generated by bibbase.org
  2023 (24)
Techniques to produce and evaluate realistic multivariate synthetic data. Heine, J.; Fowler, E. E. E.; Berglund, A.; Schell, M. J.; and Eschrich, S. Scientific Reports, 13(1): 12266. July 2023. Number: 1 Publisher: Nature Publishing Group
Techniques to produce and evaluate realistic multivariate synthetic data [link]Paper   doi   link   bibtex   abstract  
Transformers in Time Series: A Survey. Wen, Q.; Zhou, T.; Zhang, C.; Chen, W.; Ma, Z.; Yan, J.; and Sun, L. May 2023. arXiv:2202.07125 [cs, eess, stat]
Transformers in Time Series: A Survey [link]Paper   doi   link   bibtex   abstract  
A Survey on Time-Series Pre-Trained Models. Ma, Q.; Liu, Z.; Zheng, Z.; Huang, Z.; Zhu, S.; Yu, Z.; and Kwok, J. T. May 2023. arXiv:2305.10716 [cs]
A Survey on Time-Series Pre-Trained Models [link]Paper   doi   link   bibtex   abstract  
University of Ottawa constant load and speed rolling-element bearing vibration and acoustic fault signature datasets. Sehri, M.; Dumond, P.; and Bouchard, M. Data in Brief, 49: 109327. August 2023.
University of Ottawa constant load and speed rolling-element bearing vibration and acoustic fault signature datasets [link]Paper   doi   link   bibtex   abstract  
Vibration and current dataset of three-phase permanent magnet synchronous motors with stator faults. Jung, W.; Yun, S.; Lim, Y.; Cheong, S.; and Park, Y. Data in Brief, 47: 108952. April 2023.
Vibration and current dataset of three-phase permanent magnet synchronous motors with stator faults [link]Paper   doi   link   bibtex   abstract  
A dataset for fault detection and diagnosis of an air handling unit from a real industrial facility. Ahern, M.; O'Sullivan, D. T. J.; and Bruton, K. Data in Brief, 48: 109208. June 2023.
A dataset for fault detection and diagnosis of an air handling unit from a real industrial facility [link]Paper   doi   link   bibtex   abstract  
Vibration, acoustic, temperature, and motor current dataset of rotating machine under varying operating conditions for fault diagnosis. Jung, W.; Kim, S.; Yun, S.; Bae, J.; and Park, Y. Data in Brief, 48: 109049. June 2023.
Vibration, acoustic, temperature, and motor current dataset of rotating machine under varying operating conditions for fault diagnosis [link]Paper   doi   link   bibtex   abstract  
Wind turbine blades fault diagnosis based on vibration dataset analysis. Ogaili, A. A. F.; Abdulhady Jaber, A.; and Hamzah, M. N. Data in Brief, 49: 109414. August 2023.
Wind turbine blades fault diagnosis based on vibration dataset analysis [link]Paper   doi   link   bibtex   abstract  
Developing health indicators and RUL prognostics for systems with few failure instances and varying operating conditions using a LSTM autoencoder. de Pater, I.; and Mitici, M. Engineering Applications of Artificial Intelligence, 117: 105582. January 2023.
Developing health indicators and RUL prognostics for systems with few failure instances and varying operating conditions using a LSTM autoencoder [link]Paper   doi   link   bibtex   abstract  
Online machine learning-based predictive maintenance for the railway industry. Nguyen, M. H. L. Ph.D. Thesis, Institut Polytechnique de Paris, June 2023.
Online machine learning-based predictive maintenance for the railway industry [link]Paper   link   bibtex   abstract  
Physics-Informed Machine Learning for Predictive Maintenance: Applied Use-Cases. Huber, L. G.; Palmé, T.; and Chao, M. A. In 2023 10th IEEE Swiss Conference on Data Science (SDS), pages 66–72, June 2023. ISSN: 2835-3420
doi   link   bibtex   abstract  
Explainable Predictive Maintenance. Pashami, S.; Nowaczyk, S.; Fan, Y.; Jakubowski, J.; Paiva, N.; Davari, N.; Bobek, S.; Jamshidi, S.; Sarmadi, H.; Alabdallah, A.; Ribeiro, R. P.; Veloso, B.; Sayed-Mouchaweh, M.; Rajaoarisoa, L.; Nalepa, G. J.; and Gama, J. June 2023. arXiv:2306.05120 [cs]
Explainable Predictive Maintenance [link]Paper   doi   link   bibtex   abstract  
Prognostics for Lithium-ion batteries for electric Vertical Take-off and Landing aircraft using data-driven machine learning. Mitici, M.; Hennink, B.; Pavel, M.; and Dong, J. Energy and AI, 12: 100233. April 2023.
Prognostics for Lithium-ion batteries for electric Vertical Take-off and Landing aircraft using data-driven machine learning [link]Paper   doi   link   bibtex   abstract  
Developing health indicators and RUL prognostics for systems with few failure instances and varying operating conditions using a LSTM autoencoder. de Pater, I.; and Mitici, M. Engineering Applications of Artificial Intelligence, 117: 105582. January 2023.
Developing health indicators and RUL prognostics for systems with few failure instances and varying operating conditions using a LSTM autoencoder [link]Paper   doi   link   bibtex   abstract  
Continual Learning for Predictive Maintenance: Overview and Challenges. Hurtado, J.; Salvati, D.; Semola, R.; Bosio, M.; and Lomonaco, V. January 2023. arXiv:2301.12467 [cs]
Continual Learning for Predictive Maintenance: Overview and Challenges [link]Paper   doi   link   bibtex   abstract  
Machine learning and deep learning for sentiment analysis across languages: A survey. Mercha, E. M.; and Benbrahim, H. Neurocomputing, 531: 195–216. April 2023.
Machine learning and deep learning for sentiment analysis across languages: A survey [link]Paper   doi   link   bibtex   abstract  
An investigation of crowdsourcing methods in enhancing the machine learning approach for detecting online recruitment fraud. Nanath, K.; and Olney, L. International Journal of Information Management Data Insights, 3(1): 100167. April 2023.
An investigation of crowdsourcing methods in enhancing the machine learning approach for detecting online recruitment fraud [link]Paper   doi   link   bibtex   abstract  
Deep adaptive arbitrary polynomial chaos expansion: A mini-data-driven semi-supervised method for uncertainty quantification. Yao, W.; Zheng, X.; Zhang, J.; Wang, N.; and Tang, G. Reliability Engineering & System Safety, 229: 108813. January 2023.
Deep adaptive arbitrary polynomial chaos expansion: A mini-data-driven semi-supervised method for uncertainty quantification [link]Paper   doi   link   bibtex   abstract  
Reliable neural networks for regression uncertainty estimation. Tohme, T.; Vanslette, K.; and Youcef-Toumi, K. Reliability Engineering & System Safety, 229: 108811. January 2023.
Reliable neural networks for regression uncertainty estimation [link]Paper   doi   link   bibtex   abstract  
Train wheel degradation generation and prediction based on the time series generation adversarial network. Shangguan, A.; Xie, G.; Fei, R.; Mu, L.; and Hei, X. Reliability Engineering & System Safety, 229: 108816. January 2023.
Train wheel degradation generation and prediction based on the time series generation adversarial network [link]Paper   doi   link   bibtex   abstract  
Multiple health indicators fusion-based health prognostic for lithium-ion battery using transfer learning and hybrid deep learning method. Ma, Y.; Shan, C.; Gao, J.; and Chen, H. Reliability Engineering & System Safety, 229: 108818. January 2023.
Multiple health indicators fusion-based health prognostic for lithium-ion battery using transfer learning and hybrid deep learning method [link]Paper   doi   link   bibtex   abstract  
A generic physics-informed neural network-based framework for reliability assessment of multi-state systems. Zhou, T.; Zhang, X.; Droguett, E. L.; and Mosleh, A. Reliability Engineering & System Safety, 229: 108835. January 2023.
A generic physics-informed neural network-based framework for reliability assessment of multi-state systems [link]Paper   doi   link   bibtex   abstract  
Availability analysis of shared bikes using abnormal trip data. Zhou, Y.; Kou, G.; Guo, Z.; and Xiao, H. Reliability Engineering & System Safety, 229: 108844. January 2023.
Availability analysis of shared bikes using abnormal trip data [link]Paper   doi   link   bibtex   abstract  
Data Regeneration Based on Multiple Degradation Processes for Remaining Useful Life Estimation. Yang, N.; Wang, Z.; Cai, W.; and Li, Y. Reliability Engineering & System Safety, 229: 108867. January 2023.
Data Regeneration Based on Multiple Degradation Processes for Remaining Useful Life Estimation [link]Paper   doi   link   bibtex   abstract  
  2022 (59)
Toward cognitive predictive maintenance: A survey of graph-based approaches. Xia, L.; Zheng, P.; Li, X.; Gao, R. X.; and Wang, L. Journal of Manufacturing Systems, 64: 107–120. July 2022.
Toward cognitive predictive maintenance: A survey of graph-based approaches [link]Paper   doi   link   bibtex   abstract  
The MetroPT dataset for predictive maintenance. Veloso, B.; Ribeiro, R. P.; Gama, J.; and Pereira, P. M. Scientific Data, 9(1): 764. December 2022.
The MetroPT dataset for predictive maintenance [link]Paper   doi   link   bibtex   abstract  
Application of deep reinforcement learning for extremely rare failure prediction in aircraft maintenance. Dangut, M. D.; Jennions, I. K.; King, S.; and Skaf, Z. Mechanical Systems and Signal Processing, 171: 108873. May 2022.
Application of deep reinforcement learning for extremely rare failure prediction in aircraft maintenance [link]Paper   doi   link   bibtex   abstract  
Continual Variational Autoencoder Learning via Online Cooperative Memorization. Ye, F.; and Bors, A. G. In Avidan, S.; Brostow, G.; Cissé, M.; Farinella, G. M.; and Hassner, T., editor(s), Computer Vision – ECCV 2022, of Lecture Notes in Computer Science, pages 531–549, Cham, 2022. Springer Nature Switzerland
doi   link   bibtex   abstract  
A Fault Detection Framework Based on LSTM Autoencoder: A Case Study for Volvo Bus Data Set. Davari, N.; Pashami, S.; Veloso, B.; Nowaczyk, S.; Fan, Y.; Pereira, P. M.; Ribeiro, R. P.; and Gama, J. In Bouadi, T.; Fromont, E.; and Hüllermeier, E., editor(s), Advances in Intelligent Data Analysis XX, of Lecture Notes in Computer Science, pages 39–52, Cham, 2022. Springer International Publishing
doi   link   bibtex   abstract  
Wisdom of the contexts: active ensemble learning for contextual anomaly detection. Calikus, E.; Nowaczyk, S.; Bouguelia, M.; and Dikmen, O. Data Mining and Knowledge Discovery, 36(6): 2410–2458. November 2022.
Wisdom of the contexts: active ensemble learning for contextual anomaly detection [link]Paper   doi   link   bibtex   abstract  
A Survey on Semi-supervised Learning for Delayed Partially Labelled Data Streams. Gomes, H. M.; Grzenda, M.; Mello, R.; Read, J.; Le Nguyen, M. H.; and Bifet, A. ACM Computing Surveys, 55(4): 75:1–75:42. November 2022.
A Survey on Semi-supervised Learning for Delayed Partially Labelled Data Streams [link]Paper   doi   link   bibtex   abstract  
Online Clustering: Algorithms, Evaluation, Metrics, Applications and Benchmarking. Montiel, J.; Ngo, H.; Le-Nguyen, M.; and Bifet, A. In Proceedings of the 28th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, of KDD '22, pages 4808–4809, New York, NY, USA, August 2022. Association for Computing Machinery
Online Clustering: Algorithms, Evaluation, Metrics, Applications and Benchmarking [link]Paper   doi   link   bibtex   abstract  
Principal Component Analyses (PCA)-based findings in population genetic studies are highly biased and must be reevaluated. Elhaik, E. Scientific Reports, 12(1): 14683. August 2022. Number: 1 Publisher: Nature Publishing Group
Principal Component Analyses (PCA)-based findings in population genetic studies are highly biased and must be reevaluated [link]Paper   doi   link   bibtex   abstract  
Taxonomy of machine learning paradigms: A data-centric perspective. Emmert-Streib, F.; and Dehmer, M. WIREs Data Mining and Knowledge Discovery, 12(5): e1470. 2022. _eprint: https://onlinelibrary.wiley.com/doi/pdf/10.1002/widm.1470
Taxonomy of machine learning paradigms: A data-centric perspective [link]Paper   doi   link   bibtex   abstract  
Real-time learning for real-time data: online machine learning for predictive maintenance of railway systems. Le-Nguyen, M.; Turgis, F.; Fayemi, P.; and Bifet, A. In Transport Research Arena (TRA), Lisbon, Portugal, November 2022.
link   bibtex  
Health state characterization using clustering algorithms for railway maintenance. Turgis, F.; Audier, P.; Nemoz, V.; and Marion, R. In Birmingham, United Kingdom, 2022.
link   bibtex   abstract  
Continuous Health Monitoring of Machinery using Online Clustering on Unlabeled Data Streams. Le-Nguyen, M.; Turgis, F.; Fayemi, P.; and Bifet, A. In 2022 IEEE International Conference on Big Data (Big Data), pages 1866–1873, December 2022.
doi   link   bibtex   abstract  
‘Right to Be Forgotten’: Analyzing the Impact of Forgetting Data Using K-NN Algorithm in Data Stream Learning. Libera, C.; Miranda, L.; Bernardini, F.; Mastelini, S.; and Viterbo, J. In Janssen, M.; Csáki, C.; Lindgren, I.; Loukis, E.; Melin, U.; Viale Pereira, G.; Rodríguez Bolívar, M. P.; and Tambouris, E., editor(s), Electronic Government, of Lecture Notes in Computer Science, pages 530–542, Cham, 2022. Springer International Publishing
doi   link   bibtex   abstract  
Empirical Evaluation and Theoretical Analysis for Representation Learning: A Survey. Nozawa, K.; and Sato, I. April 2022. arXiv:2204.08226 [cs]
Empirical Evaluation and Theoretical Analysis for Representation Learning: A Survey [link]Paper   doi   link   bibtex   abstract  
Dynamic Sparse Subspace Clustering for Evolving High-Dimensional Data Streams. Sui, J.; Liu, Z.; Liu, L.; Jung, A.; and Li, X. IEEE Transactions on Cybernetics, 52(6): 4173–4186. June 2022. Conference Name: IEEE Transactions on Cybernetics
doi   link   bibtex   abstract  
Meta-ADD: A meta-learning based pre-trained model for concept drift active detection. Yu, H.; Zhang, Q.; Liu, T.; Lu, J.; Wen, Y.; and Zhang, G. Information Sciences, 608: 996–1009. August 2022.
Meta-ADD: A meta-learning based pre-trained model for concept drift active detection [link]Paper   doi   link   bibtex   abstract  
Online Learning of Wearable Sensing for Human Activity Recognition. Zhang, Y.; Gao, B.; Yang, D.; Woo, W. L.; and Wen, H. IEEE Internet of Things Journal,1–1. 2022. Conference Name: IEEE Internet of Things Journal
doi   link   bibtex   abstract  
Health indicator for machine condition monitoring built in the latent space of a deep autoencoder. González-Muñiz, A.; Díaz, I.; Cuadrado, A. A.; and García-Pérez, D. Reliability Engineering & System Safety, 224: 108482. August 2022.
Health indicator for machine condition monitoring built in the latent space of a deep autoencoder [link]Paper   doi   link   bibtex   abstract  
pyTEP: A Python package for interactive simulations of the Tennessee Eastman process. Reinartz, C.; and Enevoldsen, T. T. SoftwareX, 18: 101053. June 2022.
pyTEP: A Python package for interactive simulations of the Tennessee Eastman process [link]Paper   doi   link   bibtex   abstract  
Standardized Evaluation of Machine Learning Methods for Evolving Data Streams. Haug, J.; Tramountani, E.; and Kasneci, G. arXiv:2204.13625 [cs, stat]. April 2022. arXiv: 2204.13625
Standardized Evaluation of Machine Learning Methods for Evolving Data Streams [link]Paper   link   bibtex   abstract  
Online Anomaly Detection of Industrial IoT Based on Hybrid Machine Learning Architecture. Guo, J.; and Shen, Y. Computational Intelligence and Neuroscience, 2022: e8568917. April 2022. Publisher: Hindawi
Online Anomaly Detection of Industrial IoT Based on Hybrid Machine Learning Architecture [link]Paper   doi   link   bibtex   abstract  
An easy to use GUI for simulating big data using Tennessee Eastman process. Andersen, E. B.; Udugama, I. A.; Gernaey, K. V.; Khan, A. R.; Bayer, C.; and Kulahci, M. Quality and Reliability Engineering International, 38(1): 264–282. 2022. _eprint: https://onlinelibrary.wiley.com/doi/pdf/10.1002/qre.2975
An easy to use GUI for simulating big data using Tennessee Eastman process [link]Paper   doi   link   bibtex   abstract  
Sequential detection of a temporary change in multivariate time series. Watson, V.; Septier, F.; Armand, P.; and Duchenne, C. Digital Signal Processing, 127: 103545. July 2022.
Sequential detection of a temporary change in multivariate time series [link]Paper   doi   link   bibtex   abstract  
Human action interpretation using convolutional neural network: a survey. Malik, Z.; and Shapiai, M. I. B. Machine Vision and Applications, 33(3): 37. March 2022.
Human action interpretation using convolutional neural network: a survey [link]Paper   doi   link   bibtex   abstract  
StreamDFP: A General Stream Mining Framework for Adaptive Disk Failure Prediction. Han, S.; Lee, P. P. C.; Shen, Z.; He, C.; Liu, Y.; and Huang, T. IEEE Transactions on Computers,1–1. 2022. Conference Name: IEEE Transactions on Computers
doi   link   bibtex   abstract  
Real-time prediction of rate of penetration by combining attention-based gated recurrent unit network and fully connected neural networks. Zhang, C.; Song, X.; Su, Y.; and Li, G. Journal of Petroleum Science and Engineering,110396. March 2022.
Real-time prediction of rate of penetration by combining attention-based gated recurrent unit network and fully connected neural networks [link]Paper   doi   link   bibtex   abstract  
A review of train delay prediction approaches. Spanninger, T.; Trivella, A.; Büchel, B.; and Corman, F. Journal of Rail Transport Planning & Management, 22: 100312. June 2022.
A review of train delay prediction approaches [link]Paper   doi   link   bibtex   abstract  
D-ACSM: a technique for dynamically assigning and adjusting cluster patterns for IoT data analysis. Balakrishna, S. The Journal of Supercomputing. March 2022.
D-ACSM: a technique for dynamically assigning and adjusting cluster patterns for IoT data analysis [link]Paper   doi   link   bibtex   abstract  
Aircraft engine remaining useful life estimation via a double attention-based data-driven architecture. Liu, L.; Song, X.; and Zhou, Z. Reliability Engineering & System Safety, 221: 108330. May 2022.
Aircraft engine remaining useful life estimation via a double attention-based data-driven architecture [link]Paper   doi   link   bibtex   abstract  
Alarm-based predictive maintenance scheduling for aircraft engines with imperfect Remaining Useful Life prognostics. de Pater, I.; Reijns, A.; and Mitici, M. Reliability Engineering & System Safety, 221: 108341. May 2022.
Alarm-based predictive maintenance scheduling for aircraft engines with imperfect Remaining Useful Life prognostics [link]Paper   doi   link   bibtex   abstract  
Data streams classification using deep learning under different speeds and drifts. Lara-Benítez, P.; Carranza-García, M.; Gutiérrez-Avilés, D.; and Riquelme, J. C Logic Journal of the IGPL,jzac033. February 2022.
Data streams classification using deep learning under different speeds and drifts [link]Paper   doi   link   bibtex   abstract  
Physics-Informed LSTM hyperparameters selection for gearbox fault detection. Chen, Y.; Rao, M.; Feng, K.; and Zuo, M. J. Mechanical Systems and Signal Processing, 171: 108907. May 2022.
Physics-Informed LSTM hyperparameters selection for gearbox fault detection [link]Paper   doi   link   bibtex   abstract  
Condition-Based Monitoring and Novel Fault Detection Based on Incremental Learning Applied to Rotary Systems. Wu, H.; Huang, A.; and Sutherland, J. W. Procedia CIRP, 105: 788–793. January 2022.
Condition-Based Monitoring and Novel Fault Detection Based on Incremental Learning Applied to Rotary Systems [link]Paper   doi   link   bibtex   abstract  
Comparative analysis of machine learning models for anomaly detection in manufacturing. Kharitonov, A.; Nahhas, A.; Pohl, M.; and Turowski, K. Procedia Computer Science, 200: 1288–1297. January 2022.
Comparative analysis of machine learning models for anomaly detection in manufacturing [link]Paper   doi   link   bibtex   abstract  
Explainable AI for Industry 4.0: Semantic Representation of Deep Learning Models. Terziyan, V.; and Vitko, O. Procedia Computer Science, 200: 216–226. January 2022.
Explainable AI for Industry 4.0: Semantic Representation of Deep Learning Models [link]Paper   doi   link   bibtex   abstract  
Characterization of the state of health of a complex system at the end of use. Wandji, C.; Rejeb, H. B.; and Zwolinski, P. Procedia CIRP, 105: 49–54. January 2022.
Characterization of the state of health of a complex system at the end of use [link]Paper   doi   link   bibtex   abstract  
Predictive maintenance on sensorized stamping presses by time series segmentation, anomaly detection, and classification algorithms. Coelho, D.; Costa, D.; Rocha, E. M.; Almeida, D.; and Santos, J. P. Procedia Computer Science, 200: 1184–1193. January 2022.
Predictive maintenance on sensorized stamping presses by time series segmentation, anomaly detection, and classification algorithms [link]Paper   doi   link   bibtex   abstract  
A Two-Phase Machine Learning Approach for Predictive Maintenance of Low Voltage Industrial Motors. Nikfar, M.; Bitencourt, J.; and Mykoniatis, K. Procedia Computer Science, 200: 111–120. January 2022.
A Two-Phase Machine Learning Approach for Predictive Maintenance of Low Voltage Industrial Motors [link]Paper   doi   link   bibtex   abstract  
Predictive Maintenance Model for IIoT-based Manufacturing: A Transferable Deep Reinforcement Learning Approach. Ong, K. S. H.; Wang, W.; Hieu, N. Q.; Niyato, D.; and Friedrichs, T. IEEE Internet of Things Journal,1–1. 2022. Conference Name: IEEE Internet of Things Journal
doi   link   bibtex   abstract  
Tool remaining useful life prediction using deep transfer reinforcement learning based on long short-term memory networks. Yao, J.; Lu, B.; and Zhang, J. The International Journal of Advanced Manufacturing Technology, 118(3): 1077–1086. January 2022.
Tool remaining useful life prediction using deep transfer reinforcement learning based on long short-term memory networks [link]Paper   doi   link   bibtex   abstract  
Health status assessment and prediction for pumped storage units using a novel health degradation index. Zhang, X.; Jiang, Y.; Li, C.; and Zhang, J. Mechanical Systems and Signal Processing, 171: 108910. May 2022.
Health status assessment and prediction for pumped storage units using a novel health degradation index [link]Paper   doi   link   bibtex   abstract  
A real-time data-driven framework for the identification of steady states of marine machinery. Velasco-Gallego, C.; and Lazakis, I. Applied Ocean Research, 121: 103052. April 2022.
A real-time data-driven framework for the identification of steady states of marine machinery [link]Paper   doi   link   bibtex   abstract  
A Bayesian approach to comparing human reliability analysis methods using human performance data. Zhao, Y. Reliability Engineering & System Safety, 219: 108213. March 2022.
A Bayesian approach to comparing human reliability analysis methods using human performance data [link]Paper   doi   link   bibtex   abstract  
Quantitative analysis for resilience-based urban rail systems: A hybrid knowledge-based and data-driven approach. Yin, J.; Ren, X.; Liu, R.; Tang, T.; and Su, S. Reliability Engineering & System Safety, 219: 108183. March 2022.
Quantitative analysis for resilience-based urban rail systems: A hybrid knowledge-based and data-driven approach [link]Paper   doi   link   bibtex   abstract  
A systematic framework for dynamic nodal vulnerability assessment of water distribution networks based on multilayer networks. Tornyeviadzi, H. M.; Owusu-Ansah, E.; Mohammed, H.; and Seidu, R. Reliability Engineering & System Safety, 219: 108217. March 2022.
A systematic framework for dynamic nodal vulnerability assessment of water distribution networks based on multilayer networks [link]Paper   doi   link   bibtex   abstract  
Machine learning-based methods in structural reliability analysis: A review. Saraygord Afshari, S.; Enayatollahi, F.; Xu, X.; and Liang, X. Reliability Engineering & System Safety, 219: 108223. March 2022.
Machine learning-based methods in structural reliability analysis: A review [link]Paper   doi   link   bibtex   abstract  
A deep learning predictive model for selective maintenance optimization. Hesabi, H.; Nourelfath, M.; and Hajji, A. Reliability Engineering & System Safety, 219: 108191. March 2022.
A deep learning predictive model for selective maintenance optimization [link]Paper   doi   link   bibtex   abstract  
A semi-supervised GAN method for RUL prediction using failure and suspension histories. He, R.; Tian, Z.; and Zuo, M. J. Mechanical Systems and Signal Processing, 168: 108657. April 2022.
A semi-supervised GAN method for RUL prediction using failure and suspension histories [link]Paper   doi   link   bibtex   abstract  
The emerging graph neural networks for intelligent fault diagnostics and prognostics: A guideline and a benchmark study. Li, T.; Zhou, Z.; Li, S.; Sun, C.; Yan, R.; and Chen, X. Mechanical Systems and Signal Processing, 168: 108653. April 2022.
The emerging graph neural networks for intelligent fault diagnostics and prognostics: A guideline and a benchmark study [link]Paper   doi   link   bibtex   abstract  
Self-supervised pretraining via contrast learning for intelligent incipient fault detection of bearings. Ding, Y.; Zhuang, J.; Ding, P.; and Jia, M. Reliability Engineering & System Safety, 218: 108126. February 2022.
Self-supervised pretraining via contrast learning for intelligent incipient fault detection of bearings [link]Paper   doi   link   bibtex   abstract  
A hierarchical Bayesian-based model for hazard analysis of climate effect on failures of railway turnout components. Dindar, S.; Kaewunruen, S.; and An, M. Reliability Engineering & System Safety, 218: 108130. February 2022.
A hierarchical Bayesian-based model for hazard analysis of climate effect on failures of railway turnout components [link]Paper   doi   link   bibtex   abstract  
Maintenance optimisation of multicomponent systems using hierarchical coordinated reinforcement learning. Zhou, Y.; Li, B.; and Lin, T. R. Reliability Engineering & System Safety, 217: 108078. January 2022.
Maintenance optimisation of multicomponent systems using hierarchical coordinated reinforcement learning [link]Paper   doi   link   bibtex   abstract  
Multi-level opportunistic predictive maintenance for multi-component systems with economic dependence and assembly/disassembly impacts. Dinh, D.; Do, P.; and Iung, B. Reliability Engineering & System Safety, 217: 108055. January 2022.
Multi-level opportunistic predictive maintenance for multi-component systems with economic dependence and assembly/disassembly impacts [link]Paper   doi   link   bibtex   abstract  
Reliability analysis for complex system with multi-source data integration and multi-level data transmission. Jia, X.; and Guo, B. Reliability Engineering & System Safety, 217: 108050. January 2022.
Reliability analysis for complex system with multi-source data integration and multi-level data transmission [link]Paper   doi   link   bibtex   abstract  
Fusing physics-based and deep learning models for prognostics. Arias Chao, M.; Kulkarni, C.; Goebel, K.; and Fink, O. Reliability Engineering & System Safety, 217: 107961. January 2022.
Fusing physics-based and deep learning models for prognostics [link]Paper   doi   link   bibtex   abstract  
KSPMI: A Knowledge-based System for Predictive Maintenance in Industry 4.0. Cao, Q.; Zanni-Merk, C.; Samet, A.; Reich, C.; Beuvron, F. d. B. d.; Beckmann, A.; and Giannetti, C. Robotics and Computer-Integrated Manufacturing, 74: 102281. April 2022.
KSPMI: A Knowledge-based System for Predictive Maintenance in Industry 4.0 [link]Paper   doi   link   bibtex   abstract  
Data-driven strategies for predictive maintenance: Lesson learned from an automotive use case. Giordano, D.; Giobergia, F.; Pastor, E.; La Macchia, A.; Cerquitelli, T.; Baralis, E.; Mellia, M.; and Tricarico, D. Computers in Industry, 134: 103554. January 2022.
Data-driven strategies for predictive maintenance: Lesson learned from an automotive use case [link]Paper   doi   link   bibtex   abstract  
A novel decision support system for managing predictive maintenance strategies based on machine learning approaches. Arena, S.; Florian, E.; Zennaro, I.; Orrù, P. F.; and Sgarbossa, F. Safety Science, 146: 105529. February 2022.
A novel decision support system for managing predictive maintenance strategies based on machine learning approaches [link]Paper   doi   link   bibtex   abstract  
  2021 (85)
A Survey on Data-Driven Predictive Maintenance for the Railway Industry. Davari, N.; Veloso, B.; Costa, G. d. A.; Pereira, P. M.; Ribeiro, R. P.; and Gama, J. Sensors, 21(17): 5739. January 2021. Number: 17 Publisher: Multidisciplinary Digital Publishing Institute
A Survey on Data-Driven Predictive Maintenance for the Railway Industry [link]Paper   doi   link   bibtex   abstract  
Autonomous underwater vehicle fault diagnosis dataset. Ji, D.; Yao, X.; Li, S.; Tang, Y.; and Tian, Y. Data in Brief, 39: 107477. December 2021.
Autonomous underwater vehicle fault diagnosis dataset [link]Paper   doi   link   bibtex   abstract  
Comprehensive fault diagnostics of wind turbine gearbox through adaptive condition monitoring scheme. Inturi, V.; Shreyas, N.; Chetti, K.; and Sabareesh, G. R. Applied Acoustics, 174: 107738. March 2021.
Comprehensive fault diagnostics of wind turbine gearbox through adaptive condition monitoring scheme [link]Paper   doi   link   bibtex   abstract  
The virtual and the physical: two frames of mind. Mutlu, B. iScience, 24(2): 101965. February 2021.
The virtual and the physical: two frames of mind [link]Paper   doi   link   bibtex   abstract  
The collaborative mind: intention reading and trust in human-robot interaction. Vinanzi, S.; Cangelosi, A.; and Goerick, C. iScience, 24(2): 102130. February 2021.
The collaborative mind: intention reading and trust in human-robot interaction [link]Paper   doi   link   bibtex   abstract  
Ethical machines: The human-centric use of artificial intelligence. Lepri, B.; Oliver, N.; and Pentland, A. iScience, 24(3): 102249. March 2021.
Ethical machines: The human-centric use of artificial intelligence [link]Paper   doi   link   bibtex   abstract  
Blaming automated vehicles in difficult situations. Franklin, M.; Awad, E.; and Lagnado, D. iScience, 24(4): 102252. April 2021.
Blaming automated vehicles in difficult situations [link]Paper   doi   link   bibtex   abstract  
Brain hierarchy score: Which deep neural networks are hierarchically brain-like?. Nonaka, S.; Majima, K.; Aoki, S. C.; and Kamitani, Y. iScience, 24(9): 103013. September 2021.
Brain hierarchy score: Which deep neural networks are hierarchically brain-like? [link]Paper   doi   link   bibtex   abstract  
Prognostic Expert System for Railway Fleet Maintenance. Turgis, F.; Audier, P.; and Marion, R. In Proceedings of the 31st European Safety and Reliability Conference, pages 2111, Anger, France, September 2021.
doi   link   bibtex  
Predicting What You Already Know Helps: Provable Self-Supervised Learning. Lee, J. D.; Lei, Q.; Saunshi, N.; and Zhuo, J. November 2021. arXiv:2008.01064 [cs, stat]
Predicting What You Already Know Helps: Provable Self-Supervised Learning [link]Paper   doi   link   bibtex   abstract  
Online Anomaly Detection Leveraging Stream-Based Clustering and Real-Time Telemetry. Putina, A.; and Rossi, D. IEEE Transactions on Network and Service Management, 18(1): 839–854. March 2021. Conference Name: IEEE Transactions on Network and Service Management
doi   link   bibtex   abstract  
Big Data Needs and Challenges in Smart Manufacturing: An Industry-Academia Survey. Winkler, D.; Korobeinykov, A.; Novák, P.; Lüder, A.; and Biffl, S. In 2021 26th IEEE International Conference on Emerging Technologies and Factory Automation (ETFA ), pages 1–8, September 2021.
doi   link   bibtex   abstract  
A Systematic Review of Artificial Intelligence Public Datasets for Railway Applications. Pappaterra, M. J.; Flammini, F.; Vittorini, V.; and Bešinović, N. Infrastructures, 6(10): 136. October 2021. Number: 10 Publisher: Multidisciplinary Digital Publishing Institute
A Systematic Review of Artificial Intelligence Public Datasets for Railway Applications [link]Paper   doi   link   bibtex   abstract  
Fault detection in Tennessee Eastman process with temporal deep learning models. Lomov, I.; Lyubimov, M.; Makarov, I.; and Zhukov, L. E. Journal of Industrial Information Integration, 23: 100216. September 2021.
