generated by bibbase.org
  2023 (8)
Overcoming Concept Shift in Domain-Aware Settings through Consolidated Internal Distributions. Rostami, M.; and Galstyan, A. In Thirty-Seventh AAAI Conference on Artificial Intelligence, 2023. https://arxiv.org/pdf/2007.00197.pdf
link   bibtex  
Hybrid forecasting of geopolitical events. Benjamin, D. M; Morstatter, F.; Abbas, A. E; Abeliuk, A.; Atanasov, P.; Bennett, S.; Beger, A.; Birari, S.; Budescu, D. V; Catasta, M.; and others AI Magazine, 44: 112–128. 2023.
link   bibtex  
“I’m fully who I am”: Towards centering transgender and non-binary voices to measure biases in open language generation. Ovalle, A.; Goyal, P.; Dhamala, J.; Jaggers, Z.; Chang, K.; Galstyan, A.; Zemel, R.; and Gupta, R. In Proceedings of the 2023 ACM Conference on Fairness, Accountability, and Transparency, pages 1246–1266, 2023.
link   bibtex  
Neural Architecture Search for Parameter-Efficient Fine-tuning of Large Pre-trained Language Models. Lawton, N.; Kumar, A.; Thattai, G.; Galstyan, A.; and Steeg, G. V. In Findings of the Association for Computational Linguistics: ACL 2023, 2023.
link   bibtex  
Resolving ambiguities in text-to-image generative models. Mehrabi, N.; Goyal, P.; Verma, A.; Dhamala, J.; Kumar, V.; Hu, Q.; Chang, K.; Zemel, R.; Galstyan, A.; and Gupta, R. In Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pages 14367–14388, 2023.
link   bibtex  
Flirt: Feedback loop in-context red teaming. Mehrabi, N.; Goyal, P.; Dupuy, C.; Hu, Q.; Ghosh, S.; Zemel, R.; Chang, K.; Galstyan, A.; and Gupta, R. arXiv preprint arXiv:2308.04265. 2023.
link   bibtex  
Domain adaptation for sentiment analysis using robust internal representations. Rostami, M.; Bose, D.; Narayanan, S.; and Galstyan, A. In Findings of the Association for Computational Linguistics: EMNLP 2023, pages 11484–11498, 2023.
link   bibtex  
On the steerability of large language models toward data-driven personas. Li, J.; Mehrabi, N.; Peris, C.; Goyal, P.; Chang, K.; Galstyan, A.; Zemel, R.; and Gupta, R. In NAACL'24, 2023.
link   bibtex  
  2022 (5)
Mitigating gender bias in distilled language models via counterfactual role reversal. Gupta, U.; Dhamala, J.; Kumar, V.; Verma, A.; Pruksachatkun, Y.; Krishna, S.; Gupta, R.; Chang, K.; Steeg, G. V.; and Galstyan, A. arXiv preprint arXiv:2203.12574. 2022.
link   bibtex  
On the intrinsic and extrinsic fairness evaluation metrics for contextualized language representations. Cao, Y. T.; Pruksachatkun, Y.; Chang, K.; Gupta, R.; Kumar, V.; Dhamala, J.; and Galstyan, A. arXiv preprint arXiv:2203.13928. 2022.
link   bibtex  
Robust Conversational Agents against Imperceptible Toxicity Triggers. Mehrabi, N.; Beirami, A.; Morstatter, F.; and Galstyan, A. In Proceedings of the 2022 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, 2022.
link   bibtex  
DEAM: Dialogue Coherence Evaluation using AMR-based Semantic Manipulations. Ghazarian, S.; Wen, N.; Galstyan, A.; and Peng, N. In ACL 2022, 2022.
link   bibtex  
StATIK: Structure and text for inductive knowledge graph completion. Markowitz, E.; Balasubramanian, K.; Mirtaheri, M.; Annavaram, M.; Galstyan, A.; and Ver Steeg, G. In Findings of the association for computational linguistics: NAACL 2022, pages 604–615, 2022.
link   bibtex  
  2021 (11)
Identifying and analyzing cryptocurrency manipulations in social media. Mirtaheri, M.; Abu-El-Haija, S.; Morstatter, F.; Ver Steeg, G.; and Galstyan, A. IEEE Transactions on Computational Social Systems, 8(3): 607–617. 2021.
