. 2010.
doi   bibtex   abstract  
Coupling of Kinetic and Mass Transfer Processes in Direct Methanol Fuel Cells. Arisetty, S.; Krewer, U.; Advani, S. G.; and Prasad, A. K. Journal of The Electrochemical Society, 157(10): B1443. 2010.
Coupling of Kinetic and Mass Transfer Processes in Direct Methanol Fuel Cells [link]Paper   doi   bibtex   abstract  
  2009 (3)
Kinetisch und dynamisch. Krewer, U.; and Hanke-Rauschenbach Nachrichten aus der Chemie, 57(7-8): 753–756. July 2009.
Kinetisch und dynamisch [link]Paper   doi   bibtex  
Dynamics and Control of a Portable DMFC System. Zenith, F.; and Krewer, U. In ASME 2009 7th International Conference on Fuel Cell Science, Engineering and Technology, pages 351–360, January 2009. ASME
Dynamics and Control of a Portable DMFC System [link]Paper   doi   bibtex  
Low and high temperature storage characteristics of membrane electrode assemblies for direct methanol fuel cells. Krewer, U.; Park, J. Y.; Lee, J. H.; Cho, H.; Pak, C.; You, D. J.; and Lee, Y. H. Journal of Power Sources, 187(1): 103–111. 2009.
doi   bibtex   abstract  
  2008 (3)
Basic model for membrane electrode assembly design for direct methanol fuel cells. Krewer, U.; Yoon, H.; and Kim, H. Journal of Power Sources, 175(2): 760–772. January 2008.
Basic model for membrane electrode assembly design for direct methanol fuel cells [link]Paper   doi   bibtex  
Non-isothermal dynamic modelling and optimization of a direct methanol fuel cell. Ko, D.; Lee, M.; Jang, W. H.; and Krewer, U. Journal of Power Sources, 180(1): 71–83. 2008.
doi   bibtex   abstract  
Storage of DMFC MEA at extreme temperatures. Krewer, U.; Park, J.; Lee, J.; and Cho, H. In Proceedings of the 6th International Conference on Fuel Cell Science, Engineering, and Technology, 2008.
doi   bibtex   abstract  
  2007 (4)
Impact of electrode kinetics on the dynamic response of a DMFC to change of methanol feed concentration. Schultz, T.; Krewer, U.; and Sundmacher, K. Journal of Power Sources, 165(1): 138–151. February 2007.
Impact of electrode kinetics on the dynamic response of a DMFC to change of methanol feed concentration [link]Paper   doi   bibtex  
Understanding the dynamic behaviour of direct methanol fuel cells: Response to step changes in cell current. Krewer, U.; Kamat, A.; and Sundmacher, K. Journal of Electroanalytical Chemistry, 609(2): 105–119. November 2007.
Understanding the dynamic behaviour of direct methanol fuel cells: Response to step changes in cell current [link]Paper   doi   bibtex  
Hydrodynamic characterisation and modelling of anode flow fields of Direct Methanol Fuel Cells. Krewer, U.; Pfafferodt, M.; Kamat, A.; Menendez, D. F.; and Sundmacher, K. Chemical Engineering Journal, 126(2-3): 87–102. February 2007.
Hydrodynamic characterisation and modelling of anode flow fields of Direct Methanol Fuel Cells [link]Paper   doi   bibtex  
The effect of the anode loading and method of MEA fabrication on DMFC performance. Reshetenko, T. V.; Kim, H. T.; Krewer, U.; and Kweon, H. J. In Fuel Cells, volume 7, pages 238–245, 2007.
doi   bibtex   abstract  
  2006 (3)
Impedance spectroscopic analysis of the electrochemical methanol oxidation kinetics. Krewer, U.; Christov, M.; Vidakovic’, T.; and Sundmacher, K. Journal of Electroanalytical Chemistry, 589(1): 148–159. April 2006.
Impedance spectroscopic analysis of the electrochemical methanol oxidation kinetics [link]Paper   doi   bibtex  
Systematic analysis of the direct methanol fuel cell. Schultz, T.; Krewer, U.; Vidaković, T.; Pfafferodt, M.; Christov, M.; and Sundmacher, K. Journal of Applied Electrochemistry, 37(1): 111–119. December 2006.
Systematic analysis of the direct methanol fuel cell [link]Paper   doi   bibtex  
Transfer function analysis of the dynamic behaviour of DMFCs: Response to step changes in cell current. Krewer, U.; and Sundmacher, K. Journal of Power Sources, 154(1): 153–170. March 2006.
Transfer function analysis of the dynamic behaviour of DMFCs: Response to step changes in cell current [link]Paper   doi   bibtex  
  2004 (1)
Direct methanol fuel cell (DMFC): analysis of residence time behaviour of anodic flow bed. Krewer, U.; Song, Y.; Sundmacher, K.; John, V.; Lübke, R.; Matthies, G.; and Tobiska, L. Chemical Engineering Science, 59(1): 119–130. January 2004.
Direct methanol fuel cell (DMFC): analysis of residence time behaviour of anodic flow bed [link]Paper   doi   bibtex  
  2002 (1)
Pollution Prevention through Solvent Selection and Waste Minimization. Krewer, U.; Liauw, M. A.; Ramakrishna, M.; Hari Babu, M.; and Raghavan, K. V. Industrial & Engineering Chemistry Research, 41(18): 4534–4542. September 2002.
Pollution Prevention through Solvent Selection and Waste Minimization [link]Paper   doi   bibtex