Fault detection in Tennessee Eastman process with temporal deep learning models [link]Paper   doi   link   bibtex   abstract  
Data stream clustering: a review. Zubaroğlu, A.; and Atalay, V. Artificial Intelligence Review, 54(2): 1201–1236. February 2021.
Data stream clustering: a review [link]Paper   doi   link   bibtex   abstract  
A new self-organizing map based algorithm for multi-label stream classification. Cerri, R.; Junior, J. D. C.; Faria, E. R.; and Gama, J. In Proceedings of the 36th Annual ACM Symposium on Applied Computing, pages 418–426. Association for Computing Machinery, New York, NY, USA, March 2021.
A new self-organizing map based algorithm for multi-label stream classification [link]Paper   link   bibtex   abstract  
Survey on feature transformation techniques for data streams. Bahri, M.; Bifet, A.; Maniu, S.; and Gomes, H. M. In Proceedings of the Twenty-Ninth International Joint Conference on Artificial Intelligence, of IJCAI'20, pages 4796–4802, Yokohama, Yokohama, Japan, January 2021.
link   bibtex   abstract  
Long short-term memory self-adapting online random forests for evolving data stream regression. Zhong, Y.; Yang, H.; Zhang, Y.; Li, P.; and Ren, C. Neurocomputing, 457: 265–276. October 2021.
Long short-term memory self-adapting online random forests for evolving data stream regression [link]Paper   doi   link   bibtex   abstract  
A novel ResNet-based model structure and its applications in machine health monitoring. Duan, J.; Shi, T.; Zhou, H.; Xuan, J.; and Wang, S. Journal of Vibration and Control, 27(9-10): 1036–1050. May 2021. Publisher: SAGE Publications Ltd STM
A novel ResNet-based model structure and its applications in machine health monitoring [link]Paper   doi   link   bibtex   abstract  
Decoupled Feature-Temporal CNN: Explaining Deep Learning-Based Machine Health Monitoring. Zhu, C.; Chen, Z.; Zhao, R.; Wang, J.; and Yan, R. IEEE Transactions on Instrumentation and Measurement, 70: 1–13. 2021. Conference Name: IEEE Transactions on Instrumentation and Measurement
doi   link   bibtex   abstract  
LSTM-GAN-AE: A Promising Approach for Fault Diagnosis in Machine Health Monitoring. Liu, H.; Zhao, H.; Wang, J.; Yuan, S.; and Feng, W. IEEE Transactions on Instrumentation and Measurement,1–1. 2021. Conference Name: IEEE Transactions on Instrumentation and Measurement
doi   link   bibtex   abstract  
Adaptive Weighted Signal Preprocessing Technique for Machine Health Monitoring. Hou, B.; Wang, D.; Wang, Y.; Yan, T.; Peng, Z.; and Tsui, K. IEEE Transactions on Instrumentation and Measurement, 70: 1–11. 2021. Conference Name: IEEE Transactions on Instrumentation and Measurement
doi   link   bibtex   abstract  
Online fault diagnosis for sucker rod pumping well by optimized density peak clustering. Han, Y.; Li, K.; Ge, F.; Wang, Y.; and Xu, W. ISA Transactions. March 2021.
Online fault diagnosis for sucker rod pumping well by optimized density peak clustering [link]Paper   doi   link   bibtex   abstract  
Data-driven fault detection of open circuits in multi-phase inverters based on current polarity using Auto-adaptive and Dynamical Clustering. Pham, T.; Lefteriu, S.; Duviella, E.; and Lecoeuche, S. ISA Transactions, 113: 185–195. July 2021.
Data-driven fault detection of open circuits in multi-phase inverters based on current polarity using Auto-adaptive and Dynamical Clustering [link]Paper   doi   link   bibtex   abstract  
Learning the health index of complex systems using dynamic conditional variational autoencoders. Wei, Y.; Wu, D.; and Terpenny, J. Reliability Engineering & System Safety, 216: 108004. December 2021.
Learning the health index of complex systems using dynamic conditional variational autoencoders [link]Paper   doi   link   bibtex   abstract  
A framework to automate fault detection and diagnosis based on moving window principal component analysis and Bayesian network. Melani, A. H. d. A.; Michalski, M. A. d. C.; da Silva, R. F.; and de Souza, G. F. M. Reliability Engineering & System Safety, 215: 107837. November 2021.
A framework to automate fault detection and diagnosis based on moving window principal component analysis and Bayesian network [link]Paper   doi   link   bibtex   abstract  
HealthMon: An approach for monitoring machines degradation using time-series decomposition, clustering, and metaheuristics. de Lima, M. J.; Paredes Crovato, C. D.; Goytia Mejia, R. I.; da Rosa Righi, R.; de Oliveira Ramos, G.; André da Costa, C.; and Pesenti, G. Computers & Industrial Engineering, 162: 107709. December 2021.
HealthMon: An approach for monitoring machines degradation using time-series decomposition, clustering, and metaheuristics [link]Paper   doi   link   bibtex   abstract  
Deep Learning for Anomaly Detection: A Review. Pang, G.; Shen, C.; Cao, L.; and Hengel, A. V. D. ACM Computing Surveys, 54(2): 38:1–38:38. March 2021.
Deep Learning for Anomaly Detection: A Review [link]Paper   doi   link   bibtex   abstract  
On the nature and types of anomalies: a review of deviations in data. Foorthuis, R. International Journal of Data Science and Analytics, 12(4): 297–331. October 2021.
On the nature and types of anomalies: a review of deviations in data [link]Paper   doi   link   bibtex   abstract  
Anomaly explanation: A review. Tchaghe, V. Y.; Smits, G.; and Pivert, O. Data & Knowledge Engineering,101946. November 2021.
Anomaly explanation: A review [link]Paper   doi   link   bibtex   abstract  
A Complete Streaming Pipeline for Real-time Monitoring and Predictive Maintenance. Le Nguyen, M. H.; Turgis, F.; Fayemi, P.; and Bifet, A. In Proceedings of the 31st European Safety and Reliability Conference, pages 2119, 2021.
doi   link   bibtex  
On the relevance of clustering strategies for collaborative prognostics. Balbi, M.; Cattaneo, L.; Nucera, D. D.; and Macchi, M. IFAC-PapersOnLine, 54(1): 37–42. January 2021.
On the relevance of clustering strategies for collaborative prognostics [link]Paper   doi   link   bibtex   abstract  
Data-Driven State Detection for an asset working at heterogenous regimens⁎⁎This work is supported by Lombardy funded project SMART4CPPS (ID: 236789 CUP: E19I18000000009). Nucera, D. D.; Quadrini, W.; Fumagalli, L.; and Scipioni, M. P. IFAC-PapersOnLine, 54(1): 1248–1253. January 2021.
Data-Driven State Detection for an asset working at heterogenous regimens⁎⁎This work is supported by Lombardy funded project SMART4CPPS (ID: 236789 CUP: E19I18000000009) [link]Paper   doi   link   bibtex   abstract  
Towards Using Digital Intelligent Assistants to Put Humans in the Loop of Predictive Maintenance Systems. Wellsandt, S.; Klein, K.; Hribernik, K.; Lewandowski, M.; Bousdekis, A.; Mentzas, G.; and Thoben, K. IFAC-PapersOnLine, 54(1): 49–54. January 2021.
Towards Using Digital Intelligent Assistants to Put Humans in the Loop of Predictive Maintenance Systems [link]Paper   doi   link   bibtex   abstract  
A Survey on Data-Driven Predictive Maintenance for the Railway Industry. Davari, N.; Veloso, B.; De Assis Costa, G.; Pereira, P.; Ribeiro, R.; and Gama, J. Sensors, 21: 5739. September 2021.
doi   link   bibtex   abstract  
Anomaly Detection with Unknown Anomalies: Application to Maritime Machinery. Michałowska, K.; Riemer-Sørensen, S.; Sterud, C.; and Hjellset, O. M. IFAC-PapersOnLine, 54(16): 105–111. January 2021.
Anomaly Detection with Unknown Anomalies: Application to Maritime Machinery [link]Paper   doi   link   bibtex   abstract  
A novel RUL prognosis methodology of multilevel system with cascading failure: Subsea oil and gas transportation systems as a case study. Cai, B.; Shao, X.; Yuan, X.; Liu, Y.; Chen, G.; Feng, Q.; Liu, Y.; and Ren, Y. Ocean Engineering, 242: 110141. December 2021.
A novel RUL prognosis methodology of multilevel system with cascading failure: Subsea oil and gas transportation systems as a case study [link]Paper   doi   link   bibtex   abstract  
Graph-based Multi-view Clustering for Continuous Pattern Mining. Åleskog, C. Ph.D. Thesis, Blekinge Insitute of Technology, Sweden, 2021.
Graph-based Multi-view Clustering for Continuous Pattern Mining [link]Paper   link   bibtex   abstract  
Efficient linear predictive model with short term features for lithium-ion batteries state of health estimation. Ang, E. Y. M.; and Paw, Y. C. Journal of Energy Storage, 44: 103409. December 2021.
Efficient linear predictive model with short term features for lithium-ion batteries state of health estimation [link]Paper   doi   link   bibtex   abstract  
Explainable AI in drought forecasting. Dikshit, A.; and Pradhan, B. Machine Learning with Applications,100192. October 2021.
Explainable AI in drought forecasting [link]Paper   doi   link   bibtex   abstract  
AEDBSCAN—Adaptive Epsilon Density-Based Spatial Clustering of Applications with Noise. Mistry, V.; Pandya, U.; Rathwa, A.; Kachroo, H.; and Jivani, A. In Panigrahi, C. R.; Pati, B.; Mohapatra, P.; Buyya, R.; and Li, K., editor(s), Progress in Advanced Computing and Intelligent Engineering, of Advances in Intelligent Systems and Computing, pages 213–226, Singapore, 2021. Springer
doi   link   bibtex   abstract  
Multi-label learning with label-specific features via weighting and label entropy guided clustering ensemble. Zhang, C.; and Li, Z. Neurocomputing, 419: 59–69. January 2021.
Multi-label learning with label-specific features via weighting and label entropy guided clustering ensemble [link]Paper   doi   link   bibtex   abstract  
Dataset of Vietnamese students’ academic perfectionism and school alienation. Phan, T. T.; Nguyen, L.; Nguyen, N.; and Nguyen, Y. Data in Brief, 39: 107463. December 2021.
Dataset of Vietnamese students’ academic perfectionism and school alienation [link]Paper   doi   link   bibtex   abstract  
Online learning: A comprehensive survey. Hoi, S. C. H.; Sahoo, D.; Lu, J.; and Zhao, P. Neurocomputing, 459: 249–289. October 2021.
Online learning: A comprehensive survey [link]Paper   doi   link   bibtex   abstract  
Application of Multilayer Network Models in Bioinformatics. Lv, Y.; Huang, S.; Zhang, T.; and Gao, B. Frontiers in Genetics, 12: 380. 2021.
Application of Multilayer Network Models in Bioinformatics [link]Paper   doi   link   bibtex   abstract  
Fault Detection and RUL Estimation for Railway HVAC Systems Using a Hybrid Model-Based Approach. Gálvez, A.; Diez-Olivan, A.; Seneviratne, D.; and Galar, D. Sustainability, 13(12): 6828. January 2021. Number: 12 Publisher: Multidisciplinary Digital Publishing Institute
Fault Detection and RUL Estimation for Railway HVAC Systems Using a Hybrid Model-Based Approach [link]Paper   doi   link   bibtex   abstract  
Condition-Based Maintenance of HVAC on a High-Speed Train for Fault Detection. Ciani, L.; Guidi, G.; Patrizi, G.; and Galar, D. Electronics, 10(12): 1418. January 2021. Number: 12 Publisher: Multidisciplinary Digital Publishing Institute
Condition-Based Maintenance of HVAC on a High-Speed Train for Fault Detection [link]Paper   doi   link   bibtex   abstract  
Multi-label classification for simultaneous fault diagnosis of marine machinery: A comparative study. Tan, Y.; Zhang, J.; Tian, H.; Jiang, D.; Guo, L.; Wang, G.; and Lin, Y. Ocean Engineering, 239: 109723. November 2021.
Multi-label classification for simultaneous fault diagnosis of marine machinery: A comparative study [link]Paper   doi   link   bibtex   abstract  
Time-Distributed Feature Learning in Network Traffic Classification for Internet of Things. Manjunath, Y. S. K.; Zhao, S.; and Zhang, X. arXiv:2109.14696 [cs]. September 2021. arXiv: 2109.14696
Time-Distributed Feature Learning in Network Traffic Classification for Internet of Things [link]Paper   link   bibtex   abstract  
Review Paper on Anomaly Detection in Data Streams. Sandhya Madhuri, G.; Yamuna; and Usha Rani, M. In Jyothi, S.; Mamatha, D. M.; Zhang, Y.; and Raju, K. S., editor(s), Proceedings of the 2nd International Conference on Computational and Bio Engineering, of Lecture Notes in Networks and Systems, pages 721–728, Singapore, 2021. Springer
doi   link   bibtex   abstract  
Explainable outlier detection: What, for Whom and Why?. Sejr, J. H.; and Schneider-Kamp, A. Machine Learning with Applications,100172. October 2021.
Explainable outlier detection: What, for Whom and Why? [link]Paper   doi   link   bibtex   abstract  
Condition monitoring and performance forecasting of wind turbines based on denoising autoencoder and novel convolutional neural networks. Jia, X.; Han, Y.; Li, Y.; Sang, Y.; and Zhang, G. Energy Reports, 7: 6354–6365. November 2021.
Condition monitoring and performance forecasting of wind turbines based on denoising autoencoder and novel convolutional neural networks [link]Paper   doi   link   bibtex   abstract  
Data driven analysis of lithium-ion battery internal resistance towards reliable state of health prediction. Hoque, M. A.; Nurmi, P.; Kumar, A.; Varjonen, S.; Song, J.; Pecht, M. G.; and Tarkoma, S. Journal of Power Sources, 513: 230519. November 2021.
Data driven analysis of lithium-ion battery internal resistance towards reliable state of health prediction [link]Paper   doi   link   bibtex   abstract  
Multicellular LSTM-based deep learning model for aero-engine remaining useful life prediction. Xiang, S.; Qin, Y.; Luo, J.; Pu, H.; and Tang, B. Reliability Engineering & System Safety, 216: 107927. December 2021.
Multicellular LSTM-based deep learning model for aero-engine remaining useful life prediction [link]Paper   doi   link   bibtex   abstract  
Two-phase degradation data analysis with change-point detection based on Gaussian process degradation model. Chen, Z.; Li, Y.; Zhou, D.; Xia, T.; and Pan, E. Reliability Engineering & System Safety, 216: 107916. December 2021.
Two-phase degradation data analysis with change-point detection based on Gaussian process degradation model [link]Paper   doi   link   bibtex   abstract  
Multivariate statistical aggregation and dimensionality reduction techniques to improve monitoring and maintenance in railways: The wheelset component. Braga, J. A. P.; and Andrade, A. R. Reliability Engineering & System Safety, 216: 107932. December 2021.
Multivariate statistical aggregation and dimensionality reduction techniques to improve monitoring and maintenance in railways: The wheelset component [link]Paper   doi   link   bibtex   abstract  
A hierarchical modeling approach for degradation data with mixed-type covariates and latent heterogeneity. Sun, X.; Cai, W.; and Li, M. Reliability Engineering & System Safety, 216: 107928. December 2021.
A hierarchical modeling approach for degradation data with mixed-type covariates and latent heterogeneity [link]Paper   doi   link   bibtex   abstract  
A mathematical programming model to select maintenance strategies in railway networks. Fecarotti, C.; Andrews, J.; and Pesenti, R. Reliability Engineering & System Safety, 216: 107940. December 2021.
A mathematical programming model to select maintenance strategies in railway networks [link]Paper   doi   link   bibtex   abstract  
Temporal convolution-based transferable cross-domain adaptation approach for remaining useful life estimation under variable failure behaviors. Zhuang, J.; Jia, M.; Ding, Y.; and Ding, P. Reliability Engineering & System Safety, 216: 107946. December 2021.
Temporal convolution-based transferable cross-domain adaptation approach for remaining useful life estimation under variable failure behaviors [link]Paper   doi   link   bibtex   abstract  
Outlier Detection in Data Streams — A Comparative Study of Selected Methods. Duraj, A.; and Szczepaniak, P. S. Procedia Computer Science, 192: 2769–2778. January 2021.
Outlier Detection in Data Streams — A Comparative Study of Selected Methods [link]Paper   doi   link   bibtex   abstract  
A Comprehensive Survey and Performance Analysis of Activation Functions in Deep Learning. Dubey, S. R.; Singh, S. K.; and Chaudhuri, B. B. arXiv:2109.14545 [cs]. September 2021. arXiv: 2109.14545
A Comprehensive Survey and Performance Analysis of Activation Functions in Deep Learning [link]Paper   link   bibtex   abstract  
Machine learning approach for predictive maintenance of transport systems. Mallouk, I.; Sallez, Y.; and El Majd, B. A. In 2021 Third International Conference on Transportation and Smart Technologies (TST), pages 96–100, May 2021.
doi   link   bibtex   abstract  
Predictive maintenance for multi-component systems of repairables with Remaining-Useful-Life prognostics and a limited stock of spare components. de Pater, I.; and Mitici, M. Reliability Engineering & System Safety, 214: 107761. October 2021.
Predictive maintenance for multi-component systems of repairables with Remaining-Useful-Life prognostics and a limited stock of spare components [link]Paper   doi   link   bibtex   abstract  
Physics-based Deep Learning. Thuerey, N.; Holl, P.; Mueller, M.; Schnell, P.; Trost, F.; and Um, K. arXiv:2109.05237 [physics]. September 2021. arXiv: 2109.05237
Physics-based Deep Learning [link]Paper   link   bibtex   abstract  
Combining empirical mode decomposition and deep recurrent neural networks for predictive maintenance of lithium-ion battery. Chen, J. C.; Chen, T.; Liu, W.; Cheng, C. C.; and Li, M. Advanced Engineering Informatics, 50: 101405. October 2021.
Combining empirical mode decomposition and deep recurrent neural networks for predictive maintenance of lithium-ion battery [link]Paper   doi   link   bibtex   abstract  
Online wear detection for joints in progressing cavity pumps. Müller, J.; Leonow, S.; Schulz, J.; Hansen, C.; and Mönnigmann, M. IFAC-PapersOnLine, 54(3): 188–193. January 2021.
Online wear detection for joints in progressing cavity pumps [link]Paper   doi   link   bibtex   abstract  
A survey on active learning and human-in-the-loop deep learning for medical image analysis. Budd, S.; Robinson, E. C.; and Kainz, B. Medical Image Analysis, 71: 102062. July 2021.
A survey on active learning and human-in-the-loop deep learning for medical image analysis [link]Paper   doi   link   bibtex   abstract  
AutoML: A Survey of the State-of-the-Art. He, X.; Zhao, K.; and Chu, X. Knowledge-Based Systems, 212: 106622. January 2021. arXiv: 1908.00709
AutoML: A Survey of the State-of-the-Art [link]Paper   doi   link   bibtex   abstract  
Degradation stage classification via interpretable feature learning. Alfeo, A. L.; Cimino, M. G. C. A.; and Vaglini, G. Journal of Manufacturing Systems. May 2021.
Degradation stage classification via interpretable feature learning [link]Paper   doi   link   bibtex   abstract  
Study on Landscape Architecture Model Design Based on Big Data Intelligence. Guo, S.; Tang, J.; Liu, H.; and Gu, X. Big Data Research,100219. February 2021.
Study on Landscape Architecture Model Design Based on Big Data Intelligence [link]Paper   doi   link   bibtex   abstract  
Unsupervised Anomaly Detection in stream data with Online evolving Spiking Neural Networks. Maciąg, P. S.; Kryszkiewicz, M.; Bembenik, R.; Lobo, J. L.; and Del Ser, J. Neural Networks. February 2021.
Unsupervised Anomaly Detection in stream data with Online evolving Spiking Neural Networks [link]Paper   doi   link   bibtex   abstract  
Transfer learning using deep representation regularization in remaining useful life prediction across operating conditions. Zhang, W.; Li, X.; Ma, H.; Luo, Z.; and Li, X. Reliability Engineering & System Safety,107556. February 2021.
Transfer learning using deep representation regularization in remaining useful life prediction across operating conditions [link]Paper   doi   link   bibtex   abstract  
Drift Detection Analytics for IoT Sensors. Munirathinam, S. Procedia Computer Science, 180: 903–912. January 2021.
Drift Detection Analytics for IoT Sensors [link]Paper   doi   link   bibtex   abstract  
Industry 4.0 and human factor: How is technology changing the role of the maintenance operator?. Gallo, T.; and Santolamazza, A. Procedia Computer Science, 180: 388–393. January 2021.
Industry 4.0 and human factor: How is technology changing the role of the maintenance operator? [link]Paper   doi   link   bibtex   abstract  
Implementation of Industry 4.0 technology: New opportunities and challenges for maintenance strategy. Bona, G. D.; Cesarotti, V.; Arcese, G.; and Gallo, T. Procedia Computer Science, 180: 424–429. January 2021.
Implementation of Industry 4.0 technology: New opportunities and challenges for maintenance strategy [link]Paper   doi   link   bibtex   abstract  
Data science applications for predictive maintenance and materials science in context to Industry 4.0. Sajid, S.; Haleem, A.; Bahl, S.; Javaid, M.; Goyal, T.; and Mittal, M. Materials Today: Proceedings. February 2021.
Data science applications for predictive maintenance and materials science in context to Industry 4.0 [link]Paper   doi   link   bibtex   abstract  
Recent Developments Towards Industry 4.0 Oriented Predictive Maintenance in Induction Motors. Drakaki, M.; Karnavas, Y. L.; Tzionas, P.; and Chasiotis, I. D. Procedia Computer Science, 180: 943–949. January 2021.
Recent Developments Towards Industry 4.0 Oriented Predictive Maintenance in Induction Motors [link]Paper   doi   link   bibtex   abstract  
Remaining useful life prediction and predictive maintenance strategies for multi-state manufacturing systems considering functional dependence. Han, X.; Wang, Z.; Xie, M.; He, Y.; Li, Y.; and Wang, W. Reliability Engineering & System Safety, 210: 107560. June 2021.
Remaining useful life prediction and predictive maintenance strategies for multi-state manufacturing systems considering functional dependence [link]Paper   doi   link   bibtex   abstract  
Challenges and Solutions in condition-based maintenance implementation - a multiple case study. Ingemarsdotter, E.; Kambanou, M. L.; Jamsin, E.; Sakao, T.; and Balkenende, R. Journal of Cleaner Production,126420. February 2021.
Challenges and Solutions in condition-based maintenance implementation - a multiple case study [link]Paper   doi   link   bibtex   abstract  
Unsupervised Machine Learning Techniques to Prevent Faults in Railroad Switch Machines. Soares, N.; Aguiar, E. P. d.; Souza, A. C.; and Goliatt, L. International Journal of Critical Infrastructure Protection,100423. February 2021.
Unsupervised Machine Learning Techniques to Prevent Faults in Railroad Switch Machines [link]Paper   doi   link   bibtex   abstract  
IoT for predictive assets monitoring and maintenance: An implementation strategy for the UK rail industry. Gbadamosi, A.; Oyedele, L. O.; Delgado, J. M. D.; Kusimo, H.; Akanbi, L.; Olawale, O.; and Muhammed-yakubu, N. Automation in Construction, 122: 103486. February 2021.
IoT for predictive assets monitoring and maintenance: An implementation strategy for the UK rail industry [link]Paper   doi   link   bibtex   abstract  
A semi-supervised method for the characterization of degradation of nuclear power plants steam generators. Pinciroli, L.; Baraldi, P.; Shokry, A.; Zio, E.; Seraoui, R.; and Mai, C. Progress in Nuclear Energy, 131: 103580. January 2021.
A semi-supervised method for the characterization of degradation of nuclear power plants steam generators [link]Paper   doi   link   bibtex   abstract  
A forest-based algorithm for selecting informative variables using Variable Depth Distribution. Voronov, S.; Jung, D.; and Frisk, E. Engineering Applications of Artificial Intelligence, 97: 104073. January 2021.
A forest-based algorithm for selecting informative variables using Variable Depth Distribution [link]Paper   doi   link   bibtex   abstract  
Online oil debris monitoring of rotating machinery: A detailed review of more than three decades. Sun, J.; Wang, L.; Li, J.; Li, F.; Li, J.; and Lu, H. Mechanical Systems and Signal Processing, 149: 107341. February 2021.
Online oil debris monitoring of rotating machinery: A detailed review of more than three decades [link]Paper   doi   link   bibtex   abstract  
A generalized remaining useful life prediction method for complex systems based on composite health indicator. Wen, P.; Zhao, S.; Chen, S.; and Li, Y. Reliability Engineering & System Safety, 205: 107241. January 2021.
A generalized remaining useful life prediction method for complex systems based on composite health indicator [link]Paper   doi   link   bibtex   abstract  
  2020 (98)
Complex engineered system health indexes extraction using low frequency raw time-series data based on deep learning methods. Liu, C.; Sun, J.; Liu, H.; Lei, S.; and Hu, X. Measurement, 161: 107890. September 2020.
Complex engineered system health indexes extraction using low frequency raw time-series data based on deep learning methods [link]Paper   doi   link   bibtex   abstract  
Continual Learning of Fault Prediction for Turbofan Engines using Deep Learning with Elastic Weight Consolidation. Maschler, B.; Vietz, H.; Jazdi, N.; and Weyrich, M. In 2020 25th IEEE International Conference on Emerging Technologies and Factory Automation (ETFA), volume 1, pages 959–966, September 2020. ISSN: 1946-0759
doi   link   bibtex   abstract  
CycleFootprint: A Fully Automated Method for Extracting Operation Cycles from Historical Raw Data of Multiple Sensors. Fanaee-T, H.; Bouguelia, M.; Rahat, M.; Blixt, J.; and Singh, H. In Gama, J.; Pashami, S.; Bifet, A.; Sayed-Mouchawe, M.; Fröning, H.; Pernkopf, F.; Schiele, G.; and Blott, M., editor(s), IoT Streams for Data-Driven Predictive Maintenance and IoT, Edge, and Mobile for Embedded Machine Learning, of Communications in Computer and Information Science, pages 30–44, Cham, 2020. Springer International Publishing
doi   link   bibtex   abstract  
No free lunch but a cheaper supper: A general framework for streaming anomaly detection. Calikus, E.; Nowaczyk, S.; Sant’Anna, A.; and Dikmen, O. Expert Systems with Applications, 155: 113453. October 2020.
No free lunch but a cheaper supper: A general framework for streaming anomaly detection [link]Paper   doi   link   bibtex   abstract  
Transfer learning for remaining useful life prediction based on consensus self-organizing models. Fan, Y.; Nowaczyk, S.; and Rögnvaldsson, T. Reliability Engineering & System Safety, 203: 107098. November 2020.
Transfer learning for remaining useful life prediction based on consensus self-organizing models [link]Paper   doi   link   bibtex   abstract  
Computational Psychiatry for Computers. Schulz, E.; and Dayan, P. iScience, 23(12): 101772. December 2020.
Computational Psychiatry for Computers [link]Paper   doi   link   bibtex   abstract  
Artificial Intelligence and the Common Sense of Animals. Shanahan, M.; Crosby, M.; Beyret, B.; and Cheke, L. Trends in Cognitive Sciences, 24(11): 862–872. November 2020.
Artificial Intelligence and the Common Sense of Animals [link]Paper   doi   link   bibtex   abstract  
Embracing Change: Continual Learning in Deep Neural Networks. Hadsell, R.; Rao, D.; Rusu, A. A.; and Pascanu, R. Trends in Cognitive Sciences, 24(12): 1028–1040. December 2020.
Embracing Change: Continual Learning in Deep Neural Networks [link]Paper   doi   link   bibtex   abstract  
Challenges of Stream Learning for Predictive Maintenance in the Railway Sector. Le Nguyen, M. H.; Turgis, F.; Fayemi, P.; and Bifet, A. In Gama, J.; Pashami, S.; Bifet, A.; Sayed-Mouchawe, M.; Fröning, H.; Pernkopf, F.; Schiele, G.; and Blott, M., editor(s), IoT Streams for Data-Driven Predictive Maintenance and IoT, Edge, and Mobile for Embedded Machine Learning, of Communications in Computer and Information Science, pages 14–29, Cham, 2020. Springer International Publishing
doi   link   bibtex   abstract  
Concept Drift Detection on Data Stream for Revising DBSCAN Cluster. Miyata, Y.; and Ishikawa, H. In Proceedings of the 10th International Conference on Web Intelligence, Mining and Semantics, of WIMS 2020, pages 104–110, New York, NY, USA, August 2020. Association for Computing Machinery
Concept Drift Detection on Data Stream for Revising DBSCAN Cluster [link]Paper   doi   link   bibtex   abstract  
pyts: A Python Package for Time Series Classification. Faouzi, J.; and Janati, H. Journal of Machine Learning Research, 21(46): 1–6. 2020.
pyts: A Python Package for Time Series Classification [link]Paper   link   bibtex   abstract  
MPA: a novel cross-language API for time series analysis. Benschoten, A. H. V.; Ouyang, A.; Bischoff, F.; and Marrs, T. W. Journal of Open Source Software, 5(49): 2179. May 2020.
MPA: a novel cross-language API for time series analysis [link]Paper   doi   link   bibtex   abstract  
An analysis on the use of autoencoders for representation learning: Fundamentals, learning task case studies, explainability and challenges. Charte, D.; Charte, F.; del Jesus, M. J.; and Herrera, F. Neurocomputing, 404: 93–107. September 2020.
An analysis on the use of autoencoders for representation learning: Fundamentals, learning task case studies, explainability and challenges [link]Paper   doi   link   bibtex   abstract  
Automated Anomaly Detection in Large Sequences. Boniol, P.; Linardi, M.; Roncallo, F.; and Palpanas, T. In 2020 IEEE 36th International Conference on Data Engineering (ICDE), pages 1834–1837, April 2020. ISSN: 2375-026X
doi   link   bibtex   abstract  
A novel use for an old problem: The Tennessee Eastman challenge process as an activating teaching tool. Udugama, I. A.; Gernaey, K. V.; Taube, M. A.; and Bayer, C. Education for Chemical Engineers, 30: 20–31. January 2020.
A novel use for an old problem: The Tennessee Eastman challenge process as an activating teaching tool [link]Paper   doi   link   bibtex   abstract  
Data sets of measured pantograph voltage and current of European AC railways. Mariscotti, A. Data in Brief, 30: 105477. June 2020.
Data sets of measured pantograph voltage and current of European AC railways [link]Paper   doi   link   bibtex   abstract  
Dataset of measured and commented pantograph electric arcs in DC railways. Signorino, D.; Giordano, D.; Mariscotti, A.; Gallo, D.; Femine, A. D.; Balic, F.; Quintana, J.; Donadio, L.; and Biancucci, A. Data in Brief, 31: 105978. August 2020.
Dataset of measured and commented pantograph electric arcs in DC railways [link]Paper   doi   link   bibtex   abstract  
A general end-to-end diagnosis framework for manufacturing systems. Yuan, Y.; Ma, G.; Cheng, C.; Zhou, B.; Zhao, H.; Zhang, H.; and Ding, H. National Science Review, 7(2): 418–429. February 2020.