link   bibtex  
A survey on bias and fairness in machine learning. Mehrabi, N.; Morstatter, F.; Saxena, N.; Lerman, K.; and Galstyan, A. ACM computing surveys (CSUR), 54(6): 1–35. 2021.
link   bibtex   1 download  
Graph Traversal with Tensor Functionals: A Meta-Algorithm for Scalable Learning. Markowitz, E.; Balasubramanian, K.; Mirtaheri, M.; Abu-El-Haija, S.; Perozzi, B.; Steeg, G. V.; and Galstyan, A. In ICLR, 2021.
link   bibtex  
A survey of human judgement and quantitative forecasting methods. Zellner, M.; Abbas, A. E; Budescu, D. V; and Galstyan, A. Royal Society open science, 8(2): 201187. 2021.
link   bibtex  
Lawyers are Dishonest? Quantifying Representational Harms in Commonsense Knowledge Resources. Mehrabi, N.; Zhou, P.; Morstatter, F.; Pujara, J.; Ren, X.; and Galstyan, A. In Proceedings of the 2021 Conference on Empirical Methods in Natural Language Processing, 2021.
link   bibtex  
Bin2vec: learning representations of binary executable programs for security tasks. Arakelyan, S.; Arasteh, S.; Hauser, C.; Kline, E.; and Galstyan, A. Cybersecurity, 4: 1–14. 2021.
link   bibtex  
q-paths: Generalizing the geometric annealing path using power means. Masrani, V.; Brekelmans, R.; Bui, T.; Nielsen, F.; Galstyan, A.; Ver Steeg, G.; and Wood, F. In Uncertainty in Artificial Intelligence, pages 1938–1947, 2021. PMLR
link   bibtex  
Attributing fair decisions with attention interventions. Mehrabi, N.; Gupta, U.; Morstatter, F.; Steeg, G. V.; and Galstyan, A. arXiv preprint arXiv:2109.03952. 2021.
link   bibtex  
Partner-assisted learning for few-shot image classification. Ma, J.; Xie, H.; Han, G.; Chang, S.; Galstyan, A.; and Abd-Almageed, W. In Proceedings of the IEEE/CVF International Conference on Computer Vision, pages 10573–10582, 2021.
link   bibtex  
Information-theoretic generalization bounds for black-box learning algorithms. Harutyunyan, H.; Raginsky, M.; Ver Steeg, G.; and Galstyan, A. Advances in Neural Information Processing Systems, 34: 24670–24682. 2021.
link   bibtex  
Exacerbating Algorithmic Bias through Fairness Attacks. Mehrabi, N.; Naveed, M.; Morstatter, F.; and Galstyan, A. In AAAI'21, 2021.
link   bibtex  
  2020 (8)
Stacking models for nearly optimal link prediction in complex networks. Ghasemian, A.; Hosseinmardi, H.; Galstyan, A.; Airoldi, E. M; and Clauset, A. Proceedings of the National Academy of Sciences, 117(38): 23393–23400. 2020.
link   bibtex  
Man is to person as woman is to location: Measuring gender bias in named entity recognition. Mehrabi, N.; Gowda, T.; Morstatter, F.; Peng, N.; and Galstyan, A. In Proceedings of the 31st ACM conference on Hypertext and Social Media, pages 231–232, 2020.
link   bibtex  
Predictive engagement: An efficient metric for automatic evaluation of open-domain dialogue systems. Ghazarian, S.; Weischedel, R.; Galstyan, A.; and Peng, N. In Proceedings of the AAAI Conference on Artificial Intelligence, volume 34, pages 7789–7796, 2020.
link   bibtex  
Improving generalization by controlling label-noise information in neural network weights. Harutyunyan, H.; Reing, K.; Ver Steeg, G.; and Galstyan, A. In International Conference on Machine Learning, pages 4071–4081, 2020. PMLR
link   bibtex  
All in the exponential family: Bregman duality in thermodynamic variational inference. Brekelmans, R.; Masrani, V.; Wood, F.; Steeg, G. V.; and Galstyan, A. In ICML 2020, 2020.