A general end-to-end diagnosis framework for manufacturing systems [link]Paper   doi   link   bibtex   abstract  
Real-Time and Robust Hydraulic System Fault Detection via Edge Computing. Fawwaz, D. Z.; and Chung, S. Applied Sciences, 10(17): 5933. January 2020. Number: 17 Publisher: Multidisciplinary Digital Publishing Institute
Real-Time and Robust Hydraulic System Fault Detection via Edge Computing [link]Paper   doi   link   bibtex   abstract  
Deep learning for fault-relevant feature extraction and fault classification with stacked supervised auto-encoder. Wang, Y.; Yang, H.; Yuan, X.; Shardt, Y. A. W.; Yang, C.; and Gui, W. Journal of Process Control, 92: 79–89. August 2020.
Deep learning for fault-relevant feature extraction and fault classification with stacked supervised auto-encoder [link]Paper   doi   link   bibtex   abstract  
A new unsupervised data mining method based on the stacked autoencoder for chemical process fault diagnosis. Zheng, S.; and Zhao, J. Computers & Chemical Engineering, 135: 106755. April 2020.
A new unsupervised data mining method based on the stacked autoencoder for chemical process fault diagnosis [link]Paper   doi   link   bibtex   abstract  
Fault Detection in the Tennessee Eastman Benchmark Process Using Principal Component Difference Based on K-Nearest Neighbors. Zhang, C.; Guo, Q.; and Li, Y. IEEE Access, 8: 49999–50009. 2020. Conference Name: IEEE Access
doi   link   bibtex   abstract  
A survey on semi-supervised learning. van Engelen, J. E.; and Hoos, H. H. Machine Learning, 109(2): 373–440. February 2020.
A survey on semi-supervised learning [link]Paper   doi   link   bibtex   abstract  
Generalizing from a Few Examples: A Survey on Few-shot Learning. Wang, Y.; Yao, Q.; Kwok, J. T.; and Ni, L. M. ACM Computing Surveys, 53(3): 63:1–63:34. June 2020.
Generalizing from a Few Examples: A Survey on Few-shot Learning [link]Paper   doi   link   bibtex   abstract  
Continuous Support Vector Regression for Nonstationary Streaming Data. Yu, H.; Lu, J.; and Zhang, G. IEEE Transactions on Cybernetics,1–14. 2020. Conference Name: IEEE Transactions on Cybernetics
doi   link   bibtex   abstract  
UMAP: Uniform Manifold Approximation and Projection for Dimension Reduction. McInnes, L.; Healy, J.; and Melville, J. arXiv:1802.03426 [cs, stat]. September 2020. arXiv: 1802.03426
UMAP: Uniform Manifold Approximation and Projection for Dimension Reduction [link]Paper   link   bibtex   abstract  
Predictive Maintenance for Edge-Based Sensor Networks: A Deep Reinforcement Learning Approach. Hoong Ong, K. S.; Niyato, D.; and Yuen, C. In 2020 IEEE 6th World Forum on Internet of Things (WF-IoT), pages 1–6, June 2020.
doi   link   bibtex   abstract  
A deep reinforcement learning approach for real-time sensor-driven decision making and predictive analytics. Skordilis, E.; and Moghaddass, R. Computers & Industrial Engineering, 147: 106600. September 2020.
A deep reinforcement learning approach for real-time sensor-driven decision making and predictive analytics [link]Paper   doi   link   bibtex   abstract  
A Battery Health Monitoring Method Using Machine Learning: A Data-Driven Approach. Sheikh, S. S.; Anjum, M.; Khan, M. A.; Hassan, S. A.; Khalid, H. A.; Gastli, A.; and Ben-Brahim, L. Energies, 13(14): 3658. January 2020. Number: 14 Publisher: Multidisciplinary Digital Publishing Institute
A Battery Health Monitoring Method Using Machine Learning: A Data-Driven Approach [link]Paper   doi   link   bibtex   abstract  
A Cognitive Analytics based Approach for Machine Health Monitoring, Anomaly Detection, and Predictive Maintenance. Farbiz, F.; Miaolong, Y.; and Yu, Z. In 2020 15th IEEE Conference on Industrial Electronics and Applications (ICIEA), pages 1104–1109, November 2020. ISSN: 2158-2297
doi   link   bibtex   abstract  
Machinery Health Monitoring Based on Unsupervised Feature Learning via Generative Adversarial Networks. Dai, J.; Wang, J.; Huang, W.; Shi, J.; and Zhu, Z. IEEE/ASME Transactions on Mechatronics, 25(5): 2252–2263. October 2020. Conference Name: IEEE/ASME Transactions on Mechatronics
doi   link   bibtex   abstract  
Multiscale intelligent fault detection system based on agglomerative hierarchical clustering using stacked denoising autoencoder with temporal information. Yu, J.; and Yan, X. Applied Soft Computing, 95: 106525. October 2020.
Multiscale intelligent fault detection system based on agglomerative hierarchical clustering using stacked denoising autoencoder with temporal information [link]Paper   doi   link   bibtex   abstract  
Anomaly monitoring improves remaining useful life estimation of industrial machinery. Aydemir, G.; and Acar, B. Journal of Manufacturing Systems, 56: 463–469. July 2020.
Anomaly monitoring improves remaining useful life estimation of industrial machinery [link]Paper   doi   link   bibtex   abstract  
Bayesian network models for incomplete and dynamic data. Scutari, M. Statistica Neerlandica, 74(3): 397–419. 2020. _eprint: https://onlinelibrary.wiley.com/doi/pdf/10.1111/stan.12197
Bayesian network models for incomplete and dynamic data [link]Paper   doi   link   bibtex   abstract  
A Bayesian network model to predict the effects of interruptions on train operations. Huang, P.; Lessan, J.; Wen, C.; Peng, Q.; Fu, L.; Li, L.; and Xu, X. Transportation Research Part C: Emerging Technologies, 114: 338–358. May 2020.
A Bayesian network model to predict the effects of interruptions on train operations [link]Paper   doi   link   bibtex   abstract  
An overview of recent multi-view clustering. Fu, L.; Lin, P.; Vasilakos, A. V.; and Wang, S. Neurocomputing, 402: 148–161. August 2020.
An overview of recent multi-view clustering [link]Paper   doi   link   bibtex   abstract  
MVStream: Multiview Data Stream Clustering. Huang, L.; Wang, C.; Chao, H.; and Yu, P. S. IEEE Transactions on Neural Networks and Learning Systems, 31(9): 3482–3496. September 2020. Conference Name: IEEE Transactions on Neural Networks and Learning Systems
doi   link   bibtex   abstract  
Multi-View Clustering in Latent Embedding Space. Chen, M.; Huang, L.; Wang, C.; and Huang, D. Proceedings of the AAAI Conference on Artificial Intelligence, 34(04): 3513–3520. April 2020. Number: 04
Multi-View Clustering in Latent Embedding Space [link]Paper   doi   link   bibtex   abstract  
ESA-Stream: Efficient Self-Adaptive Online Data Stream Clustering. Li, Y.; Li, H.; Wang, Z.; Liu, B.; Cui, J.; and Fei, H. IEEE Transactions on Knowledge and Data Engineering,1–1. 2020. Conference Name: IEEE Transactions on Knowledge and Data Engineering
doi   link   bibtex   abstract   2 downloads  
Incremental Cluster Validity Indices for Online Learning of Hard Partitions: Extensions and Comparative Study. Brito Da Silva, L. E.; Melton, N. M.; and Wunsch, D. C. IEEE Access, 8: 22025–22047. 2020. Conference Name: IEEE Access
doi   link   bibtex   abstract  
PySAD: A Streaming Anomaly Detection Framework in Python. Yilmaz, S. F.; and Kozat, S. S. arXiv:2009.02572 [cs, stat]. September 2020. arXiv: 2009.02572
PySAD: A Streaming Anomaly Detection Framework in Python [link]Paper   link   bibtex   abstract  
Multilayer networks: aspects, implementations, and application in biomedicine. Hammoud, Z.; and Kramer, F. Big Data Analytics, 5(1): 2. July 2020.
Multilayer networks: aspects, implementations, and application in biomedicine [link]Paper   doi   link   bibtex   abstract  
Railway Wagon Wheelset Fault Diagnosis Method Based on DBN. Wang, H.; Li, H.; Li, Y.; and Duan, Y. In 2020 Global Reliability and Prognostics and Health Management (PHM-Shanghai), pages 1–6, October 2020.
doi   link   bibtex   abstract  
Industrial Data-Driven Monitoring Based on Incremental Learning Applied to the Detection of Novel Faults. Saucedo-Dorantes, J. J.; Delgado-Prieto, M.; Osornio-Rios, R. A.; and Romero-Troncoso, R. d. J. IEEE Transactions on Industrial Informatics, 16(9): 5985–5995. September 2020. Conference Name: IEEE Transactions on Industrial Informatics
doi   link   bibtex   abstract  
A Deep Multi-Label Learning Framework for the Intelligent Fault Diagnosis of Machines. Shen, J.; Li, S.; Jia, F.; Zuo, H.; and Ma, J. IEEE Access, 8: 113557–113566. 2020. Conference Name: IEEE Access
doi   link   bibtex   abstract  
TSF-DBSCAN: a Novel Fuzzy Density-based Approach for Clustering Unbounded Data Streams. Bechini, A.; Marcelloni, F.; and Renda, A. IEEE Transactions on Fuzzy Systems,1–1. 2020. Conference Name: IEEE Transactions on Fuzzy Systems
doi   link   bibtex   abstract  
Applications of machine learning to machine fault diagnosis: A review and roadmap. Lei, Y.; Yang, B.; Jiang, X.; Jia, F.; Li, N.; and Nandi, A. K. Mechanical Systems and Signal Processing, 138: 106587. April 2020.
Applications of machine learning to machine fault diagnosis: A review and roadmap [link]Paper   doi   link   bibtex   abstract  
Online Bearing Remaining Useful Life Prediction Based on a Novel Degradation Indicator and Convolutional Neural Networks. Cheng, C.; Ma, G.; Zhang, Y.; Sun, M.; Teng, F.; Ding, H.; and Yuan, Y. IEEE/ASME Transactions on Mechatronics, 25(3): 1243–1254. June 2020. arXiv: 1812.03315
Online Bearing Remaining Useful Life Prediction Based on a Novel Degradation Indicator and Convolutional Neural Networks [link]Paper   doi   link   bibtex   abstract  
An integrated fault diagnosis and prognosis approach for predictive maintenance of wind turbine bearing with limited samples. Wang, J.; Liang, Y.; Zheng, Y.; Gao, R. X.; and Zhang, F. Renewable Energy, 145: 642–650. January 2020.
An integrated fault diagnosis and prognosis approach for predictive maintenance of wind turbine bearing with limited samples [link]Paper   doi   link   bibtex   abstract  
An integrated assessment of safety and efficiency of aircraft maintenance strategies using agent-based modelling and stochastic Petri nets. Lee, J.; and Mitici, M. Reliability Engineering & System Safety, 202: 107052. October 2020.
An integrated assessment of safety and efficiency of aircraft maintenance strategies using agent-based modelling and stochastic Petri nets [link]Paper   doi   link   bibtex   abstract  
The Effects of Reluctant and Fallible Users in Interactive Online Machine Learning. Tegen, A.; Davidsson, P.; and Persson, J. A. In pages 55–71, 2020. CEUR Workshops
The Effects of Reluctant and Fallible Users in Interactive Online Machine Learning [link]Paper   link   bibtex   abstract  
Tslearn, A Machine Learning Toolkit for Time Series Data. Tavenard, R.; Faouzi, J.; Vandewiele, G.; Divo, F.; Androz, G.; Holtz, C.; Payne, M.; Yurchak, R.; Rußwurm, M.; Kolar, K.; and Woods, E. Journal of Machine Learning Research, 21(118): 1–6. 2020.
Tslearn, A Machine Learning Toolkit for Time Series Data [link]Paper   link   bibtex   abstract  
Sustainable MLOps: Trends and Challenges. Tamburri, D. A. In 2020 22nd International Symposium on Symbolic and Numeric Algorithms for Scientific Computing (SYNASC), pages 17–23, September 2020.
doi   link   bibtex   abstract  
A Survey of Data-driven and Knowledge-aware eXplainable AI. Li, X.; Cao, C. C.; Shi, Y.; Bai, W.; Gao, H.; Qiu, L.; Wang, C.; Gao, Y.; Zhang, S.; Xue, X.; and Chen, L. IEEE Transactions on Knowledge and Data Engineering,1–1. 2020. Conference Name: IEEE Transactions on Knowledge and Data Engineering
doi   link   bibtex   abstract  
An Architecture for Predictive Maintenance of Railway Points Based on Big Data Analytics. Salierno, G.; Morvillo, S.; Leonardi, L.; and Cabri, G. In Dupuy-Chessa, S.; and Proper, H. A., editor(s), Advanced Information Systems Engineering Workshops, of Lecture Notes in Business Information Processing, pages 29–40, Cham, 2020. Springer International Publishing
doi   link   bibtex   abstract  
Evaluating Unsupervised Representation Learning for Detecting Stances of Fake News. Guderlei, M.; and Aßenmacher, M. In Proceedings of the 28th International Conference on Computational Linguistics, pages 6339–6349, Barcelona, Spain (Online), December 2020. International Committee on Computational Linguistics
Evaluating Unsupervised Representation Learning for Detecting Stances of Fake News [link]Paper   doi   link   bibtex   abstract  
Edge-cloud computing performance benchmarking for IoT based machinery vibration monitoring. Verma, A.; Goyal, A.; Kumara, S.; and Kurfess, T. Manufacturing Letters. December 2020.
Edge-cloud computing performance benchmarking for IoT based machinery vibration monitoring [link]Paper   doi   link   bibtex   abstract  
A bibliometric review of a decade of research: Big data in business research – Setting a research agenda. Zhang, Y.; Zhang, M.; Li, J.; Liu, G.; Yang, M. M.; and Liu, S. Journal of Business Research. December 2020.
A bibliometric review of a decade of research: Big data in business research – Setting a research agenda [link]Paper   doi   link   bibtex   abstract  
To Boldly Go Where No Data Stream Has Gone Before. Pearson, E. Patterns, 1(9): 100171. December 2020.
To Boldly Go Where No Data Stream Has Gone Before [link]Paper   doi   link   bibtex   abstract  
Adaptive Deep Forest for Online Learning from Drifting Data Streams. Korycki, Ł.; and Krawczyk, B. arXiv:2010.07340 [cs]. October 2020. arXiv: 2010.07340
Adaptive Deep Forest for Online Learning from Drifting Data Streams [link]Paper   link   bibtex   abstract  
A Bayesian Inference for Remaining Useful Life Estimation by Fusing Accelerated Degradation Data and Condition Monitoring Data. Pang, Z.; Si, X.; Hu, C.; Du, D.; and Pei, H. Reliability Engineering & System Safety,107341. December 2020.
A Bayesian Inference for Remaining Useful Life Estimation by Fusing Accelerated Degradation Data and Condition Monitoring Data [link]Paper   doi   link   bibtex   abstract  
Predictive analytics as a way to smart maintenance of hydraulic turbines. Georgievskaia, E. Procedia Structural Integrity, 28: 836–842. January 2020.
Predictive analytics as a way to smart maintenance of hydraulic turbines [link]Paper   doi   link   bibtex   abstract  
White-box Machine learning approaches to identify governing equations for overall dynamics of manufacturing systems: A case study on distillation column. Subramanian, R.; Moar, R. R.; and Singh, S. Machine Learning with Applications,100014. December 2020.
White-box Machine learning approaches to identify governing equations for overall dynamics of manufacturing systems: A case study on distillation column [link]Paper   doi   link   bibtex   abstract  
Assessment of steam turbine blade failure and damage mechanisms using a Bayesian network. Quintanar-Gago, D. A.; Nelson, P. F.; Díaz-Sánchez, Á.; and Boldrick, M. S. Reliability Engineering & System Safety,107329. November 2020.
Assessment of steam turbine blade failure and damage mechanisms using a Bayesian network [link]Paper   doi   link   bibtex   abstract  
Condition-based maintenance implementation: a literature review. Teixeira, H. N.; Lopes, I.; and Braga, A. C. Procedia Manufacturing, 51: 228–235. January 2020.
Condition-based maintenance implementation: a literature review [link]Paper   doi   link   bibtex   abstract  
A microservice architecture for predictive analytics in manufacturing. Nikolakis, N.; Marguglio, A.; Veneziano, G.; Greco, P.; Panicucci, S.; Cerquitelli, T.; Macii, E.; Andolina, S.; and Alexopoulos, K. Procedia Manufacturing, 51: 1091–1097. January 2020.
A microservice architecture for predictive analytics in manufacturing [link]Paper   doi   link   bibtex   abstract  
A novel approach to improve maintenance operations. Ferreira, S.; Martins, L.; Silva, F. J. G.; Casais, R. B.; Campilho, R. D. S. G.; and Sá, J. C. Procedia Manufacturing, 51: 1531–1537. January 2020.
A novel approach to improve maintenance operations [link]Paper   doi   link   bibtex   abstract  
An enhanced encoder–decoder framework for bearing remaining useful life prediction. Liu, L.; Song, X.; Chen, K.; Hou, B.; Chai, X.; and Ning, H. Measurement,108753. November 2020.
An enhanced encoder–decoder framework for bearing remaining useful life prediction [link]Paper   doi   link   bibtex   abstract  
Scalable Detection of Concept Drift: A Learning Technique Based on Support Vector Machines. Altendeitering, M.; and Dübler, S. Procedia Manufacturing, 51: 400–407. January 2020.
Scalable Detection of Concept Drift: A Learning Technique Based on Support Vector Machines [link]Paper   doi   link   bibtex   abstract  
ACCORDANT: A domain specific model and DevOps approach for big data analytics architectures. Castellanos, C.; Varela, C. A.; and Correal, D. Journal of Systems and Software,110869. November 2020.
ACCORDANT: A domain specific model and DevOps approach for big data analytics architectures [link]Paper   doi   link   bibtex   abstract  
Cloud Computing for Industrial Predictive Maintenance Based on Prognostics and Health Management. Fila, R.; Khaili, M. E.; and Mestari, M. Procedia Computer Science, 177: 631–638. January 2020.
Cloud Computing for Industrial Predictive Maintenance Based on Prognostics and Health Management [link]Paper   doi   link   bibtex   abstract  
Improving ship yard ballast pumps’ operations: A PCA approach to predictive maintenance. Kimera, D.; and Nangolo, F. N. Maritime Transport Research, 1: 100003. January 2020.
Improving ship yard ballast pumps’ operations: A PCA approach to predictive maintenance [link]Paper   doi   link   bibtex   abstract  
Overview of machine learning and its adaptability in mechanical engineering. Geetha, N. K.; and Bridjesh, P. Materials Today: Proceedings. November 2020.
Overview of machine learning and its adaptability in mechanical engineering [link]Paper   doi   link   bibtex   abstract  
Heterogeneous ensemble selection for evolving data streams. Luong, A. V.; Nguyen, T. T.; Liew, A. W.; and Wang, S. Pattern Recognition,107743. November 2020.
Heterogeneous ensemble selection for evolving data streams [link]Paper   doi   link   bibtex   abstract  
The experimental application of popular machine learning algorithms on predictive maintenance and the design of IIoT based condition monitoring system. Cakir, M.; Guvenc, M. A.; and Mistikoglu, S. Computers & Industrial Engineering,106948. October 2020.
The experimental application of popular machine learning algorithms on predictive maintenance and the design of IIoT based condition monitoring system [link]Paper   doi   link   bibtex   abstract  
Remaining Useful Life Prediction based on a Multi-Sensor Data Fusion Model. Li, N.; Gebraeel, N.; Lei, Y.; Fang, X.; Cai, X.; and Yan, T. Reliability Engineering & System Safety,107249. October 2020.
Remaining Useful Life Prediction based on a Multi-Sensor Data Fusion Model [link]Paper   doi   link   bibtex   abstract  
Multiple degradation mode analysis via gated recurrent unit mode recognizer and life predictors for complex equipment. Luo, Q.; Chang, Y.; Chen, J.; Jing, H.; Lv, H.; and Pan, T. Computers in Industry, 123: 103332. December 2020.
Multiple degradation mode analysis via gated recurrent unit mode recognizer and life predictors for complex equipment [link]Paper   doi   link   bibtex   abstract  
Smart anomaly detection in sensor systems: A multi-perspective review. Erhan, L.; Ndubuaku, M.; Di Mauro, M.; Song, W.; Chen, M.; Fortino, G.; Bagdasar, O.; and Liotta, A. Information Fusion. October 2020.
Smart anomaly detection in sensor systems: A multi-perspective review [link]Paper   doi   link   bibtex   abstract  
Predictive maintenance in the Industry 4.0: A systematic literature review. Zonta, T.; da Costa, C. A.; da Rosa Righi, R.; de Lima, M. J.; da Trindade, E. S.; and Li, G. P. Computers & Industrial Engineering, 150: 106889. December 2020.
Predictive maintenance in the Industry 4.0: A systematic literature review [link]Paper   doi   link   bibtex   abstract  
A unified approach towards performance monitoring and condition-based maintenance in grinding machines. Ahmer, M.; Marklund, P.; Gustafsson, M.; and Berglund, K. Procedia CIRP, 93: 1388–1393. January 2020.
A unified approach towards performance monitoring and condition-based maintenance in grinding machines [link]Paper   doi   link   bibtex   abstract  
Machine Learning and Data Mining in Manufacturing. Dogan, A.; and Birant, D. Expert Systems with Applications,114060. September 2020.
Machine Learning and Data Mining in Manufacturing [link]Paper   doi   link   bibtex   abstract  
Interpretable Anomaly Prediction: Predicting anomalous behavior in industry 4.0 settings via regularized logistic regression tools. Langone, R.; Cuzzocrea, A.; and Skantzos, N. Data & Knowledge Engineering,101850. August 2020.
Interpretable Anomaly Prediction: Predicting anomalous behavior in industry 4.0 settings via regularized logistic regression tools [link]Paper   doi   link   bibtex   abstract  
A Dual-LSTM Framework Combining Change Point Detection and Remaining Useful Life Prediction. Shi, Z.; and Chehade, A. Reliability Engineering & System Safety,107257. October 2020.
A Dual-LSTM Framework Combining Change Point Detection and Remaining Useful Life Prediction [link]Paper   doi   link   bibtex   abstract  
A benchmark study on time series clustering. Javed, A.; Lee, B. S.; and Rizzo, D. M. Machine Learning with Applications, 1: 100001. September 2020.
A benchmark study on time series clustering [link]Paper   doi   link   bibtex   abstract  
An Evaluation of Change Point Detection Algorithms. Burg, G. J. J. v. d.; and Williams, C. K. I. arXiv:2003.06222 [cs, stat]. May 2020. arXiv: 2003.06222
An Evaluation of Change Point Detection Algorithms [link]Paper   link   bibtex   abstract  
Selective review of offline change point detection methods. Truong, C.; Oudre, L.; and Vayatis, N. Signal Processing, 167: 107299. February 2020.
Selective review of offline change point detection methods [link]Paper   doi   link   bibtex   abstract  
Variable-length Subsequence Clustering in Time Series. Duan, J.; and Guo, L. IEEE Transactions on Knowledge and Data Engineering,1–1. 2020. Conference Name: IEEE Transactions on Knowledge and Data Engineering
doi   link   bibtex   abstract  
NEWMA: A New Method for Scalable Model-Free Online Change-Point Detection. Keriven, N.; Garreau, D.; and Poli, I. IEEE Transactions on Signal Processing, 68: 3515–3528. 2020. Conference Name: IEEE Transactions on Signal Processing
doi   link   bibtex   abstract  
Dynamic risk consideration of predicted maintenance needs regarding economic efficiency. Foerster, F.; and Nikelowski, L. Procedia CIRP, 93: 915–920. January 2020.
Dynamic risk consideration of predicted maintenance needs regarding economic efficiency [link]Paper   doi   link   bibtex   abstract  
Comparison of Time Series Clustering Algorithms for Machine State Detection. Hennig, M.; Grafinger, M.; Gerhard, D.; Dumss, S.; and Rosenberger, P. Procedia CIRP, 93: 1352–1357. January 2020.
Comparison of Time Series Clustering Algorithms for Machine State Detection [link]Paper   doi   link   bibtex   abstract  
Data-driven Models for Fault Classification and Prediction of Industrial Robots. Nentwich, C.; Junker, S.; and Reinhart, G. Procedia CIRP, 93: 1055–1060. January 2020.
Data-driven Models for Fault Classification and Prediction of Industrial Robots [link]Paper   doi   link   bibtex   abstract  
Systematic review on machine learning (ML) methods for manufacturing processes – Identifying artificial intelligence (AI) methods for field application. Fahle, S.; Prinz, C.; and Kuhlenkötter, B. Procedia CIRP, 93: 413–418. January 2020.
Systematic review on machine learning (ML) methods for manufacturing processes – Identifying artificial intelligence (AI) methods for field application [link]Paper   doi   link   bibtex   abstract  
Digital twins in manufacturing: an assessment of drivers, enablers and barriers to implementation. Neto, A. A.; Deschamps, F.; da Silva, E. R.; and de Lima, E. P. Procedia CIRP, 93: 210–215. January 2020.
Digital twins in manufacturing: an assessment of drivers, enablers and barriers to implementation [link]Paper   doi   link   bibtex   abstract  
Automated Data Labeling and Anomaly Detection Using Airborne Sound Analysis. Mühlbauer, M.; Würschinger, H.; Polzer, D.; Ju, S.; and Hanenkamp, N. Procedia CIRP, 93: 1247–1252. January 2020.
Automated Data Labeling and Anomaly Detection Using Airborne Sound Analysis [link]Paper   doi   link   bibtex   abstract  
Multi-objective adjustment of remaining useful life predictions based on reinforcement learning. Kozjek, D.; Malus, A.; and Vrabič, R. Procedia CIRP, 93: 425–430. January 2020.
Multi-objective adjustment of remaining useful life predictions based on reinforcement learning [link]Paper   doi   link   bibtex   abstract  
Big data and stream processing platforms for Industry 4.0 requirements mapping for a predictive maintenance use case. Sahal, R.; Breslin, J. G.; and Ali, M. I. Journal of Manufacturing Systems, 54: 138–151. January 2020.
Big data and stream processing platforms for Industry 4.0 requirements mapping for a predictive maintenance use case [link]Paper   doi   link   bibtex  
Towards multi-model approaches to predictive maintenance: A systematic literature survey on diagnostics and prognostics. Montero Jimenez, J. J.; Schwartz, S.; Vingerhoeds, R.; Grabot, B.; and Salaün, M. Journal of Manufacturing Systems, 56: 539–557. July 2020.
Towards multi-model approaches to predictive maintenance: A systematic literature survey on diagnostics and prognostics [link]Paper   doi   link   bibtex   abstract  
Unsupervised Scalable Representation Learning for Multivariate Time Series. Franceschi, J.; Dieuleveut, A.; and Jaggi, M. arXiv:1901.10738 [cs, stat]. January 2020. arXiv: 1901.10738
Unsupervised Scalable Representation Learning for Multivariate Time Series [link]Paper   link   bibtex   abstract  
  2019 (62)
Interactive feature extraction for diagnostic trouble codes in predictive maintenance: A case study from automotive domain. Pirasteh, P.; Nowaczyk, S.; Pashami, S.; Löwenadler, M.; Thunberg, K.; Ydreskog, H.; and Berck, P. In Proceedings of the Workshop on Interactive Data Mining, of WIDM'19, pages 1–10, New York, NY, USA, February 2019. Association for Computing Machinery
Interactive feature extraction for diagnostic trouble codes in predictive maintenance: A case study from automotive domain [link]Paper   doi   link   bibtex   abstract  
Semi-supervised Learning over Streaming Data using MOA. Le Nguyen, M. H.; Gomes, H. M.; and Bifet, A. In 2019 IEEE International Conference on Big Data (Big Data), pages 553–562, December 2019.
doi   link   bibtex   abstract  
Remote Diagnosis and Condition-based Maintenance for Rolling Stock at SNCF. Verdun, C.; Turgis, F.; and Audier, P. In Tokyo, Japan, 2019.
link   bibtex   abstract  
Kernel Based Online Change Point Detection. Bouchikhi, I.; Ferrari, A.; Richard, C.; Bourrier, A.; and Bernot, M. In 2019 27th European Signal Processing Conference (EUSIPCO), pages 1–5, September 2019. ISSN: 2076-1465
doi   link   bibtex   abstract   5 downloads  
Dynamic Feature Selection for Clustering High Dimensional Data Streams. Fahy, C.; and Yang, S. IEEE Access, 7: 127128–127140. 2019. Conference Name: IEEE Access
doi   link   bibtex   abstract  
Condition Monitoring of Hydraulic Systems by Classifying Sensor Data Streams. Chawathe, S. S. In 2019 IEEE 9th Annual Computing and Communication Workshop and Conference (CCWC), pages 0898–0904, January 2019.
doi   link   bibtex   abstract  
A New Hierarchical Framework for Detection and Isolation of Multiple Faults in Complex Industrial Processes. Peng, K.; Ren, Z.; Dong, J.; and Ma, L. IEEE Access, 7: 12006–12015. 2019. Conference Name: IEEE Access
doi   link   bibtex   abstract  
Discriminant autoencoder for feature extraction in fault diagnosis. Luo, X.; Li, X.; Wang, Z.; and Liang, J. Chemometrics and Intelligent Laboratory Systems, 192: 103814. September 2019.
Discriminant autoencoder for feature extraction in fault diagnosis [link]Paper   doi   link   bibtex   abstract  
Revisiting Self-Supervised Visual Representation Learning. Kolesnikov, A.; Zhai, X.; and Beyer, L. arXiv:1901.09005 [cs]. January 2019. arXiv: 1901.09005
Revisiting Self-Supervised Visual Representation Learning [link]Paper   link   bibtex   abstract  
Three scenarios for continual learning. van de Ven, G. M.; and Tolias, A. S. arXiv:1904.07734 [cs, stat]. April 2019. arXiv: 1904.07734
Three scenarios for continual learning [link]Paper   link   bibtex   abstract  
Deep learning for sensor-based activity recognition: A survey. Wang, J.; Chen, Y.; Hao, S.; Peng, X.; and Hu, L. Pattern Recognition Letters, 119: 3–11. March 2019.
Deep learning for sensor-based activity recognition: A survey [link]Paper   doi   link   bibtex   abstract  
Novelty Detection for Multi-Label Stream Classification. Costa Júnior, J. D.; Faria, E. R.; Silva, J. A.; Gama, J.; and Cerri, R. In 2019 8th Brazilian Conference on Intelligent Systems (BRACIS), pages 144–149, October 2019. ISSN: 2643-6264
doi   link   bibtex   abstract  
Optimizing Data Stream Representation: An Extensive Survey on Stream Clustering Algorithms. Carnein, M.; and Trautmann, H. Business & Information Systems Engineering, 61(3): 277–297. June 2019.
Optimizing Data Stream Representation: An Extensive Survey on Stream Clustering Algorithms [link]Paper   doi   link   bibtex   abstract  
Application of Machine Learning and Spatial Bootstrapping to Image Processing for Predictive Maintenance. Krishnamurthy, V.; Nezafati, K.; and Singh, V. In 2019 IEEE International Conference on Big Data (Big Data), pages 4395–4401, December 2019.
doi   link   bibtex   abstract  
Methods for fault diagnosis of high-speed railways: A review. Zang, Y.; Shangguan, W.; Cai, B.; Wang, H.; and Pecht, M. G Proceedings of the Institution of Mechanical Engineers, Part O: Journal of Risk and Reliability, 233(5): 908–922. October 2019. Publisher: SAGE Publications
Methods for fault diagnosis of high-speed railways: A review [link]Paper   doi   link   bibtex   abstract  
Intelligent fault diagnosis for rotating machinery using deep Q-network based health state classification: A deep reinforcement learning approach. Ding, Y.; Ma, L.; Ma, J.; Suo, M.; Tao, L.; Cheng, Y.; and Lu, C. Advanced Engineering Informatics, 42: 100977. October 2019.
Intelligent fault diagnosis for rotating machinery using deep Q-network based health state classification: A deep reinforcement learning approach [link]Paper   doi   link   bibtex   abstract  
Equipment Health Indicator Learning Using Deep Reinforcement Learning. Zhang, C.; Gupta, C.; Farahat, A.; Ristovski, K.; and Ghosh, D. In Brefeld, U.; Curry, E.; Daly, E.; MacNamee, B.; Marascu, A.; Pinelli, F.; Berlingerio, M.; and Hurley, N., editor(s), Machine Learning and Knowledge Discovery in Databases, of Lecture Notes in Computer Science, pages 488–504, Cham, 2019. Springer International Publishing
doi   link   bibtex   abstract  
Concept Drift Adaption for Online Anomaly Detection in Structural Health Monitoring. Tian, H.; Khoa, N. L. D.; Anaissi, A.; Wang, Y.; and Chen, F. In Proceedings of the 28th ACM International Conference on Information and Knowledge Management, of CIKM '19, pages 2813–2821, New York, NY, USA, November 2019. Association for Computing Machinery
Concept Drift Adaption for Online Anomaly Detection in Structural Health Monitoring [link]Paper   doi   link   bibtex   abstract  
Machine Health Monitoring Using Adaptive Kernel Spectral Clustering and Deep Long Short-Term Memory Recurrent Neural Networks. Cheng, Y.; Zhu, H.; Wu, J.; and Shao, X. IEEE Transactions on Industrial Informatics, 15(2): 987–997. February 2019. Conference Name: IEEE Transactions on Industrial Informatics
doi   link   bibtex   abstract  
Big Data Opportunities: System Health Monitoring and Management. Tsui, K. L.; Zhao, Y.; and Wang, D. IEEE Access, 7: 68853–68867. 2019. Conference Name: IEEE Access
doi   link   bibtex   abstract  
Online State-of-Health Estimation for Li-Ion Battery Using Partial Charging Segment Based on Support Vector Machine. Feng, X.; Weng, C.; He, X.; Han, X.; Lu, L.; Ren, D.; and Ouyang, M. IEEE Transactions on Vehicular Technology, 68(9): 8583–8592. September 2019. Conference Name: IEEE Transactions on Vehicular Technology
doi   link   bibtex   abstract  
Deep learning and its applications to machine health monitoring. Zhao, R.; Yan, R.; Chen, Z.; Mao, K.; Wang, P.; and Gao, R. X. Mechanical Systems and Signal Processing, 115: 213–237. January 2019.
Deep learning and its applications to machine health monitoring [link]Paper   doi   link   bibtex   abstract  
Development of clustering-based sensor fault detection and diagnosis strategy for chilled water system. Luo, X. J.; Fong, K. F.; Sun, Y. J.; and Leung, M. K. H. Energy and Buildings, 186: 17–36. March 2019.
Development of clustering-based sensor fault detection and diagnosis strategy for chilled water system [link]Paper   doi   link   bibtex   abstract  
PyOD: A Python Toolbox for Scalable Outlier Detection. Zhao, Y.; Nasrullah, Z.; and Li, Z. arXiv:1901.01588 [cs, stat]. June 2019. arXiv: 1901.01588
PyOD: A Python Toolbox for Scalable Outlier Detection [link]Paper   link   bibtex   abstract  
Tennessee Eastman simulation dataset. Chen, X. 2019. Publication Title: IEEE Dataport Publisher: IEEE
Tennessee Eastman simulation dataset [link]Paper   doi   link   bibtex   abstract  
Particle swarm Optimized Density-based Clustering and Classification: Supervised and unsupervised learning approaches. Guan, C.; Yuen, K. K. F.; and Coenen, F. Swarm and Evolutionary Computation, 44: 876–896. February 2019.
Particle swarm Optimized Density-based Clustering and Classification: Supervised and unsupervised learning approaches [link]Paper   doi   link   bibtex   abstract  
Mixture Hidden Markov Models for Sequence Data: The seqHMM Package in R. Helske, S.; and Helske, J. Journal of Statistical Software, 88: 1–32. January 2019.
Mixture Hidden Markov Models for Sequence Data: The seqHMM Package in R [link]Paper   doi   link   bibtex   abstract  
A review of techniques for online control of parameters in swarm intelligence and evolutionary computation algorithms. Parpinelli, R. S.; Plichoski, G. F.; Silva, R. S. D.; and Narloch, P. H. International Journal of Bio-Inspired Computation. February 2019. Publisher: Inderscience Publishers (IEL)
A review of techniques for online control of parameters in swarm intelligence and evolutionary computation algorithms [link]Paper   link   bibtex   abstract  
Input-Output Hidden Markov Model for Diagnosis of Complex System. Shahin, K. I.; Simon, C.; and Weber, P. In June 2019.
link   bibtex   abstract  
A condition-based opportunistic maintenance strategy for multi-component system. Zhao, H.; Xu, F.; Liang, B.; Zhang, J.; and Song, P. Structural Health Monitoring, 18(1): 270–283. January 2019. Publisher: SAGE Publications
A condition-based opportunistic maintenance strategy for multi-component system [link]Paper   doi   link   bibtex   abstract  
Multi-label classification via incremental clustering on an evolving data stream. Nguyen, T. T.; Dang, M. T.; Luong, A. V.; Liew, A. W.; Liang, T.; and McCall, J. Pattern Recognition, 95: 96–113. November 2019.
Multi-label classification via incremental clustering on an evolving data stream [link]Paper   doi   link   bibtex   abstract  
Fixing Mislabeling by Human Annotators Leveraging Conflict Resolution and Prior Knowledge. Zeni, M.; Zhang, W.; Bignotti, E.; Passerini, A.; and Giunchiglia, F. Proceedings of the ACM on Interactive, Mobile, Wearable and Ubiquitous Technologies, 3(1): 32:1–32:23. March 2019.
Fixing Mislabeling by Human Annotators Leveraging Conflict Resolution and Prior Knowledge [link]Paper   doi   link   bibtex   abstract  
Learning structured and non-redundant representations with deep neural networks. Yang, J.; Xiong, W.; Li, S.; and Xu, C. Pattern Recognition, 86: 224–235. February 2019.
Learning structured and non-redundant representations with deep neural networks [link]Paper   doi   link   bibtex   abstract  
Incremental semi-supervised learning on streaming data. Li, Y.; Wang, Y.; Liu, Q.; Bi, C.; Jiang, X.; and Sun, S. Pattern Recognition, 88: 383–396. April 2019.
Incremental semi-supervised learning on streaming data [link]Paper   doi   link   bibtex   abstract  
Synchronization-based clustering on evolving data stream. Shao, J.; Tan, Y.; Gao, L.; Yang, Q.; Plant, C.; and Assent, I. Information Sciences, 501: 573–587. October 2019.
Synchronization-based clustering on evolving data stream [link]Paper   doi   link   bibtex   abstract  
A density-based competitive data stream clustering network with self-adaptive distance metric. Xu, B.; Shen, F.; and Zhao, J. Neural Networks, 110: 141–158. February 2019.
A density-based competitive data stream clustering network with self-adaptive distance metric [link]Paper   doi   link   bibtex   abstract  
Approaching neural net feature interpretation using stacked autoencoders: gene expression profiling of systemic lupus erythematosus patients. Breitenstein, M. K.; Hu, V. J.; Bhatnagar, R.; and Ratnagiri, M. AMIA Summits on Translational Science Proceedings, 2019: 435–442. May 2019.
Approaching neural net feature interpretation using stacked autoencoders: gene expression profiling of systemic lupus erythematosus patients [link]Paper   link   bibtex   abstract  
Online Fault Diagnosis for Industrial Processes With Bayesian Network-Based Probabilistic Ensemble Learning Strategy. Yu, W.; and Zhao, C. IEEE Transactions on Automation Science and Engineering, 16(4): 1922–1932. October 2019. Conference Name: IEEE Transactions on Automation Science and Engineering
doi   link   bibtex   abstract  
Railway Vehicle Door Fault Diagnosis Method with Bayesian Network. Chen, R.; Zhu, S.; Hao, F.; Zhu, B.; Zhao, Z.; and Xu, Y. In 2019 4th International Conference on Control and Robotics Engineering (ICCRE), pages 70–74, April 2019.
doi   link   bibtex   abstract  
A single Bayesian network classifier for monitoring with unknown classes. Atoui, M. A.; Cohen, A.; Verron, S.; and Kobi, A. Engineering Applications of Artificial Intelligence, 85: 681–690. October 2019.
A single Bayesian network classifier for monitoring with unknown classes [link]Paper   doi   link   bibtex   abstract  
Fault Diagnosis of Rotating Electrical Machines Using Multi-Label Classification. Dineva, A.; Mosavi, A.; Gyimesi, M.; Vajda, I.; Nabipour, N.; and Rabczuk, T. Applied Sciences, 9(23): 5086. January 2019. Number: 23 Publisher: Multidisciplinary Digital Publishing Institute
Fault Diagnosis of Rotating Electrical Machines Using Multi-Label Classification [link]Paper   doi   link   bibtex   abstract  
μDBSCAN: An Exact Scalable DBSCAN Algorithm for Big Data Exploiting Spatial Locality. Sarma, A.; Goyal, P.; Kumari, S.; Wani, A.; Challa, J. S.; Islam, S.; and Goyal, N. In 2019 IEEE International Conference on Cluster Computing (CLUSTER), pages 1–11, September 2019. ISSN: 2168-9253
doi   link   bibtex   abstract  
A Fuzzy Density-based Clustering Algorithm for Streaming Data. Aliperti, A.; Bechini, A.; Marcelloni, F.; and Renda, A. In 2019 IEEE International Conference on Fuzzy Systems (FUZZ-IEEE), pages 1–6, June 2019. ISSN: 1558-4739
doi   link   bibtex   abstract  
Concept-evolution detection in non-stationary data streams: a fuzzy clustering approach. ZareMoodi, P.; Kamali Siahroudi, S.; and Beigy, H. Knowledge and Information Systems, 60(3): 1329–1352. September 2019.
Concept-evolution detection in non-stationary data streams: a fuzzy clustering approach [link]Paper   doi   link   bibtex   abstract  
Deep learning-based remaining useful life estimation of bearings using multi-scale feature extraction. Li, X.; Zhang, W.; and Ding, Q. Reliability Engineering & System Safety, 182: 208–218. February 2019.
Deep learning-based remaining useful life estimation of bearings using multi-scale feature extraction [link]Paper   doi   link   bibtex   abstract  
A multimodal and hybrid deep neural network model for Remaining Useful Life estimation. Al-Dulaimi, A.; Zabihi, S.; Asif, A.; and Mohammadi, A. Computers in Industry, 108: 186–196. June 2019.
A multimodal and hybrid deep neural network model for Remaining Useful Life estimation [link]Paper   doi   link   bibtex   abstract  
Remaining useful life estimation using a bidirectional recurrent neural network based autoencoder scheme. Yu, W.; Kim, I. Y.; and Mechefske, C. Mechanical Systems and Signal Processing, 129: 764–780. August 2019.
Remaining useful life estimation using a bidirectional recurrent neural network based autoencoder scheme [link]Paper   doi   link   bibtex   abstract  
A new dynamic predictive maintenance framework using deep learning for failure prognostics. Nguyen, K. T. P.; and Medjaher, K. Reliability Engineering & System Safety, 188: 251–262. August 2019.
A new dynamic predictive maintenance framework using deep learning for failure prognostics [link]Paper   doi   link   bibtex   abstract  
Smart Condition Monitoring for Industry 4.0 Manufacturing Processes: An Ontology-Based Approach. Cao, Q.; Giustozzi, F.; Zanni-Merk, C.; De Bertrand de Beuvron, F.; and Reich, C. Cybernetics and Systems, 50: 1–15. February 2019.
doi   link   bibtex   abstract  
Signal2Vec: Time Series Embedding Representation. Nalmpantis, C.; and Vrakas, D. In pages 80–90. May 2019.
doi   link   bibtex   abstract  
Industrialization of Condition Based Maintenance for Complex Systems in a Complex Maintenance Environment, Example of NAT. Turgis, F.; Audier, P.; Coutadeur, Q.; and Verdun, C. In December 2019.
link   bibtex   abstract  
Deep learning for time series classification: a review. Ismail Fawaz, H.; Forestier, G.; Weber, J.; Idoumghar, L.; and Muller, P. Data Mining and Knowledge Discovery, 33(4): 917–963. July 2019.
Deep learning for time series classification: a review [link]Paper   doi   link   bibtex   abstract  
Active Learning with Abstaining Classifiers for Imbalanced Drifting Data Streams. Korycki, Ł; Cano, A.; and Krawczyk, B. In 2019 IEEE International Conference on Big Data (Big Data), pages 2334–2343, December 2019.
doi   link   bibtex   abstract  
A Novel Segmentation and Representation Approach for Streaming Time Series. Hu, Y.; Guan, P.; Zhan, P.; Ding, Y.; and Li, X. IEEE Access, 7: 184423–184437. 2019. Conference Name: IEEE Access
doi   link   bibtex   abstract  
Pattern detection for time series trajectories in human in the loop applications. Mabrok, M. A.; and Abdel-Aty, A. Journal of Intelligent & Fuzzy Systems, 37(1): 115–123. January 2019. Publisher: IOS Press
Pattern detection for time series trajectories in human in the loop applications [link]Paper   doi   link   bibtex   abstract  
A Survey of Parallel Sequential Pattern Mining. Gan, W.; Lin, J. C.; Fournier-Viger, P.; Chao, H.; and Yu, P. S. arXiv:1805.10515 [cs]. April 2019. arXiv: 1805.10515
A Survey of Parallel Sequential Pattern Mining [link]Paper   doi   link   bibtex   abstract  
Sample Adaptive Multiple Kernel Learning for Failure Prediction of Railway Points. Li, Z.; Zhang, J.; Wu, Q.; Gong, Y.; Yi, J.; and Kirsch, C. 2019. _eprint: 1907.01162
link   bibtex  
Machine learning for streaming data: state of the art, challenges, and opportunities. Gomes, H. M.; Read, J.; Bifet, A.; Barddal, J. P.; and Gama, J. ACM SIGKDD Explorations Newsletter, 21(2): 6–22. November 2019.
Machine learning for streaming data: state of the art, challenges, and opportunities [link]Paper   doi   link   bibtex   abstract  
A systematic literature review of machine learning methods applied to predictive maintenance. Carvalho, T. P.; Soares, F. A. A. M. N.; Vita, R.; Francisco, R. d. P.; Basto, J. P.; and Alcalá, S. G. S. Computers & Industrial Engineering, 137: 106024. 2019.
A systematic literature review of machine learning methods applied to predictive maintenance [link]Paper   doi   link   bibtex  
Overview of predictive condition based maintenance research using bibliometric indicators. Noman, M. A.; Nasr, E. S. A.; Al-Shayea, A.; and Kaid, H. Journal of King Saud University - Engineering Sciences, 31(4): 355 – 367. 2019.
Overview of predictive condition based maintenance research using bibliometric indicators [link]Paper   doi   link   bibtex  
Data analysis and feature selection for predictive maintenance: A case-study in the metallurgic industry. Fernandes, M.; Canito, A.; Bolón-Canedo, V.; Conceição, L.; Praça, I.; and Marreiros, G. International Journal of Information Management, 46: 252 – 262. 2019.
Data analysis and feature selection for predictive maintenance: A case-study in the metallurgic industry [link]Paper   doi   link   bibtex   abstract  
Predictive maintenance using tree-based classification techniques: A case of railway switches. Allah Bukhsh, Z.; Saeed, A.; Stipanovic, I.; and Doree, A. G. Transportation Research Part C: Emerging Technologies, 101: 35–54. April 2019.
Predictive maintenance using tree-based classification techniques: A case of railway switches [link]Paper   doi   link   bibtex   abstract  
  2018 (78)
Transfer learning for time series classification. Ismail Fawaz, H.; Forestier, G.; Weber, J.; Idoumghar, L.; and Muller, P. In 2018 IEEE International Conference on Big Data (Big Data), pages 1367–1376, December 2018.
Transfer learning for time series classification [link]Paper   doi   link   bibtex   abstract  
On First-Order Meta-Learning Algorithms. Nichol, A.; Achiam, J.; and Schulman, J. October 2018. arXiv:1803.02999 [cs]
On First-Order Meta-Learning Algorithms [link]Paper   doi   link   bibtex   abstract  
Incremental on-line learning: A review and comparison of state of the art algorithms. Losing, V.; Hammer, B.; and Wersing, H. Neurocomputing, 275: 1261–1274. January 2018.
Incremental on-line learning: A review and comparison of state of the art algorithms [link]Paper   doi   link   bibtex   abstract  
Explainable artificial intelligence: A survey. Došilović, F. K.; Brčić, M.; and Hlupić, N. In 2018 41st International Convention on Information and Communication Technology, Electronics and Microelectronics (MIPRO), pages 0210–0215, May 2018.
doi   link   bibtex   abstract  
BS EN 13306 (Maintenance - Maintenance terminology). 2018.
link   bibtex  
Learning Fast and Slow: A Unified Batch/Stream Framework. Montiel, J.; Bifet, A.; Losing, V.; Read, J.; and Abdessalem, T. In 2018 IEEE International Conference on Big Data (Big Data), pages 1065–1072, December 2018.
doi   link   bibtex   abstract  
Connectionlens: finding connections across heterogeneous data sources. Chanial, C.; Dziri, R.; Galhardas, H.; Leblay, J.; Nguyen, M. L.; and Manolescu, I. Proceedings of the VLDB Endowment, 11(12): 2030–2033. August 2018.
Connectionlens: finding connections across heterogeneous data sources [link]Paper   doi   link   bibtex   abstract  
A survey on online feature selection with streaming features. Hu, X.; Zhou, P.; Li, P.; Wang, J.; and Wu, X. Frontiers of Computer Science, 12(3): 479–493. June 2018.
A survey on online feature selection with streaming features [link]Paper   doi   link   bibtex   abstract  
Clustering of nonstationary data streams: A survey of fuzzy partitional methods. Abdullatif, A.; Masulli, F.; and Rovetta, S. WIREs Data Mining and Knowledge Discovery, 8(4): e1258. 2018. _eprint: https://onlinelibrary.wiley.com/doi/pdf/10.1002/widm.1258
Clustering of nonstationary data streams: A survey of fuzzy partitional methods [link]Paper   doi   link   bibtex   abstract  
Self-Organizing Maps for Anomaly Localization and Predictive Maintenance in Cyber-Physical Production Systems. von Birgelen, A.; Buratti, D.; Mager, J.; and Niggemann, O. Procedia CIRP, 72: 480–485. January 2018.
Self-Organizing Maps for Anomaly Localization and Predictive Maintenance in Cyber-Physical Production Systems [link]Paper   doi   link   bibtex   abstract  
A New Multi-Objective Decision-Making Approach Applied to the Tennessee Eastman Process. Tidriri, K.; Tiplica, T.; Chatti, N.; and Verron, S. IFAC-PapersOnLine, 51(24): 1212–1219. January 2018.
A New Multi-Objective Decision-Making Approach Applied to the Tennessee Eastman Process [link]Paper   doi   link   bibtex   abstract  
An Intelligent Fault Detection Method Based on Sparse Auto-Encoder for Industrial Process Systems: A Case Study on Tennessee Eastman Process Chemical System. Ren, H.; Chai, Y.; Qu, J.; Zhang, K.; and Tang, Q. In 2018 10th International Conference on Intelligent Human-Machine Systems and Cybernetics (IHMSC), volume 01, pages 190–193, August 2018.
doi   link   bibtex   abstract  
Evaluation of a Hybrid Clustering Approach for a Benchmark Industrial System. Fontes, C. H.; and Budman, H. Industrial & Engineering Chemistry Research, 57(32): 11039–11049. August 2018. Publisher: American Chemical Society
Evaluation of a Hybrid Clustering Approach for a Benchmark Industrial System [link]Paper   doi   link   bibtex   abstract  
Data mining and clustering in chemical process databases for monitoring and knowledge discovery. Thomas, M. C.; Zhu, W.; and Romagnoli, J. A. Journal of Process Control, 67: 160–175. July 2018.
Data mining and clustering in chemical process databases for monitoring and knowledge discovery [link]Paper   doi   link   bibtex   abstract  
Model-based fault detection and diagnosis of complex chemical processes: A case study of the Tennessee Eastman process. Tidriri, K.; Chatti, N.; Verron, S.; and Tiplica, T. Proceedings of the Institution of Mechanical Engineers, Part I: Journal of Systems and Control Engineering, 232(6): 742–760. July 2018. Publisher: IMECHE
Model-based fault detection and diagnosis of complex chemical processes: A case study of the Tennessee Eastman process [link]Paper   doi   link   bibtex   abstract  
Fault Diagnosis of Tennessee-Eastman Process Using Orthogonal Incremental Extreme Learning Machine Based on Driving Amount. Zou, W.; Xia, Y.; and Li, H. IEEE Transactions on Cybernetics, 48(12): 3403–3410. December 2018. Conference Name: IEEE Transactions on Cybernetics
doi   link   bibtex   abstract  
Fault Detection of the Tennessee Eastman Process using Online Reduced Kernel PCA. Fazai, R.; Mansouri, M.; Taouali, O.; Harkat, M.; Bouguila, N.; and Nounou, M. In 2018 European Control Conference (ECC), pages 2697–2702, June 2018.
doi   link   bibtex   abstract  
Autonomous Deep Learning: Incremental Learning of Denoising Autoencoder for Evolving Data Streams. Pratama, M.; Ashfahani, A.; Ong, Y. S.; Ramasamy, S.; and Lughofer, E. arXiv:1809.09081 [cs, stat]. September 2018. arXiv: 1809.09081
Autonomous Deep Learning: Incremental Learning of Denoising Autoencoder for Evolving Data Streams [link]Paper   link   bibtex   abstract  
Online Deep Learning: Learning Deep Neural Networks on the Fly. Sahoo, D.; Pham, Q.; Lu, J.; and Hoi, S. C. H. ,2660–2666. 2018.
Online Deep Learning: Learning Deep Neural Networks on the Fly [link]Paper   link   bibtex   abstract  
Scikit-multiflow: a multi-output streaming framework. Montiel, J.; Read, J.; Bifet, A.; and Abdessalem, T. The Journal of Machine Learning Research, 19(1): 2915–2914. January 2018.
link   bibtex   abstract  
Activity Recognition with Evolving Data Streams: A Review. Abdallah, Z. S.; Gaber, M. M.; Srinivasan, B.; and Krishnaswamy, S. ACM Computing Surveys, 51(4): 71:1–71:36. July 2018.
Activity Recognition with Evolving Data Streams: A Review [link]Paper   doi   link   bibtex   abstract  
Design on Fault Diagnosis Expert System for Railway Signal Equipment. Wu, G. In pages 36–41, June 2018. Atlantis Press ISSN: 2352-5401
Design on Fault Diagnosis Expert System for Railway Signal Equipment [link]Paper   doi   link   bibtex   abstract  
Reinforcement Learning, second edition: An Introduction. Sutton, R. S.; and Barto, A. G. MIT Press, November 2018. Google-Books-ID: uWV0DwAAQBAJ
link   bibtex   abstract  
Predictive Maintenance in Aviation: Failure Prediction from Post-Flight Reports. Korvesis, P.; Besseau, S.; and Vazirgiannis, M. In 2018 IEEE 34th International Conference on Data Engineering (ICDE), pages 1414–1422, April 2018. ISSN: 2375-026X
doi   link   bibtex   abstract  
Novel battery state-of-health online estimation method using multiple health indicators and an extreme learning machine. Pan, H.; Lü, Z.; Wang, H.; Wei, H.; and Chen, L. Energy, 160: 466–477. October 2018.
Novel battery state-of-health online estimation method using multiple health indicators and an extreme learning machine [link]Paper   doi   link   bibtex   abstract  
Machine Health Monitoring Using Local Feature-Based Gated Recurrent Unit Networks. Zhao, R.; Wang, D.; Yan, R.; Mao, K.; Shen, F.; and Wang, J. IEEE Transactions on Industrial Electronics, 65(2): 1539–1548. February 2018. Conference Name: IEEE Transactions on Industrial Electronics
doi   link   bibtex   abstract  
Online automatic diagnosis of wind turbine bearings progressive degradations under real experimental conditions based on unsupervised machine learning. Ben Ali, J.; Saidi, L.; Harrath, S.; Bechhoefer, E.; and Benbouzid, M. Applied Acoustics, 132: 167–181. March 2018.
Online automatic diagnosis of wind turbine bearings progressive degradations under real experimental conditions based on unsupervised machine learning [link]Paper   doi   link   bibtex   abstract  
Issues and Advances in Anomaly Detection Evaluation for Joint Human-Automated Systems. Rieth, C. A.; Amsel, B. D.; Tran, R.; and Cook, M. B. In Chen, J., editor(s), Advances in Human Factors in Robots and Unmanned Systems, of Advances in Intelligent Systems and Computing, pages 52–63, Cham, 2018. Springer International Publishing
doi   link   bibtex   abstract  
Detecting Anomalous Behavior of Black-Box Services Modeled with Distance-Based Online Clustering. Gulenko, A.; Schmidt, F.; Acker, A.; Wallschläger, M.; Kao, O.; and Liu, F. In 2018 IEEE 11th International Conference on Cloud Computing (CLOUD), pages 912–915, July 2018. ISSN: 2159-6190
doi   link   bibtex   abstract  
An approach to fault diagnosis with online detection of novel faults using fuzzy clustering tools. Rodríguez-Ramos, A.; da Silva Neto, A. J.; and Llanes-Santiago, O. Expert Systems with Applications, 113: 200–212. December 2018.
An approach to fault diagnosis with online detection of novel faults using fuzzy clustering tools [link]Paper   doi   link   bibtex   abstract  
Particle swarm optimization algorithm: an overview. Wang, D.; Tan, D.; and Liu, L. Soft Computing, 22(2): 387–408. January 2018.
Particle swarm optimization algorithm: an overview [link]Paper   doi   link   bibtex   abstract  
Modified DBSCAN Using Particle Swarm Optimization for Spatial Hotspot Identification. Wadhwa, A.; and Thakur, M. K. In 2018 Eleventh International Conference on Contemporary Computing (IC3), pages 1–3, August 2018. ISSN: 2572-6129
doi   link   bibtex   abstract  
DAGs with NO TEARS: Continuous Optimization for Structure Learning. Zheng, X.; Aragam, B.; Ravikumar, P. K; and Xing, E. P In Bengio, S.; Wallach, H.; Larochelle, H.; Grauman, K.; Cesa-Bianchi, N.; and Garnett, R., editor(s), Advances in Neural Information Processing Systems, volume 31, 2018. Curran Associates, Inc.
DAGs with NO TEARS: Continuous Optimization for Structure Learning [pdf]Paper   link   bibtex  
An integrated approach for system functional reliability assessment using Dynamic Bayesian Network and Hidden Markov Model. Rebello, S.; Yu, H.; and Ma, L. Reliability Engineering & System Safety, 180: 124–135. December 2018.
An integrated approach for system functional reliability assessment using Dynamic Bayesian Network and Hidden Markov Model [link]Paper   doi   link   bibtex   abstract  
ADBSCAN: Adaptive Density-Based Spatial Clustering of Applications with Noise for Identifying Clusters with Varying Densities. Khan, M. M. R.; Siddique, M. A. B.; Arif, R. B.; and Oishe, M. R. In 2018 4th International Conference on Electrical Engineering and Information Communication Technology (iCEEiCT), pages 107–111, September 2018.
doi   link   bibtex   abstract  
K-PdM: KPI-Oriented Machinery Deterioration Estimation Framework for Predictive Maintenance Using Cluster-Based Hidden Markov Model. Wu, Z.; Luo, H.; Yang, Y.; Lv, P.; Zhu, X.; Ji, Y.; and Wu, B. IEEE Access, 6: 41676–41687. 2018. Conference Name: IEEE Access
doi   link   bibtex   abstract  
Artificial intelligence for fault diagnosis of rotating machinery: A review. Liu, R.; Yang, B.; Zio, E.; and Chen, X. Mechanical Systems and Signal Processing, 108: 33–47. August 2018.
Artificial intelligence for fault diagnosis of rotating machinery: A review [link]Paper   doi   link   bibtex   abstract  
On the history of Discrete Event Systems. Silva, M. Annual Reviews in Control, 45: 213–222. January 2018.
On the history of Discrete Event Systems [link]Paper   doi   link   bibtex   abstract  
CRAFTML, an Efficient Clustering-based Random Forest for Extreme Multi-label Learning. Siblini, W.; Kuntz, P.; and Meyer, F. In Proceedings of the 35th International Conference on Machine Learning, pages 4664–4673, July 2018. PMLR ISSN: 2640-3498
CRAFTML, an Efficient Clustering-based Random Forest for Extreme Multi-label Learning [link]Paper   link   bibtex   abstract  
Unsupervised Locality-Preserving Robust Latent Low-Rank Recovery-Based Subspace Clustering for Fault Diagnosis. Gao, J.; Kang, M.; Tian, J.; Wu, L.; and Pecht, M. IEEE Access, 6: 52345–52354. 2018. Conference Name: IEEE Access
doi   link   bibtex   abstract  
Learning to Rank with Deep Autoencoder Features. Albuquerque, A.; Amador, T.; Ferreira, R.; Veloso, A.; and Ziviani, N. In 2018 International Joint Conference on Neural Networks (IJCNN), pages 1–8, July 2018. ISSN: 2161-4407
doi   link   bibtex   abstract  
A Bayesian Network approach for the reliability analysis of complex railway systems. Baglietto, E.; Consilvio, A.; Febbraro, A. D.; Papa, F.; and Sacco, N. In 2018 International Conference on Intelligent Rail Transportation (ICIRT), pages 1–6, December 2018.
doi   link   bibtex   abstract  
A Novel Multiplex Network-Based Sensor Information Fusion Model and Its Application to Industrial Multiphase Flow System. Gao, Z.; Dang, W.; Mu, C.; Yang, Y.; Li, S.; and Grebogi, C. IEEE Transactions on Industrial Informatics, 14(9): 3982–3988. September 2018. Conference Name: IEEE Transactions on Industrial Informatics
doi   link   bibtex   abstract  
A novel time-frequency multilayer network for multivariate time series analysis. Dang, W.; Gao, Z.; Lv, D.; Liu, M.; Cai, Q.; and Hong, X. , 20(12): 125005. December 2018. Publisher: IOP Publishing
A novel time-frequency multilayer network for multivariate time series analysis [link]Paper   doi   link   bibtex   abstract  
Fuzzy extensions of the DBScan clustering algorithm. Ienco, D.; and Bordogna, G. Soft Computing, 22(5): 1719–1730. March 2018.
Fuzzy extensions of the DBScan clustering algorithm [link]Paper   doi   link   bibtex   abstract  
ICGT: A novel incremental clustering approach based on GMM tree. Wan, Y.; Liu, X.; Wu, Y.; Guo, L.; Chen, Q.; and Wang, M. Data & Knowledge Engineering, 117: 71–86. September 2018.
ICGT: A novel incremental clustering approach based on GMM tree [link]Paper   doi   link   bibtex   abstract  
An Integrated Ensemble Learning Model for Imbalanced Fault Diagnostics and Prognostics. Wu, Z.; Lin, W.; and Ji, Y. IEEE Access, 6: 8394–8402. 2018. Conference Name: IEEE Access
doi   link   bibtex   abstract  
A Novel Image Feature for the Remaining Useful Lifetime Prediction of Bearings Based on Continuous Wavelet Transform and Convolutional Neural Network. Yoo, Y.; and Baek, J. Applied Sciences, 8(7): 1102. July 2018. Number: 7 Publisher: Multidisciplinary Digital Publishing Institute
A Novel Image Feature for the Remaining Useful Lifetime Prediction of Bearings Based on Continuous Wavelet Transform and Convolutional Neural Network [link]Paper   doi   link   bibtex   abstract  
Machinery health indicator construction based on convolutional neural networks considering trend burr. Guo, L.; Lei, Y.; Li, N.; Yan, T.; and Li, N. Neurocomputing, 292: 142–150. May 2018.
Machinery health indicator construction based on convolutional neural networks considering trend burr [link]Paper   doi   link   bibtex   abstract  
Long short-term memory for machine remaining life prediction. Zhang, J.; Wang, P.; Yan, R.; and Gao, R. X. Journal of Manufacturing Systems, 48: 78–86. July 2018.
Long short-term memory for machine remaining life prediction [link]Paper   doi   link   bibtex   abstract  
Remaining useful life estimation of engineered systems using vanilla LSTM neural networks. Wu, Y.; Yuan, M.; Dong, S.; Lin, L.; and Liu, Y. Neurocomputing, 275: 167–179. January 2018.
Remaining useful life estimation of engineered systems using vanilla LSTM neural networks [link]Paper   doi   link   bibtex   abstract  
Ontology-Based Method for Fault Diagnosis of Loaders. Xu, F.; Liu, X.; Chen, W.; Zhou, C.; and Cao, B. Sensors, 18: 729. February 2018.
doi   link   bibtex   abstract  
OntoProg: An ontology-based model for implementing Prognostics Health Management in mechanical machines. Nuñez, D. L.; and Borsato, M. Advanced Engineering Informatics, 38: 746–759. October 2018.
OntoProg: An ontology-based model for implementing Prognostics Health Management in mechanical machines [link]Paper   doi   link   bibtex   abstract  
Feature selection in machine learning: A new perspective. Cai, J.; Luo, J.; Wang, S.; and Yang, S. Neurocomputing, 300: 70–79. July 2018.
Feature selection in machine learning: A new perspective [link]Paper   doi   link   bibtex   abstract  
A review on the application of deep learning in system health management. Khan, S.; and Yairi, T. Mechanical Systems and Signal Processing, 107: 241–265. July 2018.
A review on the application of deep learning in system health management [link]Paper   doi   link   bibtex   abstract  
Machine learning for predictive maintenance of industrial machines using IoT sensor data. Kanawaday, A.; and Sane, A. Proceedings of the IEEE International Conference on Software Engineering and Service Sciences, ICSESS, 2017-November: 87–90. 2018.
Machine learning for predictive maintenance of industrial machines using IoT sensor data [link]Paper   doi   link   bibtex   abstract  
Cloud-enhanced predictive maintenance. Schmidt, B.; and Wang, L. International Journal of Advanced Manufacturing Technology, 99(1-4): undefined–undefined. 2018. Number: 1-4
Cloud-enhanced predictive maintenance [link]Paper   doi   link   bibtex   abstract  
Combining active learning with concept drift detection for data stream mining. Krawczyk, B.; Pfahringer, B.; and Woźniak, M. In 2018 IEEE International Conference on Big Data (Big Data), pages 2239–2244, December 2018.
doi   link   bibtex   abstract  
Online ensemble learning with abstaining classifiers for drifting and noisy data streams. Krawczyk, B.; and Cano, A. Applied Soft Computing, 68: 677–692. July 2018.
Online ensemble learning with abstaining classifiers for drifting and noisy data streams [link]Paper   doi   link   bibtex   abstract  
Machine Learning approach for Predictive Maintenance in Industry 4.0. Paolanti, M.; Romeo, L.; Felicetti, A.; Mancini, A.; Frontoni, E.; and Loncarski, J. In 2018 14th IEEE/ASME International Conference on Mechatronic and Embedded Systems and Applications (MESA), pages 1–6, July 2018.
doi   link   bibtex   abstract  
On the importance of combining "the new" with "the old" - One important prerequisite for maintenance in Industry 4.0. Bengtsson, M.; and Lundström, G. Procedia Manufacturing, 25: 118–125. 2018.
On the importance of combining "the new" with "the old" - One important prerequisite for maintenance in Industry 4.0 [link]Paper   doi   link   bibtex   abstract  
An Industry 4.0-Enabled Low Cost Predictive Maintenance Approach for SMEs. Sezer, E.; Romero, D.; Guedea, F.; MacChi, M.; and Emmanouilidis, C. 2018 IEEE International Conference on Engineering, Technology and Innovation, ICE/ITMC 2018 - Proceedings,undefined–undefined. 2018.
An Industry 4.0-Enabled Low Cost Predictive Maintenance Approach for SMEs [link]Paper   doi   link   bibtex   abstract  
Time Series Segmentation through Automatic Feature Learning. Lee, W.; Ortiz, J.; Ko, B.; and Lee, R. arXiv:1801.05394 [cs, stat]. January 2018. arXiv: 1801.05394
Time Series Segmentation through Automatic Feature Learning [link]Paper   link   bibtex   abstract  
A Survey on Anomaly detection in Evolving Data: [with Application to Forest Fire Risk Prediction]. Salehi, M.; and Rashidi, L. ACM SIGKDD Explorations Newsletter, 20(1): 13–23. May 2018.
A Survey on Anomaly detection in Evolving Data: [with Application to Forest Fire Risk Prediction] [link]Paper   doi   link   bibtex   abstract  
ruptures: change point detection in Python. Truong, C.; Oudre, L.; and Vayatis, N. arXiv:1801.00826 [cs, stat]. January 2018. arXiv: 1801.00826
ruptures: change point detection in Python [link]Paper   link   bibtex   abstract  
A Novel Multi-resolution Representation for Streaming Time Series. Procedia Computer Science, 129: 178–184. January 2018. Publisher: Elsevier
A Novel Multi-resolution Representation for Streaming Time Series [link]Paper   doi   link   bibtex   abstract  
Unsupervised data analytics in mining big building operational data for energy efficiency enhancement: A review. Fan, C.; Xiao, F.; Li, Z.; and Wang, J. Energy and Buildings, 159: 296–308. January 2018.
Unsupervised data analytics in mining big building operational data for energy efficiency enhancement: A review [link]Paper   doi   link   bibtex   abstract  
Adaptive random forests for data stream regression. Gomes, H. M.; Barddal, J. P.; Boiko Ferreira, L.; and Bifet, A. In European Symposium on Artificial Neural Networks, Computational Intelligence and Machine Learning (ESANN), 2018.
link   bibtex  
xStream: Outlier Detection in Feature-Evolving Data Streams. Manzoor, E.; Lamba, H.; and Akoglu, L. In Proceedings of the 24th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining, of KDD '18, pages 1963–1972, London, United Kingdom, July 2018. Association for Computing Machinery
xStream: Outlier Detection in Feature-Evolving Data Streams [link]Paper   doi   link   bibtex  
A Markovian model for power transformer maintenance. Liang, Z.; and Parlikad, A. International Journal of Electrical Power & Energy Systems, 99: 175–182. July 2018.
A Markovian model for power transformer maintenance [link]Paper   doi   link   bibtex  
Real-time big data analytics for hard disk drive predictive maintenance. Su, C.; and Huang, S. Computers & Electrical Engineering, 71: 93–101. October 2018.
Real-time big data analytics for hard disk drive predictive maintenance [link]Paper   doi   link   bibtex  
Forecasting fault events for predictive maintenance using data-driven techniques and ARMA modeling. Baptista, M.; Sankararaman, S.; Medeiros, I. P. d.; Nascimento, C.; Prendinger, H.; and Henriques, E. M. P. Computers & Industrial Engineering, 115: 41 – 53. 2018.
Forecasting fault events for predictive maintenance using data-driven techniques and ARMA modeling [link]Paper   doi   link   bibtex   abstract  
Maintenance 4.0: Intelligent and Predictive Maintenance System Architecture. Cachada, A.; Barbosa, J.; Leitño, P.; Gcraldcs, C. A. S.; Deusdado, L.; Costa, J.; Teixeira, C.; Teixeira, J.; Moreira, A. H. J.; Moreira, P. M.; and Romero, L. In 2018 IEEE 23rd International Conference on Emerging Technologies and Factory Automation (ETFA), volume 1, pages 139–146, 2018. ISSN: 1946-0740
doi   link   bibtex  
Towards an Open-standards Based Framework for Achieving Condition-based Predictive Maintenance. Kaur, K.; Selway, M.; Grossmann, G.; Stumptner, M.; and Johnston, A. In Proceedings of the 8th International Conference on the Internet of Things, of IOT '18, pages 16:1–16:8, 2018. ACM
Towards an Open-standards Based Framework for Achieving Condition-based Predictive Maintenance [link]Paper   doi   link   bibtex  
Fault class prediction in unsupervised learning using model-based clustering approach. Amruthnath, N.; and Gupta, T. In 2018 International Conference on Information and Computer Technologies (ICICT), pages 5–12, 2018. ISSN: null
doi   link   bibtex  
Designing Data-Intensive Applications. Kleppmann, M. Volume 1 O'Reilly Media Inc., 1 edition, 2018.
link   bibtex  
On the use of machine learning methods to predict component reliability from data-driven industrial case studies. Alsina, E. F.; Chica, M.; Trawiński, K.; and Regattieri, A. The International Journal of Advanced Manufacturing Technology, 94(5): 2419–2433. 2018.
On the use of machine learning methods to predict component reliability from data-driven industrial case studies [link]Paper   doi   link   bibtex  
Use IoT to Advance Railway Predictive Maintenance - White Paper. Lugara, A. Hitachi Vantara, 2018.
link   bibtex  
  2017 (48)
Prototypical Networks for Few-shot Learning. Snell, J.; Swersky, K.; and Zemel, R. In Advances in Neural Information Processing Systems, volume 30, 2017. Curran Associates, Inc.
Prototypical Networks for Few-shot Learning [link]Paper   link   bibtex   abstract  
An evolving connectionist system for data stream fuzzy clustering and its online learning. Bodyanskiy, Y. V.; Tyshchenko, O. K.; and Kopaliani, D. S. Neurocomputing, 262: 41–56. November 2017.
An evolving connectionist system for data stream fuzzy clustering and its online learning [link]Paper   doi   link   bibtex   abstract  
Adam: A Method for Stochastic Optimization. Kingma, D. P.; and Ba, J. January 2017. arXiv:1412.6980 [cs]
Adam: A Method for Stochastic Optimization [link]Paper   doi   link   bibtex   abstract  
An Introduction to Outlier Analysis. Aggarwal, C. C. In Aggarwal, C. C., editor(s), Outlier Analysis, pages 1–34. Springer International Publishing, Cham, 2017.
An Introduction to Outlier Analysis [link]Paper   doi   link   bibtex   abstract  
Lossy Image Compression with Compressive Autoencoders. Theis, L.; Shi, W.; Cunningham, A.; and Huszár, F. March 2017. arXiv:1703.00395 [cs, stat]
Lossy Image Compression with Compressive Autoencoders [link]Paper   doi   link   bibtex   abstract  
A novel deep autoencoder feature learning method for rotating machinery fault diagnosis. Shao, H.; Jiang, H.; Zhao, H.; and Wang, F. Mechanical Systems and Signal Processing, 95: 187–204. October 2017.
A novel deep autoencoder feature learning method for rotating machinery fault diagnosis [link]Paper   doi   link   bibtex   abstract  
Fault detection and diagnosis in the Tennessee Eastman Process using interpretable knowledge discovery. Ragab, A.; El-koujok, M.; Amazouz, M.; and Yacout, S. In 2017 Annual Reliability and Maintainability Symposium (RAMS), pages 1–7, January 2017.
doi   link   bibtex   abstract  
A Data-Driven Clustering Approach for Fault Diagnosis. Hou, J.; and Xiao, B. IEEE Access, 5: 26512–26520. 2017. Conference Name: IEEE Access
doi   link   bibtex   abstract  
Comparison of deep neural network architectures for fault detection in Tennessee Eastman process. Chadha, G. S.; and Schwung, A. In 2017 22nd IEEE International Conference on Emerging Technologies and Factory Automation (ETFA), pages 1–8, September 2017. ISSN: 1946-0759
doi   link   bibtex   abstract  
A Survey on Outlier Detection in the Context of Stream Mining: Review of Existing Approaches and Recommadations. Souiden, I.; Brahmi, Z.; and Toumi, H. In Madureira, A. M.; Abraham, A.; Gamboa, D.; and Novais, P., editor(s), Intelligent Systems Design and Applications, pages 372–383, Cham, 2017. Springer International Publishing
doi   link   bibtex   abstract  
An Empirical Comparison of Stream Clustering Algorithms. Carnein, M.; Assenmacher, D.; and Trautmann, H. In Proceedings of the Computing Frontiers Conference, of CF'17, pages 361–366, New York, NY, USA, May 2017. Association for Computing Machinery
An Empirical Comparison of Stream Clustering Algorithms [link]Paper   doi   link   bibtex   abstract  
Evolutive deep models for online learning on data streams with no storage. Besedin, A.; Blanchart, P.; Crucianu, M.; and Ferecatu, M. In September 2017.
Evolutive deep models for online learning on data streams with no storage [link]Paper   link   bibtex   abstract  
Extremely Fast Decision Tree Mining for Evolving Data Streams. Bifet, A.; Zhang, J.; Fan, W.; He, C.; Zhang, J.; Qian, J.; Holmes, G.; and Pfahringer, B. In Proceedings of the 23rd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, of KDD '17, pages 1733–1742, New York, NY, USA, August 2017. Association for Computing Machinery
Extremely Fast Decision Tree Mining for Evolving Data Streams [link]Paper   doi   link   bibtex   abstract  
Machine Learning for Predictive Maintenance in Aviation. Korvesis, P. Ph.D. Thesis, Université Paris-Saclay (ComUE), November 2017.
Machine Learning for Predictive Maintenance in Aviation [link]Paper   link   bibtex   abstract  
Creep damage and life assessment of thick-walled spherical reactor using Larson–Miller parameter. Loghman, A.; and Moradi, M. International Journal of Pressure Vessels and Piping, 151: 11–19. March 2017.
Creep damage and life assessment of thick-walled spherical reactor using Larson–Miller parameter [link]Paper   doi   link   bibtex   abstract  
Learning to Monitor Machine Health with Convolutional Bi-Directional LSTM Networks. Zhao, R.; Yan, R.; Wang, J.; and Mao, K. Sensors, 17(2): 273. February 2017. Number: 2 Publisher: Multidisciplinary Digital Publishing Institute
Learning to Monitor Machine Health with Convolutional Bi-Directional LSTM Networks [link]Paper   doi   link   bibtex   abstract  
Intelligent Health Monitoring of Machine Bearings Based on Feature Extraction. Chalouli, M.; Berrached, N.; and Denai, M. Journal of Failure Analysis and Prevention, 17(5): 1053–1066. October 2017.
Intelligent Health Monitoring of Machine Bearings Based on Feature Extraction [link]Paper   doi   link   bibtex   abstract  
A Bayesian network-based approach for fault analysis. Jun, H.; and Kim, D. Expert Systems with Applications, 81: 332–348. September 2017.
A Bayesian network-based approach for fault analysis [link]Paper   doi   link   bibtex   abstract  
Adaptive hidden Markov model-based online learning framework for bearing faulty detection and performance degradation monitoring. Yu, J. Mechanical Systems and Signal Processing, 83: 149–162. January 2017.
Adaptive hidden Markov model-based online learning framework for bearing faulty detection and performance degradation monitoring [link]Paper   doi   link   bibtex   abstract  
Swarm Intelligence: A Review of Algorithms. Chakraborty, A.; and Kar, A. K. In Patnaik, S.; Yang, X.; and Nakamatsu, K., editor(s), Nature-Inspired Computing and Optimization: Theory and Applications, of Modeling and Optimization in Science and Technologies, pages 475–494. Springer International Publishing, Cham, 2017.
Swarm Intelligence: A Review of Algorithms [link]Paper   doi   link   bibtex   abstract  
Fault diagnosis and prediction of complex system based on Hidden Markov model. Li, C.; Wei, F.; Wang, C.; and Zhou, S. Journal of Intelligent & Fuzzy Systems, 33(5): 2937–2944. January 2017. Publisher: IOS Press
Fault diagnosis and prediction of complex system based on Hidden Markov model [link]Paper   doi   link   bibtex   abstract  
A Bayesian Approach to Fault Identification in the Presence of Multi-component Degradation. Lin, Y.; Zakwan, S.; and Jennions, I. International Journal of Prognostics and Health Management, 8(1). 2017. Number: 1
A Bayesian Approach to Fault Identification in the Presence of Multi-component Degradation [link]Paper   doi   link   bibtex   abstract  
Active and adaptive ensemble learning for online activity recognition from data streams. Krawczyk, B. Knowledge-Based Systems, 138: 69–78. December 2017.
Active and adaptive ensemble learning for online activity recognition from data streams [link]Paper   doi   link   bibtex   abstract  
On-line active learning: A new paradigm to improve practical useability of data stream modeling methods. Lughofer, E. Information Sciences, 415-416: 356–376. November 2017.
On-line active learning: A new paradigm to improve practical useability of data stream modeling methods [link]Paper   doi   link   bibtex   abstract  
Concepts and definitions of health and health-related values in the knowledge landscapes of the digital society. Svalastog, A. L.; Donev, D.; Jahren Kristoffersen, N.; and Gajović, S. Croatian Medical Journal, 58(6): 431–435. December 2017.
Concepts and definitions of health and health-related values in the knowledge landscapes of the digital society [link]Paper   doi   link   bibtex  
Visual analogue scales (VAS): Measuring instruments for the documentation of symptoms and therapy monitoring in cases of allergic rhinitis in everyday health care. Klimek, L.; Bergmann, K.; Biedermann, T.; Bousquet, J.; Hellings, P.; Jung, K.; Merk, H.; Olze, H.; Schlenter, W.; Stock, P.; Ring, J.; Wagenmann, M.; Wehrmann, W.; Mösges, R.; and Pfaar, O. Allergo Journal International, 26(1): 16–24. 2017.
Visual analogue scales (VAS): Measuring instruments for the documentation of symptoms and therapy monitoring in cases of allergic rhinitis in everyday health care [link]Paper   doi   link   bibtex   abstract  
Clustering by Sum of Norms: Stochastic Incremental Algorithm, Convergence and Cluster Recovery. Panahi, A.; Dubhashi, D.; Johansson, F. D.; and Bhattacharyya, C. In Proceedings of the 34th International Conference on Machine Learning, pages 2769–2777, July 2017. PMLR ISSN: 2640-3498
Clustering by Sum of Norms: Stochastic Incremental Algorithm, Convergence and Cluster Recovery [link]Paper   link   bibtex   abstract  
A recurrent neural network based health indicator for remaining useful life prediction of bearings. Guo, L.; Li, N.; Jia, F.; Lei, Y.; and Lin, J. Neurocomputing, 240: 98–109. May 2017.
A recurrent neural network based health indicator for remaining useful life prediction of bearings [link]Paper   doi   link   bibtex   abstract  
A review on condition-based maintenance optimization models for stochastically deteriorating system. Alaswad, S.; and Xiang, Y. Reliability Engineering & System Safety, 157: 54–63. January 2017.
A review on condition-based maintenance optimization models for stochastically deteriorating system [link]Paper   doi   link   bibtex   abstract  
Condition-based maintenance policies for systems with multiple dependent components: A review. Olde Keizer, M. C. A.; Flapper, S. D. P.; and Teunter, R. H. European Journal of Operational Research, 261(2): 405–420. September 2017.
Condition-based maintenance policies for systems with multiple dependent components: A review [link]Paper   doi   link   bibtex   abstract  
Using change point detection to automate daily activity segmentation. Aminikhanghahi, S.; and Cook, D. J. In 2017 IEEE International Conference on Pervasive Computing and Communications Workshops (PerCom Workshops), pages 262–267, March 2017.
doi   link   bibtex   abstract  
Survey on time series motif discovery. Torkamani, S.; and Lohweg, V. WIREs Data Mining and Knowledge Discovery, 7(2): e1199. 2017. _eprint: https://onlinelibrary.wiley.com/doi/pdf/10.1002/widm.1199
Survey on time series motif discovery [link]Paper   doi   link   bibtex   abstract  
Unsupervised real-time anomaly detection for streaming data. Ahmad, S.; Lavin, A.; Purdy, S.; and Agha, Z. Neurocomputing, 262: 134–147. November 2017.
Unsupervised real-time anomaly detection for streaming data [link]Paper   doi   link   bibtex   abstract  
Industrial Big Data in an Industry 4.0 Environment: Challenges, Schemes, and Applications for Predictive Maintenance. Yan, J.; Meng, Y.; Lu, L.; and Li, L. IEEE Access, 5: 23484–23491. 2017.
Industrial Big Data in an Industry 4.0 Environment: Challenges, Schemes, and Applications for Predictive Maintenance [link]Paper   doi   link   bibtex   abstract  
A survey on data preprocessing for data stream mining: Current status and future directions. Ramírez-Gallego, S.; Krawczyk, B.; García, S.; Woźniak, M.; and Herrera, F. Neurocomputing, 239: 39–57. May 2017.
A survey on data preprocessing for data stream mining: Current status and future directions [link]Paper   doi   link   bibtex   abstract  
Semi-supervised segmentation of accelerometer time series for transport mode classification. Leodolter, M.; Widhalm, P.; Plant, C.; and Brandle, N. In 2017 5th IEEE International Conference on Models and Technologies for Intelligent Transportation Systems (MT-ITS), pages 663–668, June 2017.
doi   link   bibtex   abstract  
Predictive maintenance applications for machine learning. Cline, B.; Niculescu, R. S.; Huffman, D.; and Deckel, B. In 2017 Annual Reliability and Maintainability Symposium (RAMS), pages 1–7, January 2017.
doi   link   bibtex   abstract  
Predicting Remaining Useful Life using Time Series Embeddings based on Recurrent Neural Networks. Gugulothu, N.; TV, V.; Malhotra, P.; Vig, L.; Agarwal, P.; and Shroff, G. arXiv:1709.01073 [cs]. October 2017. arXiv: 1709.01073
Predicting Remaining Useful Life using Time Series Embeddings based on Recurrent Neural Networks [link]Paper   link   bibtex   abstract  
A segmentation technology for multivariate contextual time series. Zhang, H.; and Huang, J. In 2017 IEEE 4th International Conference on Soft Computing Machine Intelligence (ISCMI), pages 71–74, November 2017.
doi   link   bibtex   abstract  
A survey of methods for time series change point detection. Aminikhanghahi, S.; and Cook, D. J. Knowledge and Information Systems, 51(2): 339–367. May 2017.
A survey of methods for time series change point detection [link]Paper   doi   link   bibtex   abstract  
Maintenance. Maintenance terminology. Technical Report The British Standards Institution, 2017.
link   bibtex  
IEEE Standard Framework for Prognostics and Health Management of Electronic Systems. IEEE Std 1856-2017,1–31. 2017.
link   bibtex  
Advanced correlation-based anomaly detection method for predictive maintenance. Zhao, P.; Kurihara, M.; Tanaka, J.; Noda, T.; Chikuma, S.; and Suzuki, T. In 2017 IEEE International Conference on Prognostics and Health Management (ICPHM), pages 78–83, June 2017.
doi   link   bibtex   abstract  
A new paradigm of cloud-based predictive maintenance for intelligent manufacturing. Wang, J.; Zhang, L.; Duan, L.; and Gao, R. X. Journal of Intelligent Manufacturing, 28(5): 1125–1137. 2017.
A new paradigm of cloud-based predictive maintenance for intelligent manufacturing [link]Paper   doi   link   bibtex  
Big Data Analytics for Predictive Maintenance Strategies. Lee, C.; Cao, Y.; and Ng, K. K. In . 2017.
doi   link   bibtex  
Data Mining and Machine Learning for Condition-based Maintenance. Accorsi, R.; Manzini, R.; Pascarella, P.; Patella, M.; and Sassi, S. Procedia Manufacturing, 11: 1153 – 1161. 2017.
Data Mining and Machine Learning for Condition-based Maintenance [link]Paper   doi   link   bibtex  
Real-time predictive maintenance for wind turbines using Big Data frameworks. Canizo, M.; Onieva, E.; Conde, A.; Charramendieta, S.; and Trujillo, S. In 2017 IEEE International Conference on Prognostics and Health Management (ICPHM), pages 70–77, 2017.
doi   link   bibtex  
Robust anomaly detection algorithms for real-time big data: Comparison of algorithms. Hasani, Z. In 2017 6th Mediterranean Conference on Embedded Computing (MECO), pages 1–6, June 2017.
doi   link   bibtex   abstract  
  2016 (42)
Testing the manifold hypothesis. Fefferman, C.; Mitter, S.; and Narayanan, H. Journal of the American Mathematical Society, 29(4): 983–1049. October 2016.
Testing the manifold hypothesis [link]Paper   doi   link   bibtex   abstract  
Matrix Profile I: All Pairs Similarity Joins for Time Series: A Unifying View That Includes Motifs, Discords and Shapelets. Yeh, C. M.; Zhu, Y.; Ulanova, L.; Begum, N.; Ding, Y.; Dau, H. A.; Silva, D. F.; Mueen, A.; and Keogh, E. In 2016 IEEE 16th International Conference on Data Mining (ICDM), pages 1317–1322, December 2016. ISSN: 2374-8486
doi   link   bibtex   abstract  
XGBoost: A Scalable Tree Boosting System. Chen, T.; and Guestrin, C. In Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, of KDD '16, pages 785–794, New York, NY, USA, August 2016. Association for Computing Machinery
XGBoost: A Scalable Tree Boosting System [link]Paper   doi   link   bibtex   abstract  
Data stream clustering based on Fuzzy C-Mean algorithm and entropy theory. Zhang, B.; Qin, S.; Wang, W.; Wang, D.; and Xue, L. Signal Processing, 126: 111–116. September 2016.
Data stream clustering based on Fuzzy C-Mean algorithm and entropy theory [link]Paper   doi   link   bibtex   abstract  
Using big data to enhance the bosch production line performance: A Kaggle challenge. Mangal, A.; and Kumar, N. In 2016 IEEE International Conference on Big Data (Big Data), pages 2029–2035, December 2016.
doi   link   bibtex   abstract  
StreamLeader: A New Stream Clustering Algorithm not Based in Conventional Clustering. Andrés-Merino, J.; and Belanche, L. A. In Villa, A. E.; Masulli, P.; and Pons Rivero, A. J., editor(s), Artificial Neural Networks and Machine Learning – ICANN 2016, of Lecture Notes in Computer Science, pages 208–215, Cham, 2016. Springer International Publishing
doi   link   bibtex   abstract  
A new fault classification approach applied to Tennessee Eastman benchmark process. D’Angelo, M. F. S. V.; Palhares, R. M.; Camargos Filho, M. C. O.; Maia, R. D.; Mendes, J. B.; and Ekel, P. Y. Applied Soft Computing, 49: 676–686. December 2016.
A new fault classification approach applied to Tennessee Eastman benchmark process [link]Paper   doi   link   bibtex   abstract  
Data-driven root cause diagnosis of faults in process industries. Li, G.; Qin, S. J.; and Yuan, T. Chemometrics and Intelligent Laboratory Systems, 159: 1–11. December 2016.
Data-driven root cause diagnosis of faults in process industries [link]Paper   doi   link   bibtex   abstract  
Extracting knowledge from historical databases for process monitoring using feature extraction and data clustering. Thomas, M. C.; and Romagnoli, J. In Kravanja, Z.; and Bogataj, M., editor(s), Computer Aided Chemical Engineering, volume 38, of 26 European Symposium on Computer Aided Process Engineering, pages 859–864. Elsevier, January 2016.
Extracting knowledge from historical databases for process monitoring using feature extraction and data clustering [link]Paper   doi   link   bibtex   abstract  
Remaining useful life estimation in heterogeneous fleets working under variable operating conditions. Al-Dahidi, S.; Di Maio, F.; Baraldi, P.; and Zio, E. Reliability Engineering & System Safety, 156: 109–124. December 2016.
Remaining useful life estimation in heterogeneous fleets working under variable operating conditions [link]Paper   doi   link   bibtex   abstract  
Feature selection for fault detection systems: application to the Tennessee Eastman process. Chebel-Morello, B.; Malinowski, S.; and Senoussi, H. Applied Intelligence, 44(1): 111–122. January 2016.
Feature selection for fault detection systems: application to the Tennessee Eastman process [link]Paper   doi   link   bibtex   abstract  
A survey of transfer learning. Weiss, K.; Khoshgoftaar, T. M.; and Wang, D. Journal of Big Data, 3(1): 9. May 2016.
A survey of transfer learning [link]Paper   doi   link   bibtex   abstract  
Efficient handling of concept drift and concept evolution over Stream Data. Haque, A.; Khan, L.; Baron, M.; Thuraisingham, B.; and Aggarwal, C. In 2016 IEEE 32nd International Conference on Data Engineering (ICDE), pages 481–492, May 2016.
doi   link   bibtex   abstract  
SAND: semi-supervised adaptive novel class detection and classification over data stream. Haque, A.; Khan, L.; and Baron, M. In Proceedings of the Thirtieth AAAI Conference on Artificial Intelligence, of AAAI'16, pages 1652–1658, Phoenix, Arizona, February 2016. AAAI Press
link   bibtex   abstract  
State-of-the-art on clustering data streams. Ghesmoune, M.; Lebbah, M.; and Azzag, H. Big Data Analytics, 1(1): 13. December 2016.
State-of-the-art on clustering data streams [link]Paper   doi   link   bibtex   abstract  
Sequential anomalies: a study in the Railway Industry. Ribeiro, R. P.; Pereira, P.; and Gama, J. Machine Learning, 105(1): 127–153. October 2016.
Sequential anomalies: a study in the Railway Industry [link]Paper   doi   link   bibtex   abstract  
Self-regulated incremental clustering with focused preferences. Wang, D.; and Tan, A. In 2016 International Joint Conference on Neural Networks (IJCNN), pages 1297–1304, July 2016. ISSN: 2161-4407
doi   link   bibtex   abstract  
Incremental Semi-Supervised Clustering Ensemble for High Dimensional Data Clustering. Yu, Z.; Luo, P.; You, J.; Wong, H.; Leung, H.; Wu, S.; Zhang, J.; and Han, G. IEEE Transactions on Knowledge and Data Engineering, 28(3): 701–714. March 2016. Conference Name: IEEE Transactions on Knowledge and Data Engineering
doi   link   bibtex   abstract  
A clustering approach for structural health monitoring on bridges. Diez, A.; Khoa, N. L. D.; Makki Alamdari, M.; Wang, Y.; Chen, F.; and Runcie, P. Journal of Civil Structural Health Monitoring, 6(3): 429–445. July 2016.
A clustering approach for structural health monitoring on bridges [link]Paper   doi   link   bibtex   abstract  
Machine health monitoring with LSTM networks. Zhao, R.; Wang, J.; Yan, R.; and Mao, K. In 2016 10th International Conference on Sensing Technology (ICST), pages 1–6, November 2016. ISSN: 2156-8073
doi   link   bibtex   abstract  
A sensor fault detection strategy for air handling units using cluster analysis. Yan, R.; Ma, Z.; Kokogiannakis, G.; and Zhao, Y. Automation in Construction, 70: 77–88. October 2016.
A sensor fault detection strategy for air handling units using cluster analysis [link]Paper   doi   link   bibtex   abstract  
Health Index-Based Prognostics for Remaining Useful Life Predictions in Electrical Machines. Yang, F.; Habibullah, M. S.; Zhang, T.; Xu, Z.; Lim, P.; and Nadarajan, S. IEEE Transactions on Industrial Electronics, 63(4): 2633–2644. April 2016. Conference Name: IEEE Transactions on Industrial Electronics
doi   link   bibtex   abstract  
A real-time fault diagnosis methodology of complex systems using object-oriented Bayesian networks. Cai, B.; Liu, H.; and Xie, M. Mechanical Systems and Signal Processing, 80: 31–44. December 2016.
A real-time fault diagnosis methodology of complex systems using object-oriented Bayesian networks [link]Paper   doi   link   bibtex   abstract  
Fault diagnosis for the complex manufacturing system. Nguyen, D. T.; Duong, Q. B.; Zamai, E.; and Shahzad, M. K. Proceedings of the Institution of Mechanical Engineers, Part O: Journal of Risk and Reliability, 230(2): 178–194. April 2016. Publisher: SAGE Publications
Fault diagnosis for the complex manufacturing system [link]Paper   doi   link   bibtex   abstract  
A new index for clustering validation with overlapped clusters. Campo, D. N.; Stegmayer, G.; and Milone, D. H. Expert Systems with Applications, 64: 549–556. December 2016.
A new index for clustering validation with overlapped clusters [link]Paper   doi   link   bibtex   abstract  
Active Learning from Imperfect Labelers. Yan, S.; Chaudhuri, K.; and Javidi, T. In Advances in Neural Information Processing Systems, volume 29, 2016. Curran Associates, Inc.
Active Learning from Imperfect Labelers [link]Paper   link   bibtex  
NG-DBSCAN: scalable density-based clustering for arbitrary data. Lulli, A.; Dell'Amico, M.; Michiardi, P.; and Ricci, L. Proceedings of the VLDB Endowment, 10(3): 157–168. November 2016.
NG-DBSCAN: scalable density-based clustering for arbitrary data [link]Paper   doi   link   bibtex   abstract  
A Novel Scalable DBSCAN Algorithm with Spark. Han, D.; Agrawal, A.; Liao, W.; and Choudhary, A. In 2016 IEEE International Parallel and Distributed Processing Symposium Workshops (IPDPSW), pages 1393–1402, May 2016.
doi   link   bibtex   abstract  
A study of large-scale data clustering based on fuzzy clustering. Li, Y.; Yang, G.; He, H.; Jiao, L.; and Shang, R. Soft Computing, 20(8): 3231–3242. August 2016.
A study of large-scale data clustering based on fuzzy clustering [link]Paper   doi   link   bibtex   abstract  
Performance Analysis of Various Fuzzy Clustering Algorithms: A Review. Gosain, A.; and Dahiya, S. Procedia Computer Science, 79: 100–111. January 2016.
Performance Analysis of Various Fuzzy Clustering Algorithms: A Review [link]Paper   doi   link   bibtex   abstract  
Fuzzy Clustering Algorithms — Review of the Applications. Li, J.; and Lewis, H. W. In 2016 IEEE International Conference on Smart Cloud (SmartCloud), pages 282–288, November 2016.
doi   link   bibtex   abstract  
Fuzzy c-Shape: A new algorithm for clustering finite time series waveforms. Fahiman, F.; Bezdek, J. C.; Erfani, S. M.; Leckie, C.; and Palaniswami, M. arXiv:1608.01072 [cs]. August 2016. arXiv: 1608.01072
Fuzzy c-Shape: A new algorithm for clustering finite time series waveforms [link]Paper   link   bibtex   abstract  
Loda: Lightweight on-line detector of anomalies. Pevný, T. Machine Learning, 102(2): 275–304. February 2016.
Loda: Lightweight on-line detector of anomalies [link]Paper   doi   link   bibtex   abstract  
An overview on data representation learning: From traditional feature learning to recent deep learning. Zhong, G.; Wang, L.; Ling, X.; and Dong, J. The Journal of Finance and Data Science, 2(4): 265–278. December 2016.
An overview on data representation learning: From traditional feature learning to recent deep learning [link]Paper   doi   link   bibtex   abstract  
Clustering Data Streams Based on Shared Density between Micro-Clusters. Hahsler, M.; and Bolaños, M. IEEE Transactions on Knowledge and Data Engineering, 28(6): 1449–1461. 2016.
link   bibtex  
A review of physics-based models in prognostics: Application to gears and bearings of rotating machinery. Cubillo, A.; Perinpanayagam, S.; and Esperon-Miguez, M. Advances in Mechanical Engineering, 8(8): 1687814016664660. 2016. _eprint: https://doi.org/10.1177/1687814016664660
A review of physics-based models in prognostics: Application to gears and bearings of rotating machinery [link]Paper   doi   link   bibtex   abstract  
Edge Computing: Vision and Challenges. Shi, W.; Cao, J.; Zhang, Q.; Li, Y.; and Xu, L. IEEE Internet of Things Journal, 3(5): 637–646. 2016.
doi   link   bibtex  
Mesos in Action. Ignazio, R. Manning Publications Co., USA, 1st edition, 2016.
link   bibtex  
Maintenance 4.0 in Railway Transportation Industry. Kans, M.; Galar, D.; and Thaduri, A. In Koskinen, K. T.; Kortelainen, H.; Aaltonen, J.; Uusitalo, T.; Komonen, K.; Mathew, J.; and Laitinen, J., editor(s), Proceedings of the 10th World Congress on Engineering Asset Management (WCEAM 2015), pages 317–331, Cham, 2016. Springer International Publishing
link   bibtex  
Design Principles for Industrie 4.0 Scenarios. Hermann, M.; Pentek, T.; and Otto, B. In 2016 49th Hawaii International Conference on System Sciences (HICSS), pages 3928–3937, 2016. ISSN: 1530-1605
doi   link   bibtex  
Towards smart factory for industry 4.0: a self-organized multi-agent system with big data based feedback and coordination. Wang, S.; Wan, J.; Zhang, D.; Li, D.; and Zhang, C. Computer Networks, 101: 158 – 168. 2016.
Towards smart factory for industry 4.0: a self-organized multi-agent system with big data based feedback and coordination [link]Paper   doi   link   bibtex  
Fiabilité industrielle: La boîte à outils des processus de fiabilité et maintenance. Lyonnet, P. AFNOR, Paris, France, 2016.
link   bibtex  
  2015 (33)
Automated Detection of Activity Transitions for Prompting. Feuz, K. D.; Cook, D. J.; Rosasco, C.; Robertson, K.; and Schmitter-Edgecombe, M. IEEE Transactions on Human-Machine Systems, 45(5): 575–585. October 2015. Conference Name: IEEE Transactions on Human-Machine Systems
doi   link   bibtex   abstract  
Recent advances and emerging challenges of feature selection in the context of big data. Bolón-Canedo, V.; Sánchez-Maroño, N.; and Alonso-Betanzos, A. Knowledge-Based Systems, 86: 33–45. September 2015.
Recent advances and emerging challenges of feature selection in the context of big data [link]Paper   doi   link   bibtex   abstract  
Outlier Preservation by Dimensionality Reduction Techniques. Onderwater, M. International Journal of Data Analysis Techniques and Strategies, 7: 231–252. January 2015.
doi   link   bibtex   abstract  
Revision of the Tennessee Eastman Process Model. Bathelt, A.; Ricker, N. L.; and Jelali, M. IFAC-PapersOnLine, 48(8): 309–314. January 2015.
Revision of the Tennessee Eastman Process Model [link]Paper   doi   link   bibtex   abstract  
Condition monitoring of a complex hydraulic system using multivariate statistics. Helwig, N.; Pignanelli, E.; and Schütze, A. In 2015 IEEE International Instrumentation and Measurement Technology Conference (I2MTC) Proceedings, pages 210–215, May 2015. ISSN: 1091-5281
doi   link   bibtex   abstract  
Diagnosis of multiple and unknown faults using the causal map and multivariate statistics. Chiang, L. H.; Jiang, B.; Zhu, X.; Huang, D.; and Braatz, R. D. Journal of Process Control, 28: 27–39. April 2015.
Diagnosis of multiple and unknown faults using the causal map and multivariate statistics [link]Paper   doi   link   bibtex   abstract  
A clustering-based approach to detect cyber attacks in process control systems. Kiss, I.; Genge, B.; and Haller, P. In 2015 IEEE 13th International Conference on Industrial Informatics (INDIN), pages 142–148, July 2015. ISSN: 2378-363X
doi   link   bibtex   abstract  
Classification and Novel Class Detection in Data Streams Using Strings. Singh, R.; and Chandak, M. B. Open Access Library Journal, 2(5): 1–8. May 2015. Number: 5 Publisher: Scientific Research Publishing
Classification and Novel Class Detection in Data Streams Using Strings [link]Paper   doi   link   bibtex   abstract  
StreamDM: Advanced Data Mining in Spark Streaming. Bifet, A.; Maniu, S.; Qian, J.; Tian, G.; He, C.; and Fan, W. In 2015 IEEE International Conference on Data Mining Workshop (ICDMW), pages 1608–1611, November 2015. ISSN: 2375-9259
doi   link   bibtex   abstract  
Context awareness for maintenance decision making: A diagnosis and prognosis approach. Galar, D.; Thaduri, A.; Catelani, M.; and Ciani, L. Measurement, 67: 137–150. May 2015.
Context awareness for maintenance decision making: A diagnosis and prognosis approach [link]Paper   doi   link   bibtex   abstract  
Clustering by growing incremental self-organizing neural network. Liu, H.; and Ban, X. Expert Systems with Applications, 42(11): 4965–4981. July 2015.
Clustering by growing incremental self-organizing neural network [link]Paper   doi   link   bibtex   abstract  
An Incremental Clustering-Based Fault Detection Algorithm for Class-Imbalanced Process Data. Kwak, J.; Lee, T.; and Kim, C. O. IEEE Transactions on Semiconductor Manufacturing, 28(3): 318–328. August 2015. Conference Name: IEEE Transactions on Semiconductor Manufacturing
doi   link   bibtex   abstract  
A Review of Parameter Learning Methods in Bayesian Network. Ji, Z.; Xia, Q.; and Meng, G. In Huang, D.; and Han, K., editor(s), Advanced Intelligent Computing Theories and Applications, of Lecture Notes in Computer Science, pages 3–12, Cham, 2015. Springer International Publishing
doi   link   bibtex   abstract  
Hybrid hidden Markov model for mixed continuous/continuous and discrete/continuous data modeling. Epaillard, E.; and Bouguila, N. In 2015 IEEE 17th International Workshop on Multimedia Signal Processing (MMSP), pages 1–6, October 2015.
doi   link   bibtex   abstract  
Adapting Hidden Markov Models for Online Learning. Chis, T.; and Harrison, P. G. Electronic Notes in Theoretical Computer Science, 318: 109–127. November 2015.
Adapting Hidden Markov Models for Online Learning [link]Paper   doi   link   bibtex   abstract  
Online diagnosis of accidental faults for real-time embedded systems using a hidden Markov model. Ge, N.; Nakajima, S.; and Pantel, M. SIMULATION, 91(10): 851–868. October 2015. Publisher: SAGE Publications Ltd STM
Online diagnosis of accidental faults for real-time embedded systems using a hidden Markov model [link]Paper   doi   link   bibtex   abstract  
Multi-level predictive maintenance for multi-component systems. Nguyen, K.; Do, P.; and Grall, A. Reliability Engineering & System Safety, 144: 83–94. December 2015.
Multi-level predictive maintenance for multi-component systems [link]Paper   doi   link   bibtex   abstract  
Supervision and prognosis architecture based on dynamical classification method for the predictive maintenance of dynamical evolving systems. Traore, M.; Chammas, A.; and Duviella, E. Reliability Engineering & System Safety, 136: 120–131. April 2015.
Supervision and prognosis architecture based on dynamical classification method for the predictive maintenance of dynamical evolving systems [link]Paper   doi   link   bibtex   abstract  
Diagnosis of Time Petri Nets Using Fault Diagnosis Graph. Wang, X.; Mahulea, C.; and Silva, M. IEEE Transactions on Automatic Control, 60(9): 2321–2335. September 2015. Conference Name: IEEE Transactions on Automatic Control
doi   link   bibtex   abstract  
Machine Teaching: An Inverse Problem to Machine Learning and an Approach Toward Optimal Education. Zhu, X. Proceedings of the AAAI Conference on Artificial Intelligence, 29(1). March 2015. Number: 1
Machine Teaching: An Inverse Problem to Machine Learning and an Approach Toward Optimal Education [link]Paper   link   bibtex   abstract  
Towards real-world complexity: an introduction to multiplex networks. Lee, K.; Min, B.; and Goh, K. The European Physical Journal B, 88(2): 48. February 2015.
Towards real-world complexity: an introduction to multiplex networks [link]Paper   doi   link   bibtex   abstract  
A Comprehensive Survey of Clustering Algorithms. Xu, D.; and Tian, Y. Annals of Data Science, 2(2): 165–193. June 2015.
A Comprehensive Survey of Clustering Algorithms [link]Paper   doi   link   bibtex   abstract  
Classifying machinery condition using oil samples and binary logistic regression. Phillips, J.; Cripps, E.; Lau, J. W.; and Hodkiewicz, M. R. Mechanical Systems and Signal Processing, 60-61: 316–325. August 2015.
Classifying machinery condition using oil samples and binary logistic regression [link]Paper   doi   link   bibtex   abstract  
Condition Based Maintenance in Railway Transportation Systems Based on Big Data Streaming Analysis. Fumeo, E.; Oneto, L.; and Anguita, D. Procedia Computer Science, 53: 437–446. January 2015.
Condition Based Maintenance in Railway Transportation Systems Based on Big Data Streaming Analysis [link]Paper   doi   link   bibtex   abstract  
Data Mining for the Internet of Things: Literature Review and Challenges. Chen, F.; Deng, P.; Wan, J.; Zhang, D.; Vasilakos, A. V.; and Rong, X. International Journal of Distributed Sensor Networks, 11(8): 431047. August 2015. Publisher: SAGE Publications
Data Mining for the Internet of Things: Literature Review and Challenges [link]Paper   doi   link   bibtex   abstract  
A reference architecture for condition monitoring. Wollschlaeger, M.; Theurich, S.; Winter, A.; Lubnau, F.; and Paulitsch, C. In 2015 IEEE World Conference on Factory Communication Systems (WFCS), pages 1–8, May 2015.
doi   link   bibtex   abstract  
Condition monitoring and diagnostics of machine systems — Data processing, communication and presentation — Part 4: Presentation. Technical Report International Organization for Standardization, 2015.
link   bibtex  
Condition monitoring and diagnostics of machines — Data interpretation and diagnostics techniques — Part 2: Data-driven applications. Technical Report International Organization for Standardization, 2015.
link   bibtex  
Condition monitoring and diagnostics of machines — Prognostics — Part 1: General guidelines. Technical Report International Organization for Standardization, 2015.
link   bibtex  
Practical options for selecting data-driven or physics-based prognostics algorithms with reviews. An, D.; Kim, N. H.; and Choi, J. Reliability Engineering & System Safety, 133: 223 – 236. 2015.
Practical options for selecting data-driven or physics-based prognostics algorithms with reviews [link]Paper   doi   link   bibtex  
On condition based maintenance policy. Shin, J.; and Jun, H. Journal of Computational Design and Engineering, 2(2): 119–127. April 2015.
doi   link   bibtex  
Machine Learning for Predictive Maintenance: A Multiple Classifier Approach. Susto, G. A.; Schirru, A.; Pampuri, S.; McLoone, S.; and Beghi, A. IEEE Transactions on Industrial Informatics, 11(3): 812–820. 2015.
doi   link   bibtex  
Online Representation Learning in Recurrent Neural Language Models. Rei, M. In Proceedings of the 2015 Conference on Empirical Methods in Natural Language Processing, pages 238–243, Lisbon, Portugal, September 2015. Association for Computational Linguistics
Online Representation Learning in Recurrent Neural Language Models [link]Paper   doi   link   bibtex  
  2014 (21)
A Fast Density-Based Clustering Algorithm for Real-Time Internet of Things Stream. Amini, A.; Saboohi, H.; Wah, T.; and Herawan, T. TheScientificWorldJournal, 2014: 926020. June 2014.
doi   link   bibtex   abstract  
Cognitive fault diagnosis in Tennessee Eastman Process using learning in the model space. Chen, H.; Tiňo, P.; and Yao, X. Computers & Chemical Engineering, 67: 33–42. August 2014.
Cognitive fault diagnosis in Tennessee Eastman Process using learning in the model space [link]Paper   doi   link   bibtex   abstract  
Outlier Detection for Temporal Data: A Survey. Gupta, M.; Gao, J.; Aggarwal, C. C.; and Han, J. IEEE Transactions on Knowledge and Data Engineering, 26(9): 2250–2267. September 2014. Conference Name: IEEE Transactions on Knowledge and Data Engineering
doi   link   bibtex   abstract  
On Density-Based Data Streams Clustering Algorithms: A Survey. Amini, A.; Wah, T. Y.; and Saboohi, H. Journal of Computer Science and Technology, 29(1): 116–141. January 2014.
On Density-Based Data Streams Clustering Algorithms: A Survey [link]Paper   doi   link   bibtex   abstract  
An integrated framework for online diagnostic and prognostic health monitoring using a multistate deterioration process. Moghaddass, R.; and Zuo, M. J. Reliability Engineering & System Safety, 124: 92–104. April 2014.
An integrated framework for online diagnostic and prognostic health monitoring using a multistate deterioration process [link]Paper   doi   link   bibtex   abstract  
Senseye. 2014.
Senseye [link]Paper   link   bibtex  
Hidden Markov Models for diagnostics and prognostics of systems under multiple deterioration modes. Le, T.; Chatelain, F.; and Berenguer, C. . September 2014.
doi   link   bibtex  
Diagnosing unobserved components in self-adaptive systems. Casanova, P.; Garlan, D.; Schmerl, B.; and Abreu, R. In Proceedings of the 9th International Symposium on Software Engineering for Adaptive and Self-Managing Systems, of SEAMS 2014, pages 75–84, New York, NY, USA, June 2014. Association for Computing Machinery
Diagnosing unobserved components in self-adaptive systems [link]Paper   doi   link   bibtex   abstract  
Condition-based maintenance for multi-component systems using importance measure and predictive information. Nguyen, K.; Do, P.; and Grall, A. International Journal of Systems Science: Operations & Logistics, 1(4): 228–245. October 2014. Publisher: Taylor & Francis _eprint: https://doi.org/10.1080/23302674.2014.983582
Condition-based maintenance for multi-component systems using importance measure and predictive information [link]Paper   doi   link   bibtex   abstract  
On-Line Fault Diagnosis With Partially Observed Petri Nets. Lefebvre, D. IEEE Transactions on Automatic Control, 59(7): 1919–1924. July 2014. Conference Name: IEEE Transactions on Automatic Control
doi   link   bibtex   abstract  
Learning to Combine Multiple Ranking Metrics for Fault Localization. Xuan, J.; and Monperrus, M. In 2014 IEEE International Conference on Software Maintenance and Evolution, pages 191–200, September 2014. ISSN: 1063-6773
doi   link   bibtex   abstract  
Density-Based Clustering Validation. Moulavi, D.; Jaskowiak, P. A.; Campello, R. J. G. B.; Zimek, A.; and Sander, J. In Proceedings of the 2014 SIAM International Conference on Data Mining (SDM), of Proceedings, pages 839–847. Society for Industrial and Applied Mathematics, April 2014.
Density-Based Clustering Validation [link]Paper   doi   link   bibtex   abstract  
Hierarchical spatiotemporal feature extraction using recurrent online clustering. Young, S. R.; Davis, A.; Mishtal, A.; and Arel, I. Pattern Recognition Letters, 37: 115–123. February 2014.
Hierarchical spatiotemporal feature extraction using recurrent online clustering [link]Paper   doi   link   bibtex   abstract  
Big Data Clustering: A Review. Shirkhorshidi, A. S.; Aghabozorgi, S.; Wah, T. Y.; and Herawan, T. In Murgante, B.; Misra, S.; Rocha, A. M. A. C.; Torre, C.; Rocha, J. G.; Falcão, M. I.; Taniar, D.; Apduhan, B. O.; and Gervasi, O., editor(s), Computational Science and Its Applications – ICCSA 2014, of Lecture Notes in Computer Science, pages 707–720, Cham, 2014. Springer International Publishing
doi   link   bibtex   abstract  
Predictive diagnosis based on a fleet-wide ontology approach. Medina-Oliva, G.; Voisin, A.; Monnin, M.; and Leger, J. Knowledge-Based Systems, 68: 40–57. September 2014.
Predictive diagnosis based on a fleet-wide ontology approach [link]Paper   doi   link   bibtex   abstract  
Algoritmic methods for segmentation of time series: An overview. Lovrić, M.; Milanović, M.; and Stamenković, M. Journal of Contemporary Economic and Business Issues, 1(1): 31–53. 2014. Publisher: Skopje: Ss. Cyril and Methodius University in Skopje, Faculty of Economics
Algoritmic methods for segmentation of time series: An overview [link]Paper   link   bibtex   abstract  
A Novel Change-Point Detection Approach for Monitoring High-Dimensional Traffics in Distributed Systems. Zhao, L.; Liu, Q.; Du, P.; Fu, G.; and Cao, W. 2014. Conference Name: Advances in Mechatronics, Robotics and Automation II ISBN: 9783038350781 ISSN: 1662-7482 Pages: 499-511 Publisher: Trans Tech Publications Ltd Volume: 536-537
A Novel Change-Point Detection Approach for Monitoring High-Dimensional Traffics in Distributed Systems [link]Paper   doi   link   bibtex   abstract  
Fieldbus neutral reference architecture for Condition Monitoring in production automation. Technical Report VDMA, 2014.
link   bibtex  
Improving rail network velocity: A machine learning approach to predictive maintenance. Li, H.; Parikh, D.; He, Q.; Qian, B.; Li, Z.; Fang, D.; and Hampapur, A. Transportation Research Part C: Emerging Technologies, 45: 17 – 26. 2014.
Improving rail network velocity: A machine learning approach to predictive maintenance [link]Paper   doi   link   bibtex   abstract  
A survey on concept drift adaptation. Gama, J.; Žliobaitė, I.; Bifet, A.; Pechenizkiy, M.; and Bouchachia, A. ACM Computing Surveys, 46(4): 44:1–44:37. March 2014.
A survey on concept drift adaptation [link]Paper   doi   link   bibtex   abstract  
Cloud-Based Data Stream Processing. Heinze, T.; Aniello, L.; Querzoni, L.; and Jerzak, Z. In Proceedings of the 8th ACM International Conference on Distributed Event-Based Systems, of DEBS ’14, pages 238–245, 2014. Association for Computing Machinery
Cloud-Based Data Stream Processing [link]Paper   doi   link   bibtex  
  2013 (22)
A Theoretical Analysis of NDCG Type Ranking Measures. Wang, Y.; Wang, L.; Li, Y.; He, D.; and Liu, T. In Proceedings of the 26th Annual Conference on Learning Theory, pages 25–54, June 2013. PMLR ISSN: 1938-7228
A Theoretical Analysis of NDCG Type Ranking Measures [link]Paper   link   bibtex   abstract  
Change-point detection in time-series data by relative density-ratio estimation. Liu, S.; Yamada, M.; Collier, N.; and Sugiyama, M. Neural Networks, 43: 72–83. July 2013.
Change-point detection in time-series data by relative density-ratio estimation [link]Paper   doi   link   bibtex   abstract  
Fault diagnosis of Tennessee Eastman process with multi-scale PCA and ANFIS. Lau, C. K.; Ghosh, K.; Hussain, M. A.; and Che Hassan, C. R. Chemometrics and Intelligent Laboratory Systems, 120: 1–14. January 2013.
Fault diagnosis of Tennessee Eastman process with multi-scale PCA and ANFIS [link]Paper   doi   link   bibtex   abstract  
Adaptive soft sensor for online prediction and process monitoring based on a mixture of Gaussian process models. Grbić, R.; Slišković, D.; and Kadlec, P. Computers & Chemical Engineering, 58: 84–97. November 2013.
Adaptive soft sensor for online prediction and process monitoring based on a mixture of Gaussian process models [link]Paper   doi   link   bibtex   abstract  
Efficient Estimation of Word Representations in Vector Space. Mikolov, T.; Chen, K.; Corrado, G.; and Dean, J. arXiv:1301.3781 [cs]. September 2013. arXiv: 1301.3781
Efficient Estimation of Word Representations in Vector Space [link]Paper   link   bibtex   abstract  
Representation Learning: A Review and New Perspectives. Bengio, Y.; Courville, A.; and Vincent, P. IEEE Transactions on Pattern Analysis and Machine Intelligence, 35(8): 1798–1828. August 2013. Conference Name: IEEE Transactions on Pattern Analysis and Machine Intelligence
doi   link   bibtex   abstract  
Data stream clustering: A survey. Silva, J. A.; Faria, E. R.; Barros, R. C.; Hruschka, E. R.; Carvalho, A. C. P. L. F. d.; and Gama, J. ACM Computing Surveys, 46(1): 13:1–13:31. July 2013.
Data stream clustering: A survey [link]Paper   doi   link   bibtex   abstract  
CD-MOA: Change Detection Framework for Massive Online Analysis. Bifet, A.; Read, J.; Pfahringer, B.; Holmes, G.; and źLiobaităź, I. In Proceedings of the 12th International Symposium on Advances in Intelligent Data Analysis XII - Volume 8207, of IDA 2013, pages 92–103, Berlin, Heidelberg, October 2013. Springer-Verlag
CD-MOA: Change Detection Framework for Massive Online Analysis [link]Paper   doi   link   bibtex   abstract  
Diagnosing architectural run-time failures. Casanova, P.; Garlan, D.; Schmerl, B.; and Abreu, R. In 2013 8th International Symposium on Software Engineering for Adaptive and Self-Managing Systems (SEAMS), pages 103–112, May 2013. ISSN: 2157-2321
doi   link   bibtex   abstract  
Diagnosis Using Labeled Petri Nets With Silent or Undistinguishable Fault Events. Cabasino, M. P.; Giua, A.; and Seatzu, C. IEEE Transactions on Systems, Man, and Cybernetics: Systems, 43(2): 345–355. March 2013. Conference Name: IEEE Transactions on Systems, Man, and Cybernetics: Systems
doi   link   bibtex   abstract  
An extensive comparative study of cluster validity indices. Arbelaitz, O.; Gurrutxaga, I.; Muguerza, J.; Pérez, J. M.; and Perona, I. Pattern Recognition, 46(1): 243–256. January 2013.
An extensive comparative study of cluster validity indices [link]Paper   doi   link   bibtex   abstract  
What is health?. Brüssow, H. Microbial Biotechnology, 6(4): 341–348. 2013. _eprint: https://onlinelibrary.wiley.com/doi/pdf/10.1111/1751-7915.12063
What is health? [link]Paper   doi   link   bibtex   abstract  
Decision Trees for Mining Data Streams Based on the McDiarmid's Bound. Rutkowski, L.; Pietruczuk, L.; Duda, P.; and Jaworski, M. IEEE Transactions on Knowledge and Data Engineering, 25(6): 1272–1279. June 2013. Conference Name: IEEE Transactions on Knowledge and Data Engineering
doi   link   bibtex   abstract  
1d-SAX: A Novel Symbolic Representation for Time Series. Malinowski, S.; Guyet, T.; Quiniou, R.; and Tavenard, R. In Tucker, A.; Höppner, F.; Siebes, A.; and Swift, S., editor(s), Advances in Intelligent Data Analysis XII, of Lecture Notes in Computer Science, pages 273–284, Berlin, Heidelberg, 2013. Springer
doi   link   bibtex   abstract  
Correcting the Usage of the Hoeffding Inequality in Stream Mining. Matuszyk, P.; Krempl, G.; and Spiliopoulou, M. In Tucker, A.; Höppner, F.; Siebes, A.; and Swift, S., editor(s), Advances in Intelligent Data Analysis XII, of Lecture Notes in Computer Science, pages 298–309, Berlin, Heidelberg, 2013. Springer
doi   link   bibtex   abstract  
A dynamic predictive maintenance policy for complex multi-component systems. Van Horenbeek, A.; and Pintelon, L. Reliability Engineering & System Safety, 120: 39–50. December 2013.
A dynamic predictive maintenance policy for complex multi-component systems [link]Paper   doi   link   bibtex   abstract  
NuActiv: recognizing unseen new activities using semantic attribute-based learning. Cheng, H.; Sun, F.; Griss, M.; Davis, P.; Li, J.; and You, D. In Proceeding of the 11th annual international conference on Mobile systems, applications, and services, of MobiSys '13, pages 361–374, New York, NY, USA, June 2013. Association for Computing Machinery
NuActiv: recognizing unseen new activities using semantic attribute-based learning [link]Paper   doi   link   bibtex   abstract  
Adaptive Model Rules from Data Streams. Almeida, E.; Ferreira, C.; and Gama, J. In Blockeel, H.; Kersting, K.; Nijssen, S.; and Železný, F., editor(s), Machine Learning and Knowledge Discovery in Databases, of Lecture Notes in Computer Science, pages 480–492, Berlin, Heidelberg, 2013. Springer
doi   link   bibtex  
A Wiener-process-based degradation model with a recursive filter algorithm for remaining useful life estimation. Si, X.; Wang, W.; Hu, C.; Chen, M.; and Zhou, D. Mechanical Systems and Signal Processing, 35(1): 219 – 237. 2013.
A Wiener-process-based degradation model with a recursive filter algorithm for remaining useful life estimation [link]Paper   doi   link   bibtex   abstract  
Principles of loads and failure mechanisms. Applications in maintenance, reliability and design. Tinga, T. of Springer Series in Reliability EngineeringSpringer, 2013.
doi   link   bibtex  
Securing the future of German manufacturing industry: Recommendations for implementing the strategic initiative INDUSTRIE 4.0 (Final report of the Industrie 4.0 Working Group). Kagermann, H.; and Helbig, J. Technical Report Acatech: National academy of science and engineering, 2013.
link   bibtex  
Condition-Based Maintenance using Sensor Arrays and Telematics. Palem, G. International Journal of Mobile Network Communications & Telematics, 3: 19–28. 2013.
doi   link   bibtex  
  2012 (30)
SOStream: Self Organizing Density-Based Clustering over Data Stream. Isaksson, C.; Dunham, M. H.; and Hahsler, M. In Perner, P., editor(s), Machine Learning and Data Mining in Pattern Recognition, of Lecture Notes in Computer Science, pages 264–278, Berlin, Heidelberg, 2012. Springer
doi   link   bibtex   abstract  
Density-Based Projected Clustering of Data Streams. Hassani, M.; Spaus, P.; Gaber, M. M.; and Seidl, T. In Hüllermeier, E.; Link, S.; Fober, T.; and Seeger, B., editor(s), Scalable Uncertainty Management, of Lecture Notes in Computer Science, pages 311–324, Berlin, Heidelberg, 2012. Springer
doi   link   bibtex   abstract  
Density-based Projected Clustering over High Dimensional Data Streams. Ntoutsi, I.; Zimek, A.; Palpanas, T.; Kröger, P.; and Kriegel, H. In Proceedings of the 2012 SIAM International Conference on Data Mining (SDM), of Proceedings, pages 987–998. Society for Industrial and Applied Mathematics, April 2012.
Density-based Projected Clustering over High Dimensional Data Streams [link]Paper   doi   link   bibtex   abstract  
Optimal Detection of Changepoints With a Linear Computational Cost. Killick, R.; Fearnhead, P.; and Eckley, I. A. Journal of the American Statistical Association, 107(500): 1590–1598. December 2012. Publisher: Taylor & Francis _eprint: https://doi.org/10.1080/01621459.2012.737745
Optimal Detection of Changepoints With a Linear Computational Cost [link]Paper   doi   link   bibtex   abstract  
Fault diagnosis using contribution plots without smearing effect on non-faulty variables. Liu, J. Journal of Process Control, 22(9): 1609–1623. October 2012.
Fault diagnosis using contribution plots without smearing effect on non-faulty variables [link]Paper   doi   link   bibtex   abstract  
Unsupervised Feature Selection Based on Fuzzy Clustering for Fault Detection of the Tennessee Eastman Process. Bedoya, C.; Uribe, C.; and Isaza, C. In Pavón, J.; Duque-Méndez, N. D.; and Fuentes-Fernández, R., editor(s), Advances in Artificial Intelligence – IBERAMIA 2012, of Lecture Notes in Computer Science, pages 350–360, Berlin, Heidelberg, 2012. Springer
doi   link   bibtex   abstract  
A comparison study of basic data-driven fault diagnosis and process monitoring methods on the benchmark Tennessee Eastman process. Yin, S.; Ding, S. X.; Haghani, A.; Hao, H.; and Zhang, P. Journal of Process Control, 22(9): 1567–1581. October 2012.
A comparison study of basic data-driven fault diagnosis and process monitoring methods on the benchmark Tennessee Eastman process [link]Paper   doi   link   bibtex   abstract  
Facing the reality of data stream classification: coping with scarcity of labeled data. Masud, M. M.; Woolam, C.; Gao, J.; Khan, L.; Han, J.; Hamlen, K. W.; and Oza, N. C. Knowledge and Information Systems, 33(1): 213–244. October 2012.
Facing the reality of data stream classification: coping with scarcity of labeled data [link]Paper   doi   link   bibtex   abstract  
StreamKM++: A clustering algorithm for data streams. Ackermann, M. R.; Märtens, M.; Raupach, C.; Swierkot, K.; Lammersen, C.; and Sohler, C. ACM Journal of Experimental Algorithmics, 17: 2.4:2.1–2.4:2.30. May 2012.
StreamKM++: A clustering algorithm for data streams [link]Paper   doi   link   bibtex   abstract  
IBLStreams: a system for instance-based classification and regression on data streams. Shaker, A.; and Hüllermeier, E. Evolving Systems, 3(4): 235–249. December 2012.
IBLStreams: a system for instance-based classification and regression on data streams [link]Paper   doi   link   bibtex   abstract  
Stochastic Gradient Descent Tricks. Bottou, L. In Montavon, G.; Orr, G. B.; and Müller, K., editor(s), Neural Networks: Tricks of the Trade: Second Edition, of Lecture Notes in Computer Science, pages 421–436. Springer, Berlin, Heidelberg, 2012.
Stochastic Gradient Descent Tricks [link]Paper   doi   link   bibtex   abstract  
Condition based maintenance: a survey. Prajapati, A.; Bechtel, J.; and Ganesan, S. Journal of Quality in Maintenance Engineering, 18(4): 384–400. January 2012. Publisher: Emerald Group Publishing Limited
Condition based maintenance: a survey [link]Paper   doi   link   bibtex   abstract  
Overview on Bayesian networks applications for dependability, risk analysis and maintenance areas. Weber, P.; Medina-Oliva, G.; Simon, C.; and Iung, B. Engineering Applications of Artificial Intelligence, 25(4): 671–682. June 2012.
Overview on Bayesian networks applications for dependability, risk analysis and maintenance areas [link]Paper   doi   link   bibtex   abstract  
Good practice in Bayesian network modelling. Chen, S. H.; and Pollino, C. A. Environmental Modelling & Software, 37: 134–145. November 2012.
Good practice in Bayesian network modelling [link]Paper   doi   link   bibtex   abstract  
Methods to choose the best Hidden Markov Model topology for improving maintenance policy. Robles, B.; Avila, M.; Duculty, F.; Vrignat, P.; Kratz, F.; and Begot, S. . June 2012.
link   bibtex   abstract  
A survey of techniques for incremental learning of HMM parameters. Khreich, W.; Granger, E.; Miri, A.; and Sabourin, R. Information Sciences, 197: 105–130. August 2012.
A survey of techniques for incremental learning of HMM parameters [link]Paper   doi   link   bibtex   abstract  
A Data-Driven Failure Prognostics Method Based on Mixture of Gaussians Hidden Markov Models. Tobon-Mejia, D. A.; Medjaher, K.; Zerhouni, N.; and Tripot, G. IEEE Transactions on Reliability, 61(2): 491–503. June 2012. Conference Name: IEEE Transactions on Reliability
doi   link   bibtex   abstract  
Health Condition Monitoring of Machines Based on Hidden Markov Model and Contribution Analysis. Yu, J. IEEE Transactions on Instrumentation and Measurement, 61(8): 2200–2211. August 2012. Conference Name: IEEE Transactions on Instrumentation and Measurement
doi   link   bibtex   abstract  
A new scalable parallel DBSCAN algorithm using the disjoint-set data structure. Patwary, M. M. A.; Palsetia, D.; Agrawal, A.; Liao, W.; Manne, F.; and Choudhary, A. In SC '12: Proceedings of the International Conference on High Performance Computing, Networking, Storage and Analysis, pages 1–11, November 2012. ISSN: 2167-4337
doi   link   bibtex   abstract  
On Fuzzy Clustering of Data Streams with Concept Drift. Jaworski, M.; Duda, P.; and Pietruczuk, L. In Rutkowski, L.; Korytkowski, M.; Scherer, R.; Tadeusiewicz, R.; Zadeh, L. A.; and Zurada, J. M., editor(s), Artificial Intelligence and Soft Computing, of Lecture Notes in Computer Science, pages 82–91, Berlin, Heidelberg, 2012. Springer
doi   link   bibtex   abstract  
FPGA-based entropy neural processor for online detection of multiple combined faults on induction motors. Cabal-Yepez, E.; Valtierra-Rodriguez, M.; Romero-Troncoso, R. J.; Garcia-Perez, A.; Osornio-Rios, R. A.; Miranda-Vidales, H.; and Alvarez-Salas, R. Mechanical Systems and Signal Processing, 30: 123–130. July 2012.
FPGA-based entropy neural processor for online detection of multiple combined faults on induction motors [link]Paper   doi   link   bibtex   abstract  
Online Incremental Feature Learning with Denoising Autoencoders. Zhou, G.; Sohn, K.; and Lee, H. In Artificial Intelligence and Statistics, pages 1453–1461, March 2012. PMLR ISSN: 1938-7228
Online Incremental Feature Learning with Denoising Autoencoders [link]Paper   link   bibtex  
Ensemble Learning. Polikar, R. In Zhang, C.; and Ma, Y., editor(s), Ensemble Machine Learning: Methods and Applications, pages 1–34. Springer US, Boston, MA, 2012.
Ensemble Learning [link]Paper   doi   link   bibtex   abstract  
Sequential change-point detection based on direct density-ratio estimation. Kawahara, Y.; and Sugiyama, M. Statistical Analysis and Data Mining: The ASA Data Science Journal, 5(2): 114–127. 2012. _eprint: https://onlinelibrary.wiley.com/doi/pdf/10.1002/sam.10124
Sequential change-point detection based on direct density-ratio estimation [link]Paper   doi   link   bibtex   abstract  
Bayesian on-line spectral change point detection: a soft computing approach for on-line ASR. Chowdhury, M. F. R.; Selouani, S.; and O’Shaughnessy, D. International Journal of Speech Technology, 15(1): 5–23. March 2012.
Bayesian on-line spectral change point detection: a soft computing approach for on-line ASR [link]Paper   doi   link   bibtex   abstract  
Condition monitoring and diagnostics of machines — Data interpretation and diagnostics techniques — Part 1: General guidelines. Technical Report International Organization for Standardization, 2012.
link   bibtex  
Condition monitoring and diagnostics of machines — Data processing, communication and presentation — Part 3: Communication. Technical Report International Organization for Standardization, 2012.
link   bibtex  
Condition monitoring and diagnostics of machines - Vocabulary. Technical Report International Organization for Standardization, 2012.
link   bibtex  
A Kalman Filter-Based Ensemble Approach With Application to Turbine Creep Prognostics. Baraldi, P.; Mangili, F.; and Zio, E. IEEE Transactions on Reliability, 61(4): 966–977. 2012.
doi   link   bibtex  
An overview of time-based and condition-based maintenance in industrial application. Ahmad, R.; and Kamaruddin, S. Computers & Industrial Engineering, 63(1): 135 – 149. 2012.
An overview of time-based and condition-based maintenance in industrial application [link]Paper   doi   link   bibtex  
  2011 (21)
Remaining useful life estimation – A review on the statistical data driven approaches. Si, X.; Wang, W.; Hu, C.; and Zhou, D. European Journal of Operational Research, 213(1): 1–14. August 2011.
Remaining useful life estimation – A review on the statistical data driven approaches [link]Paper   doi   link   bibtex   abstract  
Consensus self-organized models for fault detection (COSMO). Byttner, S.; Rögnvaldsson, T.; and Svensson, M. Engineering Applications of Artificial Intelligence, 24(5): 833–839. August 2011.
Consensus self-organized models for fault detection (COSMO) [link]Paper   doi   link   bibtex   abstract  
A review on time series data mining. Fu, T. Engineering Applications of Artificial Intelligence, 24(1): 164–181. February 2011.
A review on time series data mining [link]Paper   doi   link   bibtex   abstract  
Designing a hierarchical neural network based on fuzzy clustering for fault diagnosis of the Tennessee–Eastman process. Eslamloueyan, R. Applied Soft Computing, 11(1): 1407–1415. January 2011.
Designing a hierarchical neural network based on fuzzy clustering for fault diagnosis of the Tennessee–Eastman process [link]Paper   doi   link   bibtex   abstract  
Weighted and constrained possibilistic C-means clustering for online fault detection and isolation. Bahrampour, S.; Moshiri, B.; and Salahshoor, K. Applied Intelligence, 35(2): 269–284. October 2011.
Weighted and constrained possibilistic C-means clustering for online fault detection and isolation [link]Paper   doi   link   bibtex   abstract  
Active Learning with Evolving Streaming Data. Žliobaitė, I.; Bifet, A.; Pfahringer, B.; and Holmes, G. In Gunopulos, D.; Hofmann, T.; Malerba, D.; and Vazirgiannis, M., editor(s), Machine Learning and Knowledge Discovery in Databases, pages 597–612, Berlin, Heidelberg, 2011. Springer
doi   link   bibtex   abstract  
Unbiased online active learning in data streams. Chu, W.; Zinkevich, M.; Li, L.; Thomas, A.; and Tseng, B. In Proceedings of the 17th ACM SIGKDD international conference on Knowledge discovery and data mining, of KDD '11, pages 195–203, New York, NY, USA, August 2011. Association for Computing Machinery
Unbiased online active learning in data streams [link]Paper   doi   link   bibtex   abstract  
Online Support Vector Regression With Varying Parameters for Time-Dependent Data. Omitaomu, O. A.; Jeong, M. K.; and Badiru, A. B. IEEE Transactions on Systems, Man, and Cybernetics - Part A: Systems and Humans, 41(1): 191–197. January 2011. Conference Name: IEEE Transactions on Systems, Man, and Cybernetics - Part A: Systems and Humans
doi   link   bibtex   abstract  
Dealing with concept drift and class imbalance in multi-label stream classification. Xioufis, E. S.; Spiliopoulou, M.; Tsoumakas, G.; and Vlahavas, I. In Proceedings of the Twenty-Second international joint conference on Artificial Intelligence - Volume Volume Two, of IJCAI'11, pages 1583–1588, Barcelona, Catalonia, Spain, July 2011. AAAI Press
link   bibtex   abstract  
Complex Systems: A Survey. Newman, M. E. J. American Journal of Physics, 79(8): 800–810. August 2011. arXiv: 1112.1440
Complex Systems: A Survey [link]Paper   doi   link   bibtex   abstract  
Anomaly detection in monitoring sensor data for preventive maintenance. Rabatel, J.; Bringay, S.; and Poncelet, P. Expert Systems with Applications, 38(6): 7003–7015. June 2011.
Anomaly detection in monitoring sensor data for preventive maintenance [link]Paper   doi   link   bibtex   abstract  
A Short Introduction to Learning to Rank. Li, H. IEICE TRANSACTIONS on Information and Systems, E94-D(10): 1854–1862. October 2011. Publisher: The Institute of Electronics, Information and Communication Engineers
A Short Introduction to Learning to Rank [link]Paper   link   bibtex   abstract  
Fast anomaly detection for streaming data. Tan, S. C.; Ting, K. M.; and Liu, T. F. In Proceedings of the Twenty-Second international joint conference on Artificial Intelligence - Volume Volume Two, of IJCAI'11, pages 1511–1516, Barcelona, Catalonia, Spain, July 2011. AAAI Press
link   bibtex   abstract  
An integrated safety prognosis model for complex system based on dynamic Bayesian network and ant colony algorithm. Hu, J.; Zhang, L.; Ma, L.; and Liang, W. Expert Systems with Applications, 38(3): 1431–1446. March 2011.
An integrated safety prognosis model for complex system based on dynamic Bayesian network and ant colony algorithm [link]Paper   doi   link   bibtex   abstract  
Online Support Vector Machine Applicationfor Model Based Fault Detection and Isolationof HVAC System. Dehestani, D.; Eftekhari, F.; Guo, Y.; Ling, S.; Su, S.; and Nguyen, H. International Journal of Machine Learning and Computing,66–72. 2011.
Online Support Vector Machine Applicationfor Model Based Fault Detection and Isolationof HVAC System [link]Paper   doi   link   bibtex  
An effective evaluation measure for clustering on evolving data streams. Kremer, H.; Kranen, P.; Jansen, T.; Seidl, T.; Bifet, A.; Holmes, G.; and Pfahringer, B. In Proceedings of the 17th ACM SIGKDD international conference on Knowledge discovery and data mining, of KDD '11, pages 868–876, New York, NY, USA, August 2011. Association for Computing Machinery
An effective evaluation measure for clustering on evolving data streams [link]Paper   doi   link   bibtex   abstract  
Discovering Activities to Recognize and Track in a Smart Environment. Rashidi, P.; Cook, D. J.; Holder, L. B.; and Schmitter-Edgecombe, M. IEEE Transactions on Knowledge and Data Engineering, 23(4): 527–539. April 2011. Conference Name: IEEE Transactions on Knowledge and Data Engineering
doi   link   bibtex   abstract  
Reliability and Safety of Complex Technical Systems and Processes: Modeling – Identification – Prediction - Optimization. Kołowrocki, K.; and Soszyńska-Budny, J. of Springer Series in Reliability EngineeringSpringer-Verlag, London, 2011.
Reliability and Safety of Complex Technical Systems and Processes: Modeling – Identification – Prediction - Optimization [link]Paper   doi   link   bibtex   abstract  
Learning model trees from evolving data streams. Ikonomovska, E.; Gama, J.; and Džeroski, S. Data Mining and Knowledge Discovery, 23(1): 128–168. 2011.
Learning model trees from evolving data streams [link]Paper   doi   link   bibtex  
Mesos: A Platform for Fine-Grained Resource Sharing in the Data Center. Hindman, B.; Konwinski, A.; Zaharia, M.; Ghodsi, A.; Joseph, A. D.; Katz, R.; Shenker, S.; and Stoica, I. In Proceedings of the 8th USENIX Conference on Networked Systems Design and Implementation, of NSDI’11, pages 295–308, 2011. USENIX Association
link   bibtex  
State-of-the-Art Predictive Maintenance Techniques. Hashemian, H. M.; and Bean, W. C. IEEE Transactions on Instrumentation and Measurement, 60(10): 3480–3492. 2011.
link   bibtex  
  2010 (18)
A robust clustering method for detection of abnormal situations in a process with multiple steady-state operation modes. Maestri, M.; Farall, A.; Groisman, P.; Cassanello, M.; and Horowitz, G. Computers & Chemical Engineering, 34(2): 223–231. February 2010.
A robust clustering method for detection of abnormal situations in a process with multiple steady-state operation modes [link]Paper   doi   link   bibtex   abstract  
Fault Diagnosis Based on K-Means Clustering and PNN. Wu, D.; Yang, Q.; Tian, F.; and Zhang, D. X. In 2010 Third International Conference on Intelligent Networks and Intelligent Systems, pages 173–176, November 2010.
doi   link   bibtex   abstract  
MOA: Massive Online Analysis, a Framework for Stream Classification and Clustering. Bifet, A.; Holmes, G.; Pfahringer, B.; Kranen, P.; Kremer, H.; Jansen, T.; and Seidl, T. In Proceedings of the First Workshop on Applications of Pattern Analysis, pages 44–50, September 2010. PMLR ISSN: 1938-7228
MOA: Massive Online Analysis, a Framework for Stream Classification and Clustering [link]Paper   link   bibtex   abstract  
Numerical simulation of sliding wear based on archard model. Shen, X.; Cao, L.; and Li, R. In 2010 International Conference on Mechanic Automation and Control Engineering, pages 325–329, June 2010.
doi   link   bibtex   abstract  
Larson–Miller Failure Modeling of Aluminum in Fire. Kandare, E.; Feih, S.; Lattimer, B.; and Mouritz, A. Metallurgical and Materials Transactions A, 41(12): 3091–3099. December 2010.
Larson–Miller Failure Modeling of Aluminum in Fire [link]Paper   doi   link   bibtex   abstract  
Probabilistic Inferences in Bayesian Networks. Ding, J. arXiv:1011.0935 [cs]. November 2010. arXiv: 1011.0935
Probabilistic Inferences in Bayesian Networks [link]Paper   link   bibtex   abstract  
Bayesian Artificial Intelligence. Korb, K. B.; and Nicholson, A. E. CRC Press, December 2010. Google-Books-ID: LxXOBQAAQBAJ
link   bibtex   abstract  
A Fast and Stable Incremental Clustering Algorithm. Young, S.; Arel, I.; Karnowski, T. P.; and Rose, D. In 2010 Seventh International Conference on Information Technology: New Generations, pages 204–209, April 2010.
doi   link   bibtex   abstract  
Online Degradation Assessment and Adaptive Fault Detection Using Modified Hidden Markov Model. Lee, S.; Li, L.; and Ni, J. Journal of Manufacturing Science and Engineering, 132(2). April 2010. Publisher: American Society of Mechanical Engineers Digital Collection
Online Degradation Assessment and Adaptive Fault Detection Using Modified Hidden Markov Model [link]Paper   doi   link   bibtex  
Understanding the difficulty of training deep feedforward neural networks. Glorot, X.; and Bengio, Y. In Proceedings of the Thirteenth International Conference on Artificial Intelligence and Statistics, pages 249–256, March 2010. JMLR Workshop and Conference Proceedings ISSN: 1938-7228
Understanding the difficulty of training deep feedforward neural networks [link]Paper   link   bibtex  
SIMPREBAL: An expert system for real-time fault diagnosis of hydrogenerators machinery. Amaya, E. J.; and Alvares, A. J. In 2010 IEEE 15th Conference on Emerging Technologies Factory Automation (ETFA 2010), pages 1–8, September 2010.
doi   link   bibtex   abstract  
Intelligent condition monitoring and prognostics system based on data-fusion strategy. Niu, G.; and Yang, B. Expert Systems with Applications, 37(12): 8831–8840. December 2010.
Intelligent condition monitoring and prognostics system based on data-fusion strategy [link]Paper   doi   link   bibtex   abstract  
1232-2010 - IEEE Standard for Artificial Intelligence Exchange and Service Tie to All Test Environments (AI-ESTATE). Technical Report Institute of Electrical and Electronics Engineers, 2010.
link   bibtex  
ASTM G40-10b: Standard Terminology Relating to Wear and Erosion. ASTM International, West Conshohocken, PA, 2010.
link   bibtex  
Knowledge Discovery from Data Streams. Gama, J. Chapman & Hall/CRC, 1st edition, 2010.
link   bibtex   abstract  
Current status of machine prognostics in condition-based maintenance: a review. Peng, Y.; Dong, M.; and Zuo, M. J. The International Journal of Advanced Manufacturing Technology, 50(1): 297–313. 2010.
Current status of machine prognostics in condition-based maintenance: a review [link]Paper   doi   link   bibtex  
Development of an optimized condition-based maintenance system by data fusion and reliability-centered maintenance. Niu, G.; Yang, B.; and Pecht, M. Reliability Engineering & System Safety, 95(7): 786 – 796. 2010.
Development of an optimized condition-based maintenance system by data fusion and reliability-centered maintenance [link]Paper   doi   link   bibtex  
Complexity: A Guided Tour. Mitchell, M.; and Toroczkai, Z. Physics Today, 63: 47–. 2010.
doi   link   bibtex  
  2009 (17)
Incremental clustering of dynamic data streams using connectivity based representative points. Lühr, S.; and Lazarescu, M. Data Knowl. Eng., 68: 1–27. January 2009.
doi   link   bibtex   abstract  
FlockStream: A Bio-Inspired Algorithm for Clustering Evolving Data Streams. Forestiero, A.; Pizzuti, C.; and Spezzano, G. In 2009 21st IEEE International Conference on Tools with Artificial Intelligence, pages 1–8, November 2009. ISSN: 2375-0197
doi   link   bibtex   abstract  
Density-Based Data Streams Clustering over Sliding Windows. Ren, J.; and Ma, R. In 2009 Sixth International Conference on Fuzzy Systems and Knowledge Discovery, volume 5, pages 248–252, August 2009.
doi   link   bibtex   abstract  
rDenStream, A Clustering Algorithm over an Evolving Data Stream. Liu, L.; Huang, H.; Guo, Y.; and Chen, F. In 2009 International Conference on Information Engineering and Computer Science, pages 1–4, December 2009. ISSN: 2156-7387
doi   link   bibtex   abstract  
C-DenStream: Using Domain Knowledge on a Data Stream. Ruiz, C.; Menasalvas, E.; and Spiliopoulou, M. In Gama, J.; Costa, V. S.; Jorge, A. M.; and Brazdil, P. B., editor(s), Discovery Science, of Lecture Notes in Computer Science, pages 287–301, Berlin, Heidelberg, 2009. Springer
doi   link   bibtex   abstract  
Lacking Labels in the Stream: Classifying Evolving Stream Data with Few Labels. Woolam, C.; Masud, M. M.; and Khan, L. In Proceedings of the 18th International Symposium on Foundations of Intelligent Systems, of ISMIS '09, pages 552–562, Berlin, Heidelberg, August 2009. Springer-Verlag
Lacking Labels in the Stream: Classifying Evolving Stream Data with Few Labels [link]Paper   doi   link   bibtex   abstract  
Adaptive Learning from Evolving Data Streams. Bifet, A.; and Gavaldà, R. In Adams, N. M.; Robardet, C.; Siebes, A.; and Boulicaut, J., editor(s), Advances in Intelligent Data Analysis VIII, pages 249–260, Berlin, Heidelberg, 2009. Springer
doi   link   bibtex   abstract  
Issues in evaluation of stream learning algorithms. Gama, J.; Sebastião, R.; and Rodrigues, P. P. In Proceedings of the 15th ACM SIGKDD international conference on Knowledge discovery and data mining, of KDD '09, pages 329–338, New York, NY, USA, June 2009. Association for Computing Machinery
Issues in evaluation of stream learning algorithms [link]Paper   doi   link   bibtex   abstract  
On-line Random Forests. Saffari, A.; Leistner, C.; Santner, J.; Godec, M.; and Bischof, H. In 2009 IEEE 12th International Conference on Computer Vision Workshops, ICCV Workshops, pages 1393–1400, September 2009.
doi   link   bibtex   abstract  
Failure diagnostics for railway point machines using expert systems. Atamuradov, V.; Camci, F.; Baskan, S.; and Sevkli, M. In 2009 IEEE International Symposium on Diagnostics for Electric Machines, Power Electronics and Drives, pages 1–5, August 2009.
doi   link   bibtex   abstract  
Self-Adaptive Anytime Stream Clustering. Kranen, P.; Assent, I.; Baldauf, C.; and Seidl, T. In 2009 Ninth IEEE International Conference on Data Mining, pages 249–258, December 2009. ISSN: 2374-8486
doi   link   bibtex   abstract  
Vers l'intégration diagnostic/pronostic pour la maintenance des systèmes complexes. Ribot, P. . December 2009.
link   bibtex   abstract  
Probabilistic Graphical Models: Principles and Techniques. Koller, D.; and Friedman, N. of Adaptive Computation and Machine Learning seriesMIT Press, Cambridge, MA, USA, July 2009.
link   bibtex   abstract  
Active Learning Literature Survey. Settles, B. Technical Report University of Wisconsin-Madison Department of Computer Sciences, 2009. Accepted: 2012-03-15T17:23:56Z
Active Learning Literature Survey [link]Paper   link   bibtex   abstract  
Predictive maintenance policy for a gradually deteriorating system subject to stress. Deloux, E.; Castanier, B.; and Bérenguer, C. Reliability Engineering & System Safety, 94(2): 418 – 431. 2009.
Predictive maintenance policy for a gradually deteriorating system subject to stress [link]Paper   doi   link   bibtex  
Rotating machinery prognostics: State of the art, challenges and opportunities. Heng, A.; Zhang, S.; Tan, A. C. C.; and Mathew, J. Mechanical Systems and Signal Processing, 23(3): 724 – 739. 2009.
Rotating machinery prognostics: State of the art, challenges and opportunities [link]Paper   doi   link   bibtex   abstract  
A survey of the application of gamma processes in maintenance. Noortwijk, J. M. v. Reliability Engineering & System Safety, 94(1): 2 – 21. 2009.
A survey of the application of gamma processes in maintenance [link]Paper   doi   link   bibtex   abstract  
  2008 (17)
Online Statistical Monitoring and Fault Classification of the Tennessee Eastman Challenge Process Based on Dynamic Independent Component Analysis and Support Vector Machine. Salahshoor, K.; and Kiasi, F. IFAC Proceedings Volumes, 41(2): 7405–7412. January 2008.
Online Statistical Monitoring and Fault Classification of the Tennessee Eastman Challenge Process Based on Dynamic Independent Component Analysis and Support Vector Machine [link]Paper   doi   link   bibtex   abstract  
A Practical Approach to Classify Evolving Data Streams: Training with Limited Amount of Labeled Data. Masud, M. M.; Gao, J.; Khan, L.; Han, J.; and Thuraisingham, B. In 2008 Eighth IEEE International Conference on Data Mining, pages 929–934, December 2008. ISSN: 2374-8486
doi   link   bibtex   abstract  
Tracking clusters in evolving data streams over sliding windows. Zhou, A.; Cao, F.; Qian, W.; and Jin, C. Knowledge and Information Systems, 15(2): 181–214. May 2008.
Tracking clusters in evolving data streams over sliding windows [link]Paper   doi   link   bibtex   abstract  
Semi-Supervised Learning Literature Survey. Zhu, X. Comput Sci, University of Wisconsin-Madison, 2. July 2008.
link   bibtex   abstract  
Kernel-based online machine learning and support vector reduction. Agarwal, S.; Vijaya Saradhi, V.; and Karnick, H. Neurocomputing, 71(7): 1230–1237. March 2008.
Kernel-based online machine learning and support vector reduction [link]Paper   doi   link   bibtex   abstract  
Uncertainty analysis on the wear coefficient of Archard model. da Silva, C. R. Á.; and Pintaude, G. Tribology International, 41(6): 473–481. June 2008.
Uncertainty analysis on the wear coefficient of Archard model [link]Paper   doi   link   bibtex   abstract  
A Tutorial on Learning with Bayesian Networks. Heckerman, D. In Holmes, D. E.; and Jain, L. C., editor(s), Innovations in Bayesian Networks: Theory and Applications, of Studies in Computational Intelligence, pages 33–82. Springer, Berlin, Heidelberg, 2008.
A Tutorial on Learning with Bayesian Networks [link]Paper   doi   link   bibtex   abstract  
Online Learning with Hidden Markov Models. Mongillo, G.; and Deneve, S. Neural Computation, 20(7): 1706–1716. July 2008.
Online Learning with Hidden Markov Models [link]Paper   doi   link   bibtex   abstract  
Complex System Maintenance Handbook. Kobbacy, K. A. H.; and Murthy, D. N. P. of Springer Series in Reliability Engineering1 edition, 2008.
link   bibtex  
Proactive learning: cost-sensitive active learning with multiple imperfect oracles. Donmez, P.; and Carbonell, J. G. In Proceedings of the 17th ACM conference on Information and knowledge management, of CIKM '08, pages 619–628, New York, NY, USA, October 2008. Association for Computing Machinery
Proactive learning: cost-sensitive active learning with multiple imperfect oracles [link]Paper   doi   link   bibtex   abstract  
Learning to rank with partially-labeled data. Duh, K.; and Kirchhoff, K. In Proceedings of the 31st annual international ACM SIGIR conference on Research and development in information retrieval, of SIGIR '08, pages 251–258, New York, NY, USA, July 2008. Association for Computing Machinery
Learning to rank with partially-labeled data [link]Paper   doi   link   bibtex   abstract  
Agglomerative Fuzzy K-Means Clustering Algorithm with Selection of Number of Clusters. Li, M. J.; Ng, M. K.; Cheung, Y.; and Huang, J. Z. IEEE Transactions on Knowledge and Data Engineering, 20(11): 1519–1534. November 2008. Conference Name: IEEE Transactions on Knowledge and Data Engineering
doi   link   bibtex   abstract  
Visualizing Data using t-SNE. Maaten, L. v. d.; and Hinton, G. Journal of Machine Learning Research, 9(86): 2579–2605. 2008.
Visualizing Data using t-SNE [link]Paper   link   bibtex   abstract  
Out-of-order processing: a new architecture for high-performance stream systems. Li, J.; Tufte, K.; Shkapenyuk, V.; Papadimos, V.; Johnson, T.; and Maier, D. Proceedings of the VLDB Endowment, 1(1): 274–288. August 2008.
Out-of-order processing: a new architecture for high-performance stream systems [link]Paper   doi   link   bibtex   abstract  
iSAX: indexing and mining terabyte sized time series. Shieh, J.; and Keogh, E. In Proceedings of the 14th ACM SIGKDD international conference on Knowledge discovery and data mining, of KDD '08, pages 623–631, New York, NY, USA, August 2008. Association for Computing Machinery
iSAX: indexing and mining terabyte sized time series [link]Paper   doi   link   bibtex   abstract  
Online fault diagnosis and prevention expert system for dredgers. Tang, J.; and Wang, Q. Expert Systems with Applications, 34(1): 511–521. January 2008.
Online fault diagnosis and prevention expert system for dredgers [link]Paper   doi   link   bibtex   abstract  
Recurrent neural networks for remaining useful life estimation. Heimes, F. O. In 2008 International Conference on Prognostics and Health Management, pages 1–6, 2008. ISSN: null
doi   link   bibtex  
  2007 (12)
Visualising the Cluster Structure of Data Streams. Tasoulis, D. K.; Ross, G.; and Adams, N. M. In R. Berthold, M.; Shawe-Taylor, J.; and Lavrač, N., editor(s), Advances in Intelligent Data Analysis VII, of Lecture Notes in Computer Science, pages 81–92, Berlin, Heidelberg, 2007. Springer
doi   link   bibtex   abstract  
Active Learning from Data Streams. Zhu, X.; Zhang, P.; Lin, X.; and Shi, Y. In Seventh IEEE International Conference on Data Mining (ICDM 2007), pages 757–762, October 2007. ISSN: 2374-8486
doi   link   bibtex   abstract  
An Efficient Algorithm for Instance-Based Learning on Data Streams. Beringer, J.; and Hüllermeier, E. In Perner, P., editor(s), Advances in Data Mining. Theoretical Aspects and Applications, pages 34–48, Berlin, Heidelberg, 2007. Springer
doi   link   bibtex   abstract  
Support vector machine in machine condition monitoring and fault diagnosis. Widodo, A.; and Yang, B. Mechanical Systems and Signal Processing, 21(6): 2560–2574. August 2007.
Support vector machine in machine condition monitoring and fault diagnosis [link]Paper   doi   link   bibtex   abstract  
Dynamic Time Warping. Müller, M., editor. In Müller, M., editor(s), Information Retrieval for Music and Motion, pages 69–84. Springer, Berlin, Heidelberg, 2007.
Dynamic Time Warping [link]Paper   doi   link   bibtex   abstract  
Bayesian Online Changepoint Detection. Adams, R. P.; and MacKay, D. J. C. arXiv:0710.3742 [stat]. October 2007. arXiv: 0710.3742
Bayesian Online Changepoint Detection [link]Paper   link   bibtex   abstract  
Density-based clustering for real-time stream data. Chen, Y.; and Tu, L. In Proceedings of the 13th ACM SIGKDD international conference on Knowledge discovery and data mining, of KDD '07, pages 133–142, San Jose, California, USA, 2007. Association for Computing Machinery
Density-based clustering for real-time stream data [link]Paper   doi   link   bibtex  
An Open System Architecture for Condition Based Maintenance Overview. Swearingen, K.; Majkowski, W.; Bruggeman, B.; Gilbertson, D.; Dunsdon, J.; and Sykes, B. In 2007 IEEE Aerospace Conference, pages 1–8, March 2007.
doi   link   bibtex   abstract  
Condition monitoring and diagnostics of machines — Data processing, communication and presentation — Part 2: Data processing. Technical Report International Organization for Standardization, 2007.
link   bibtex  
Learning from Time-Changing Data with Adaptive Windowing. Bifet, A.; and Gavaldà, R. In Proceedings of the 7th SIAM International Conference on Data Mining, volume 7, 2007.
doi   link   bibtex  
Survey of expert systems for fault detection, test generation and maintenance. Pau, L. Expert Systems, 3: 100 – 110. 2007.
doi   link   bibtex  
Architecture of a Predictive Maintenance Framework. Groba, C.; Cech, S.; Rosenthal, F.; and Gossling, A. In 6th International Conference on Computer Information Systems and Industrial Management Applications (CISIM'07), pages 59–64, June 2007.
doi   link   bibtex  
  2006 (12)
An Improved Manifold Learning Algorithm for Data Visualization. Gu, R.; and Xu, W. In 2006 International Conference on Machine Learning and Cybernetics, pages 1170–1173, August 2006. ISSN: 2160-1348
doi   link   bibtex   abstract  
An Efficient Algorithm for Local Distance Metric Learning. Yang, L.; Jin, R.; Sukthankar, R.; and Liu, Y. January 2006.
link   bibtex   abstract  
Fault Diagnosis with Bayesian Networks: Application to the Tennessee Eastman Process. Verron, S.; Tiplica, T.; and Kobi, A. In 2006 IEEE International Conference on Industrial Technology, pages 98–103, December 2006.
doi   link   bibtex   abstract  
Online Passive-Aggressive Algorithms. Crammer, K.; Dekel, O.; Keshet, J.; Shalev-Shwartz, S.; and Singer, Y. The Journal of Machine Learning Research, 7: 551–585. December 2006.
link   bibtex   abstract  
Particle Swarm Optimization with Discrete Recombination: An Online Optimizer for Evolvable Hardware. Pena, J.; Upegui, A.; and Sanchez, E. In First NASA/ESA Conference on Adaptive Hardware and Systems (AHS'06), pages 163–170, June 2006.
doi   link   bibtex   abstract  
PBIRCH: A Scalable Parallel Clustering algorithm for Incremental Data. Garg, A.; Mangla, A.; Gupta, N.; and Bhatnagar, V. In 2006 10th International Database Engineering and Applications Symposium (IDEAS'06), pages 315–316, December 2006. ISSN: 1098-8068
doi   link   bibtex   abstract  
Density-Based Clustering over an Evolving Data Stream with Noise. Cao, F.; Ester, M.; Qian, W.; and Zhou, A. In Proceedings of the Sixth SIAM International Conference on Data Mining, April 20-22, 2006, Bethesda, MD, USA, volume 2006, 2006.
doi   link   bibtex  
Maintenance Related IEC Dependability Standards. Per Anders Akersten In Joseph Mathew; Jim Kennedy; Lin Ma; Andy Tan; and Deryk Anderson, editor(s), Engineering Asset Management, pages 115–119, London, 2006. Springer
doi   link   bibtex  
A Review of the MIMOSA OSA-EAI Database for Condition Monitoring Systems. Mathew, A.; Zhang, L.; Zhang, S.; and Ma, L. In Mathew, J.; Kennedy, J.; Ma, L.; Tan, A.; and Anderson, D., editor(s), Engineering Asset Management, pages 837–846, London, 2006. Springer
doi   link   bibtex   abstract  
Maintenance of continuously monitored degrading systems. Liao, H.; Elsayed, E. A.; and Chan, L. European Journal of Operational Research, 175(2): 821 – 835. 2006.
Maintenance of continuously monitored degrading systems [link]Paper   doi   link   bibtex   abstract  
Introduction to Automata Theory, Languages, and Computation (3rd Edition). Hopcroft, J. E.; Motwani, R.; and Ullman, J. D. Addison-Wesley Longman Publishing Co., Inc., Boston, MA, USA, 2006.
link   bibtex  
A review on machinery diagnostics and prognostics implementing condition-based maintenance. Jardine, A. K. S.; Lin, D.; and Banjevic, D. Mechanical Systems and Signal Processing, 20(7): 1483 – 1510. 2006.
A review on machinery diagnostics and prognostics implementing condition-based maintenance [link]Paper   doi   link   bibtex   abstract  
  2005 (8)
An Incremental Data Stream Clustering Algorithm Based on Dense Units Detection. Gao, J.; Li, J.; Zhang, Z.; and Tan, P. In Ho, T. B.; Cheung, D.; and Liu, H., editor(s), Advances in Knowledge Discovery and Data Mining, of Lecture Notes in Computer Science, pages 420–425, Berlin, Heidelberg, 2005. Springer
doi   link   bibtex   abstract  
An online kernel change detection algorithm. Desobry, F.; Davy, M.; and Doncarli, C. IEEE Transactions on Signal Processing, 53(8): 2961–2974. August 2005. Conference Name: IEEE Transactions on Signal Processing
doi   link   bibtex   abstract  
Semi-Supervised Learning Literature Survey. Zhu, X. (. Technical Report University of Wisconsin-Madison Department of Computer Sciences, 2005. Accepted: 2012-03-15T17:19:12Z
Semi-Supervised Learning Literature Survey [link]Paper   link   bibtex   abstract  
Multi-fault diagnosis of rolling bearing elements using wavelet analysis and hidden Markov model based fault recognition. Purushotham, V.; Narayanan, S.; and Prasad, S. A. N. NDT & E International, 38(8): 654–664. December 2005.
Multi-fault diagnosis of rolling bearing elements using wavelet analysis and hidden Markov model based fault recognition [link]Paper   doi   link   bibtex   abstract  
Structural Health Monitoring in the Railway Industry: A Review. Barke, D.; and Chiu, W. K. Structural Health Monitoring, 4(1): 81–93. March 2005. Publisher: SAGE Publications
Structural Health Monitoring in the Railway Industry: A Review [link]Paper   doi   link   bibtex   abstract  
A neural network application for reliability modelling and condition-based predictive maintenance. Lin, C.; and Tseng, H. The International Journal of Advanced Manufacturing Technology, 25(1): 174–179. January 2005.
A neural network application for reliability modelling and condition-based predictive maintenance [link]Paper   doi   link   bibtex   abstract  
Dynamic Modeling and Wear-Based Remaining Useful Life Prediction of High Power Clutch Systems. Watson, M.; Byington, C.; Edwards, D.; and Amin, S. Tribology Transactions - TRIBOL TRANS, 48: 208–217. 2005.
doi   link   bibtex  
The 8 Requirements of Real-Time Stream Processing. Stonebraker, M.; undefinedetintemel , U.; and Zdonik, S. SIGMOD Rec., 34(4): 42–47. December 2005. Place: New York, NY, USA Publisher: Association for Computing Machinery
The 8 Requirements of Real-Time Stream Processing [link]Paper   doi   link   bibtex  
  2004 (8)
Technical design of condition based maintenance system—A case study using sound analysis and case-based reasoning. Bengtsson, M.; Olsson, E.; Funk, P.; and Jackson, M. . January 2004.
link   bibtex   abstract  
Multiple-Fault Diagnosis of the Tennessee Eastman Process Based on System Decomposition and Dynamic PLS. Lee, G.; Han, C.; and Yoon, E. S. Industrial & Engineering Chemistry Research, 43(25): 8037–8048. December 2004. Publisher: American Chemical Society
Multiple-Fault Diagnosis of the Tennessee Eastman Process Based on System Decomposition and Dynamic PLS [link]Paper   doi   link   bibtex   abstract  
Online learning with kernels. Kivinen, J.; Smola, A.; and Williamson, R. IEEE Transactions on Signal Processing, 52(8): 2165–2176. August 2004. Conference Name: IEEE Transactions on Signal Processing
doi   link   bibtex   abstract  
Multi-view clustering. Bickel, S.; and Scheffer, T. In Fourth IEEE International Conference on Data Mining (ICDM'04), pages 19–26, November 2004.
doi   link   bibtex   abstract  
Fault diagnosis of electric power systems based on fuzzy Petri nets. Sun, J.; Qin, S.; and Song, Y. IEEE Transactions on Power Systems, 19(4): 2053–2059. November 2004. Conference Name: IEEE Transactions on Power Systems
doi   link   bibtex   abstract  
Segmenting time series: a survey and novel approach. Keogh, E.; Chu, S.; Hart, D.; and Pazzani, M. In Data Mining in Time Series Databases, volume Volume 57, of Series in Machine Perception and Artificial Intelligence, pages 1–21. WORLD SCIENTIFIC, June 2004.
Segmenting time series: a survey and novel approach [link]Paper   doi   link   bibtex  
Test of Page-Hinckley, an approach for fault detection in an agro-alimentary production system. Mouss, H.; Mouss, D.; Mouss, N.; and Sefouhi, L. In 2004 5th Asian Control Conference (IEEE Cat. No.04EX904), volume 2, pages 815–818 Vol.2, July 2004.
link   bibtex   abstract  
A framework for projected clustering of high dimensional data streams. Aggarwal, C. C.; Han, J.; Wang, J.; and Yu, P. S. In Proceedings of the Thirtieth international conference on Very large data bases - Volume 30, of VLDB '04, pages 852–863, Toronto, Canada, August 2004. VLDB Endowment
link   bibtex  
  2003 (9)
Accurate On-line Support Vector Regression. Ma, J.; Theiler, J.; and Perkins, S. Neural Computation, 15(11): 2683–2703. November 2003. Conference Name: Neural Computation
doi   link   bibtex   abstract  
ARTIFICIAL NEURAL NETWORK BASED FAULT DIAGNOSTICS OF ROLLING ELEMENT BEARINGS USING TIME-DOMAIN FEATURES. Samanta, B.; and Al-balushi, K. R. Mechanical Systems and Signal Processing, 17(2): 317–328. March 2003.
ARTIFICIAL NEURAL NETWORK BASED FAULT DIAGNOSTICS OF ROLLING ELEMENT BEARINGS USING TIME-DOMAIN FEATURES [link]Paper   doi   link   bibtex   abstract  
Artificial neural networks and support vector machines with genetic algorithm for bearing fault detection. Samanta, B.; Al-Balushi, K. R.; and Al-Araimi, S. A. Engineering Applications of Artificial Intelligence, 16(7): 657–665. October 2003.
Artificial neural networks and support vector machines with genetic algorithm for bearing fault detection [link]Paper   doi   link   bibtex   abstract  
Discovering cluster-based local outliers. He, Z.; Xu, X.; and Deng, S. Pattern Recognition Letters, 24(9): 1641–1650. June 2003.
Discovering cluster-based local outliers [link]Paper   doi   link   bibtex   abstract  
A symbolic representation of time series, with implications for streaming algorithms. Lin, J.; Keogh, E.; Lonardi, S.; and Chiu, B. In Proceedings of the 8th ACM SIGMOD workshop on Research issues in data mining and knowledge discovery, of DMKD '03, pages 2–11, New York, NY, USA, June 2003. Association for Computing Machinery
A symbolic representation of time series, with implications for streaming algorithms [link]Paper   doi   link   bibtex   abstract  
A framework for clustering evolving data streams. Aggarwal, C. C.; Han, J.; Wang, J.; and Yu, P. S. In Proceedings of the 29th international conference on Very large data bases - Volume 29, of VLDB '03, pages 81–92, Berlin, Germany, September 2003. VLDB Endowment
link   bibtex  
Prognostic Enhancements to Gas Turbine Diagnostic Systems. Byington, C. S.; Watson, M.; Roemer, M. J.; Galie, T. R.; McGroarty, J. J.; and Savage, C. Technical Report IMPACT TECHNOLOGIES LLC STATE COLLEGE PA, January 2003.
Prognostic Enhancements to Gas Turbine Diagnostic Systems [link]Paper   link   bibtex   abstract  
Condition monitoring and diagnostics of machines — Data processing, communication and presentation — Part 1: General guidelines. Technical Report International Organization for Standardization, 2003.
link   bibtex  
A critical look at the bathtub curve. Klutke, G. A.; Kiessler, P. C.; and Wortman, M. A. IEEE Transactions on Reliability, 52(1): 125–129. 2003.
doi   link   bibtex  
  2002 (8)
Streaming-data algorithms for high-quality clustering. O'Callaghan, L.; Mishra, N.; Meyerson, A.; Guha, S.; and Motwani, R. In Proceedings 18th International Conference on Data Engineering, pages 685–694, February 2002. ISSN: 1063-6382
doi   link   bibtex   abstract  
Cumulated gain-based evaluation of IR techniques. Järvelin, K.; and Kekäläinen, J. ACM Transactions on Information Systems, 20(4): 422–446. October 2002.
Cumulated gain-based evaluation of IR techniques [link]Paper   doi   link   bibtex   abstract  
A framework for next generation machinery monitoring and diagnostics. Lebold, M.; Reichard, K.; Hejda, P.; and Bezdicek, J. In 2002. Citeseer
link   bibtex  
A unifying framework for detecting outliers and change points from non-stationary time series data. Yamanishi, K.; and Takeuchi, J. In Proceedings of the eighth ACM SIGKDD international conference on Knowledge discovery and data mining, of KDD '02, pages 676–681, New York, NY, USA, July 2002. Association for Computing Machinery
A unifying framework for detecting outliers and change points from non-stationary time series data [link]Paper   doi   link   bibtex   abstract  
OSA-CBM Architecture Development with Emphasis on XML Implementations. Lebold, M.; and Reichard, K. In 2002.
link   bibtex  
Damage mechanics approach for bearing lifetime prognostics. QIU, J.; SETH, B. B.; LIANG, S. Y.; and ZHANG, C. Mechanical Systems and Signal Processing, 16(5): 817 – 829. 2002.
Damage mechanics approach for bearing lifetime prognostics [link]Paper   doi   link   bibtex   abstract  
Physically based diagnosis and prognosis of cracked rotor shafts. Oppenheimer, C. H.; and Loparo, K. A. In Willett, P. K.; and Kirubarajan, T., editor(s), Component and Systems Diagnostics, Prognostics, and Health Management II, volume 4733, pages 122 – 132, 2002. SPIE Backup Publisher: International Society for Optics and Photonics
Physically based diagnosis and prognosis of cracked rotor shafts [link]Paper   doi   link   bibtex  
A survey of maintenance policies of deteriorating systems. Wang, H. European Journal of Operational Research, 139(3): 469 – 489. 2002.
A survey of maintenance policies of deteriorating systems [link]Paper   doi   link   bibtex  
  2001 (11)
Dimensionality Reduction for Fast Similarity Search in Large Time Series Databases. Keogh, E.; Chakrabarti, K.; Pazzani, M.; and Mehrotra, S. Knowledge and Information Systems, 3(3): 263–286. August 2001.
Dimensionality Reduction for Fast Similarity Search in Large Time Series Databases [link]Paper   doi   link   bibtex   abstract  
Mining time-changing data streams. Hulten, G.; Spencer, L.; and Domingos, P. In Proceedings of the seventh ACM SIGKDD international conference on Knowledge discovery and data mining, of KDD '01, pages 97–106, New York, NY, USA, August 2001. Association for Computing Machinery
Mining time-changing data streams [link]Paper   doi   link   bibtex   abstract  
Learn++: an incremental learning algorithm for supervised neural networks. Polikar, R.; Upda, L.; Upda, S.; and Honavar, V. IEEE Transactions on Systems, Man, and Cybernetics, Part C (Applications and Reviews), 31(4): 497–508. November 2001. Conference Name: IEEE Transactions on Systems, Man, and Cybernetics, Part C (Applications and Reviews)
doi   link   bibtex   abstract  
Bayesian approach for neural networks—review and case studies. Lampinen, J.; and Vehtari, A. Neural Networks, 14(3): 257–274. April 2001.
Bayesian approach for neural networks—review and case studies [link]Paper   doi   link   bibtex   abstract  
Topology free hidden Markov models: application to background modeling. Stenger, B.; Ramesh, V.; Paragios, N.; Coetzee, F.; and Buhmann, J. In Proceedings Eighth IEEE International Conference on Computer Vision. ICCV 2001, volume 1, pages 294–301 vol.1, July 2001.
doi   link   bibtex   abstract  
MIMOSA OSA-CBM. 2001.
MIMOSA OSA-CBM [link]Paper   link   bibtex  
A stability based method for discovering structure in clustered data. Ben-Hur, A.; Elisseeff, A.; and Guyon, I. In Biocomputing 2002, pages 6–17. WORLD SCIENTIFIC, December 2001.
A stability based method for discovering structure in clustered data [link]Paper   doi   link   bibtex  
An online algorithm for segmenting time series. Keogh, E.; Chu, S.; Hart, D.; and Pazzani, M. In Proceedings 2001 IEEE International Conference on Data Mining, pages 289–296, November 2001.
doi   link   bibtex   abstract  
Standards Developments for Condition-Based Maintenance Systems. Thurston, M.; Lebold, M.; and Box, P O ,12. 2001.
link   bibtex   abstract  
Intelligent Predictive Decision Support System for Condition-Based Maintenance. Yam, R. C. M.; Tse, P.; Li, L.; and Tu, P. The International Journal of Advanced Manufacturing Technology, 17(5): 383–391. 2001.
Intelligent Predictive Decision Support System for Condition-Based Maintenance [link]Paper   doi   link   bibtex  
Reliability-centered Maintenance. Moubray, J. Industrial Press, 2001.
Reliability-centered Maintenance [link]Paper   link   bibtex  
  2000 (7)
Nonlinear Dimensionality Reduction by Locally Linear Embedding. Roweis, S. T.; and Saul, L. K. Science, 290(5500): 2323–2326. December 2000. Publisher: American Association for the Advancement of Science
Nonlinear Dimensionality Reduction by Locally Linear Embedding [link]Paper   doi   link   bibtex   abstract  
A Global Geometric Framework for Nonlinear Dimensionality Reduction. Tenenbaum, J. B.; Silva, V. d.; and Langford, J. C. Science, 290(5500): 2319–2323. December 2000. Publisher: American Association for the Advancement of Science
A Global Geometric Framework for Nonlinear Dimensionality Reduction [link]Paper   doi   link   bibtex   abstract  
Incremental and decremental support vector machine learning. Cauwenberghs, G.; and Poggio, T. In Proceedings of the 13th International Conference on Neural Information Processing Systems, of NIPS'00, pages 388–394, Cambridge, MA, USA, January 2000. MIT Press
link   bibtex   abstract  
Tennessee Eastman Process. Russell, E. L.; Chiang, L. H.; and Braatz, R. D. In Russell, E. L.; Chiang, L. H.; and Braatz, R. D., editor(s), Data-driven Methods for Fault Detection and Diagnosis in Chemical Processes, of Advances in Industrial Control, pages 99–108. Springer, London, 2000.
Tennessee Eastman Process [link]Paper   doi   link   bibtex   abstract  
Mining high-speed data streams. Domingos, P.; and Hulten, G. In Proceedings of the sixth ACM SIGKDD international conference on Knowledge discovery and data mining, of KDD '00, pages 71–80, Boston, Massachusetts, USA, August 2000. Association for Computing Machinery
Mining high-speed data streams [link]Paper   doi   link   bibtex  
Three approaches to the quantitative definition of information in an individual pure quantum state. Vitanyi, P. In Proceedings 15th Annual IEEE Conference on Computational Complexity, pages 263–270, July 2000. ISSN: 1093-0159
doi   link   bibtex  
The definition of system. Backlund, A. Kybernetes: The International Journal of Systems & Cybernetics, 29. 2000.
doi   link   bibtex  
  1999 (3)
OPTICS: ordering points to identify the clustering structure. Ankerst, M.; Breunig, M. M.; Kriegel, H.; and Sander, J. ACM SIGMOD Record, 28(2): 49–60. June 1999.
OPTICS: ordering points to identify the clustering structure [link]Paper   doi   link   bibtex   abstract  
Learning Hidden Markov Model Structure for Information Extraction. Seymore, K.; McCallum, A.; and Rosenfeld, R. In 1999.
Learning Hidden Markov Model Structure for Information Extraction [link]Paper   link   bibtex  
Adaptive prognostics for rolling element bearing condition. Li, Y.; Billington, S.; Zhang, C.; Kurfess, T.; Danyluk, S.; and Liang, S. Mechanical Systems and Signal Processing, 13(1): 103 – 113. 1999.
Adaptive prognostics for rolling element bearing condition [link]Paper   doi   link   bibtex   abstract  
  1998 (5)
Extracting Hidden Context. Harries, M. B.; Sammut, C.; and Horn, K. Machine Learning, 32(2): 101–126. August 1998.
Extracting Hidden Context [link]Paper   doi   link   bibtex   abstract  
Combining labeled and unlabeled data with co-training. Blum, A.; and Mitchell, T. In Proceedings of the eleventh annual conference on Computational learning theory, of COLT' 98, pages 92–100, New York, NY, USA, July 1998. Association for Computing Machinery
Combining labeled and unlabeled data with co-training [link]Paper   doi   link   bibtex  
MIMOSA OSA-EAI. 1998.
MIMOSA OSA-EAI [link]Paper   link   bibtex  
Incremental Clustering for Mining in a Data Warehousing Environment. Ester, M.; Kriegel, H.; Sander, J.; Wimmer, M.; and Xu, X. In Proceedings of the 24rd International Conference on Very Large Data Bases, of VLDB '98, pages 323–333, San Francisco, CA, USA, August 1998. Morgan Kaufmann Publishers Inc.
link   bibtex  
Expert-based maintenance: a study of its effectiveness. Chande, P.; and Tokekar, S. IEEE Transactions on Reliability, 47(1): 53–58. March 1998. Conference Name: IEEE Transactions on Reliability
doi   link   bibtex   abstract  
  1997 (5)
Object-oriented Bayesian networks. Koller, D.; and Pfeffer, A. In Proceedings of the Thirteenth conference on Uncertainty in artificial intelligence, of UAI'97, pages 302–313, Providence, Rhode Island, August 1997.
link   bibtex   abstract  
Long Short-Term Memory. Hochreiter, S.; and Schmidhuber, J. Neural Computation, 9(8): 1735–1780. November 1997.
Long Short-Term Memory [link]Paper   doi   link   bibtex   abstract  
An introduction to the studies of reliability of systems using the Weibull proportional hazards model. Jóźwiak, I. J. Microelectronics Reliability, 37(6): 915 – 918. 1997.
An introduction to the studies of reliability of systems using the Weibull proportional hazards model [link]Paper   doi   link   bibtex   abstract  
A structured approach to the selection of condition based maintenance. Starr, A. G. In Fifth International Conference on Factory 2000 - The Technology Exploitation Process, pages 131–138, 1997. ISSN: 0537-9989
doi   link   bibtex  
An Introduction To Reliability and Maintainability Engineering. Ebeling, C. E. McGraw-Hill, 1997.
link   bibtex  
  1996 (3)
BIRCH: an efficient data clustering method for very large databases. Zhang, T.; Ramakrishnan, R.; and Livny, M. ACM SIGMOD Record, 25(2): 103–114. June 1996.
BIRCH: an efficient data clustering method for very large databases [link]Paper   doi   link   bibtex   abstract  
Numerical Bayesian Methods Applied to Signal Processing. Ruanaidh, J. J. K. O.; and Fitzgerald, W. J. of Statistics and ComputingSpringer-Verlag, New York, 1996.
Numerical Bayesian Methods Applied to Signal Processing [link]Paper   doi   link   bibtex   abstract  
A density-based algorithm for discovering clusters in large spatial databases with noise. Ester, M.; Kriegel, H.; Sander, J.; and Xu, X. In Proceedings of the Second International Conference on Knowledge Discovery and Data Mining, of KDD'96, pages 226–231, Portland, Oregon, August 1996. AAAI Press
link   bibtex  
  1995 (5)
Unsupervised word sense disambiguation rivaling supervised methods. Yarowsky, D. In Proceedings of the 33rd annual meeting on Association for Computational Linguistics, of ACL '95, pages 189–196, USA, June 1995. Association for Computational Linguistics
Unsupervised word sense disambiguation rivaling supervised methods [link]Paper   doi   link   bibtex   abstract  
Estimating continuous distributions in Bayesian classifiers. John, G. H.; and Langley, P. In Proceedings of the Eleventh conference on Uncertainty in artificial intelligence, of UAI'95, pages 338–345, San Francisco, CA, USA, August 1995. Morgan Kaufmann Publishers Inc.
link   bibtex   abstract  
Particle swarm optimization. Kennedy, J.; and Eberhart, R. In Proceedings of ICNN'95 - International Conference on Neural Networks, volume 4, pages 1942–1948 vol.4, November 1995.
doi   link   bibtex   abstract  
Condition‐based maintenance: tools and decision making. Tsang, A. H. C. Journal of Quality in Maintenance Engineering, 1(3): 3–17. 1995.
link   bibtex  
Maintainability: A Key to Effective Serviceability and Maintenance Management. Benjamin S. Blanchard, D. C. V. John Wiley & Sons, 1995.
link   bibtex  
  1994 (2)
Use of the Larson-Miller parameter to study the influence of ageing on the hardness of cold-worked austenitic stainless steel. Vasudevan, M.; Venkadesan, S.; Sivaprasad, P. V.; and Mannan, S. L. Journal of Nuclear Materials, 211(3): 251–255. August 1994.
Use of the Larson-Miller parameter to study the influence of ageing on the hardness of cold-worked austenitic stainless steel [link]Paper   doi   link   bibtex   abstract  
Probability Inequalities for sums of Bounded Random Variables. Hoeffding, W. In Fisher, N. I.; and Sen, P. K., editor(s), The Collected Works of Wassily Hoeffding, of Springer Series in Statistics, pages 409–426. Springer, New York, NY, 1994.
Probability Inequalities for sums of Bounded Random Variables [link]Paper   doi   link   bibtex   abstract  
  1993 (3)
A plant-wide industrial process control problem. Downs, J. J.; and Vogel, E. F. Computers & Chemical Engineering, 17(3): 245–255. March 1993.
A plant-wide industrial process control problem [link]Paper   doi   link   bibtex   abstract  
Fault detection/monitoring using time Petri nets. Srinivasan, V.; and Jafari, M. IEEE Transactions on Systems, Man, and Cybernetics, 23(4): 1155–1162. July 1993. Conference Name: IEEE Transactions on Systems, Man, and Cybernetics
doi   link   bibtex   abstract  
A survey of fuzzy clustering. Yang, M. -. Mathematical and Computer Modelling, 18(11): 1–16. December 1993.
A survey of fuzzy clustering [link]Paper   doi   link   bibtex   abstract  
  1992 (3)
An Expert System for On-Line Fault Diagnosis and Control of a Railway Locomotive. Di Marco, F.; Fortuna, L.; Gallo, A.; and Nunnari, G. IFAC Proceedings Volumes, 25(29, Part 1): 217–221. October 1992.
An Expert System for On-Line Fault Diagnosis and Control of a Railway Locomotive [link]Paper   doi   link   bibtex   abstract  
Rolling Element Bearing Fatigue Damage Propagation. Hoeprich, M. R. Journal of Tribology, 114(2): 328–333. 1992. _eprint: https://asmedigitalcollection.asme.org/tribology/article-pdf/114/2/328/5583421/328_1.pdf
Rolling Element Bearing Fatigue Damage Propagation [link]Paper   doi   link   bibtex   abstract  
On-Line Algorithms Versus Off-Line Algorithms: How Much is it Worth to Know the Future?. Karp, R. M. In Proceedings of the IFIP 12th World Computer Congress on Algorithms, Software, Architecture - Information Processing '92, Volume 1 - Volume I, pages 416–429, NLD, September 1992. North-Holland Publishing Co.
link   bibtex  
  1991 (2)
A validity measure for fuzzy clustering. Xie, X.; and Beni, G. IEEE Transactions on Pattern Analysis and Machine Intelligence, 13(8): 841–847. August 1991. Conference Name: IEEE Transactions on Pattern Analysis and Machine Intelligence
doi   link   bibtex   abstract  
The Normal and the Pathological. December 1991.
The Normal and the Pathological [link]Paper   link   bibtex  
  1989 (1)
A tutorial on hidden Markov models and selected applications in speech recognition. Rabiner, L. Proceedings of the IEEE, 77(2): 257–286. February 1989. Conference Name: Proceedings of the IEEE
doi   link   bibtex   abstract  
  1987 (1)
Measurement of Pain: A Comparison of the Visual Analogue with a Nonvisual Analogue Scale. Murphy, D. F.; McDonald, A.; Power, C.; Unwin, A.; and MacSullivan, R. The Clinical Journal of Pain, 3(4): 197–200. 1987.
Measurement of Pain: A Comparison of the Visual Analogue with a Nonvisual Analogue Scale [link]Paper   link   bibtex   abstract  
  1986 (1)
Toward a quantitative theory of self-generated complexity. Grassberger, P. International Journal of Theoretical Physics, 25(9): 907–938. September 1986.
Toward a quantitative theory of self-generated complexity [link]Paper   doi   link   bibtex  
  1984 (1)
FCM: The fuzzy c-means clustering algorithm. Bezdek, J. C.; Ehrlich, R.; and Full, W. Computers & Geosciences, 10(2): 191–203. January 1984.
FCM: The fuzzy c-means clustering algorithm [link]Paper   doi   link   bibtex   abstract  
  1982 (1)
Least squares quantization in PCM. Lloyd, S. IEEE Transactions on Information Theory, 28(2): 129–137. March 1982. Conference Name: IEEE Transactions on Information Theory
doi   link   bibtex   abstract  
  1979 (1)
A Cluster Separation Measure. Davies, D. L.; and Bouldin, D. W. IEEE Transactions on Pattern Analysis and Machine Intelligence, PAMI-1(2): 224–227. April 1979. Conference Name: IEEE Transactions on Pattern Analysis and Machine Intelligence
doi   link   bibtex   abstract  
  1975 (1)
A Gamma Wear Process. Abdel-Hameed, M. IEEE Transactions on Reliability, R-24(2): 152–153. June 1975.
doi   link   bibtex  
  1969 (1)
Cumulative Damage in Fatigue: A Step towards Its Understanding. Brook, R. H. W.; and Parry, J. S. C. Journal of Mechanical Engineering Science, 11(3): 243–255. 1969.
Cumulative Damage in Fatigue: A Step towards Its Understanding [link]Paper   doi   link   bibtex   abstract  
  1968 (1)
Three approaches to the quantitative definition of information. Kolmogorov, A. N. International Journal of Computer Mathematics, 2(1-4): 157–168. 1968. Publisher: Taylor & Francis _eprint: https://doi.org/10.1080/00207166808803030
Three approaches to the quantitative definition of information [link]Paper   doi   link   bibtex  
  1963 (1)
Probability Inequalities for Sums of Bounded Random Variables. Hoeffding, W. Journal of the American Statistical Association, 58(301): 13–30. 1963. Publisher: [American Statistical Association, Taylor & Francis, Ltd.]
Probability Inequalities for Sums of Bounded Random Variables [link]Paper   doi   link   bibtex   abstract  
  1961 (1)
A rational analytic theory of fatigue. Paris, P.; Gomez, M.; and Anderson, W. The trend inf Engineering, 13: 9–14. 1961.
link   bibtex  
  1960 (1)
A Coefficient of Agreement for Nominal Scales. Cohen, J. Educational and Psychological Measurement, 20(1): 37–46. April 1960. Publisher: SAGE Publications Inc
A Coefficient of Agreement for Nominal Scales [link]Paper   doi   link   bibtex  
  1959 (1)
Some Studies in Machine Learning Using the Game of Checkers. Samuel, A. L. IBM Journal of Research and Development, 3(3): 210–229. July 1959. Conference Name: IBM Journal of Research and Development
doi   link   bibtex   abstract  
  1958 (1)
The perceptron: a probabilistic model for information storage and organization in the brain. Rosenblatt, F. Psychological Review, 65(6): 386–408. November 1958.
doi   link   bibtex  
  1954 (1)
Behavior of materials under conditions of thermal stress. SS, M. Technical Report National Advisory Committee for Aeronautics. Lewis Flight Propulsion Lab.; Cleveland, OH, United States, 1954.
link   bibtex  
  1953 (1)
Contact and Rubbing of Flat Surfaces. Archard, J. F. Journal of Applied Physics, 24(8): 981–988. 1953. _eprint: https://doi.org/10.1063/1.1721448
Contact and Rubbing of Flat Surfaces [link]Paper   doi   link   bibtex   1 download  
  1948 (1)
A mathematical theory of communication. Shannon, C. E. The Bell System Technical Journal, 27(3): 379–423. July 1948. Conference Name: The Bell System Technical Journal
doi   link   bibtex   abstract  
  1921 (1)
Experimental development of the graphic rating method. Hayes, M.; and Paterson, D. Psychol Bull, 18: 8–9. 1921.
link   bibtex  
  1910 (1)
The exponential law of endurance tests. OH, B. American Society for Testing Materials, 10: 625–630. 1910.
link   bibtex  
  undefined (8)
Predictive Maintenance for Railway Domain: A Systematic Literature Review.
Predictive Maintenance for Railway Domain: A Systematic Literature Review [link]Paper   link   bibtex   abstract  
Transfer learning for remaining useful life prediction based on consensus self-organizing models - ScienceDirect.
Transfer learning for remaining useful life prediction based on consensus self-organizing models - ScienceDirect [link]Paper   link   bibtex  
Interpretable and explainable machine learning: A methods-centric overview with concrete examples. Marcinkevičs, R.; and Vogt, J. E. WIREs Data Mining and Knowledge Discovery, n/a(n/a): e1493. . _eprint: https://onlinelibrary.wiley.com/doi/pdf/10.1002/widm.1493
Interpretable and explainable machine learning: A methods-centric overview with concrete examples [link]Paper   doi   link   bibtex   abstract  
Understanding LSTM Networks – colah's blog.
Understanding LSTM Networks – colah's blog [link]Paper   link   bibtex  
Du matériel roulant à l'infrastructure, l'importance de la maintenance prédictive pour la RATP.
Du matériel roulant à l'infrastructure, l'importance de la maintenance prédictive pour la RATP [link]Paper   link   bibtex   abstract  
A comparative study on online machine learning techniques for network traffic streams analysis \textbar Elsevier Enhanced Reader.
A comparative study on online machine learning techniques for network traffic streams analysis \textbar Elsevier Enhanced Reader [link]Paper   doi   link   bibtex  
The French passenger rail transport market 2015-2016. Technical Report Autorité de régulation des activités ferroviaires et routières, .
link   bibtex  
The perceptron: A probabilistic model for information storage and organization in the brain. - PsycNET.
The perceptron: A probabilistic model for information storage and organization in the brain. - PsycNET [link]Paper   link   bibtex   abstract