link   bibtex   3 downloads  
Quantifying machine influence over human forecasters. Abeliuk, A.; Benjamin, D. M; Morstatter, F.; and Galstyan, A. Scientific reports, 10(1): 15940. 2020.
link   bibtex  
One-shot learning for temporal knowledge graphs. Mirtaheri, M.; Rostami, M.; Ren, X.; Morstatter, F.; and Galstyan, A. In Automayed Knowledge Base Construction, AKBC 2021, 2020.
link   bibtex  
ForecastQA: A Question Answering Challenge for Event Forecasting with Temporal Text Data. Jin, W.; Khanna, R.; Kim, S.; Lee, D.; Morstatter, F.; Galstyan, A.; and Ren, X. In ACL 2021, 2020.
link   bibtex  
  2019 (7)
Multitask learning and benchmarking with clinical time series data. Harutyunyan, H.; Khachatrian, H.; Kale, D. C; Ver Steeg, G.; and Galstyan, A. Scientific data, 6(1): 96. 2019.
link   bibtex  
Auto-encoding total correlation explanation. Gao, S.; Brekelmans, R.; Ver Steeg, G.; and Galstyan, A. In The 22nd international conference on artificial intelligence and statistics, pages 1157–1166, 2019. PMLR
link   bibtex  
Debiasing community detection: the importance of lowly connected nodes. Mehrabi, N.; Morstatter, F.; Peng, N.; and Galstyan, A. In Proceedings of the 2019 IEEE/ACM international conference on advances in social networks analysis and mining, pages 509–512, 2019.
link   bibtex  
Better automatic evaluation of open-domain dialogue systems with contextualized embeddings. Ghazarian, S.; Wei, J. T.; Galstyan, A.; and Peng, N. arXiv preprint arXiv:1904.10635. 2019.
link   bibtex  
Mixhop: Higher-order graph convolutional architectures via sparsified neighborhood mixing. Abu-El-Haija, S.; Perozzi, B.; Kapoor, A.; Alipourfard, N.; Lerman, K.; Harutyunyan, H.; Ver Steeg, G.; and Galstyan, A. In international conference on machine learning, pages 21–29, 2019. PMLR
link   bibtex  
Deep structured neural network for event temporal relation extraction. Han, R.; Hsu, I; Yang, M.; Galstyan, A.; Weischedel, R.; and Peng, N. In arXiv preprint arXiv:1909.10094, 2019.
link   bibtex  
SAGE: A hybrid geopolitical event forecasting system. Morstatter, F.; Galstyan, A.; Satyukov, G.; Benjamin, D.; Abeliuk, A.; Mirtaheri, M.; Hossain, K. T.; Szekely, P.; Ferrara, E.; Matsui, A.; and others In 28th International Joint Conference on Artificial Intelligence, IJCAI 2019, pages 6557–6559, 2019. International Joint Conferences on Artificial Intelligence
link   bibtex  
  2018 (5)
From alt-right to alt-rechts: Twitter analysis of the 2017 german federal election. Morstatter, F.; Shao, Y.; Galstyan, A.; and Karunasekera, S. In Companion Proceedings of the The Web Conference 2018, pages 621–628, 2018.
link   bibtex  
Embedding networks with edge attributes. Goyal, P.; Hosseinmardi, H.; Ferrara, E.; and Galstyan, A. In Proceedings of the 29th on Hypertext and Social Media, pages 38–42. 2018.
link   bibtex  
Adaptive decision making via entropy minimization. Allahverdyan, A. E; Galstyan, A.; Abbas, A. E; and Struzik, Z. R International Journal of Approximate Reasoning, 103: 270–287. 2018.
link   bibtex  
Uncovering biologically coherent peripheral signatures of health and risk for Alzheimer’s disease in the aging brain. Riedel, B. C; Daianu, M.; Ver Steeg, G.; Mezher, A.; Salminen, L. E; Galstyan, A.; Thompson, P. M; and Initiative, A. D. N. Frontiers in aging neuroscience, 10: 390. 2018.
link   bibtex  
Invariant representations without adversarial training. Moyer, D.; Gao, S.; Brekelmans, R.; Steeg, G. V.; and Galstyan, A. In Advances in Neural Information Processing Systems (NeurIPS), 2018.
link   bibtex  
  2016 (11)
The information sieve. Ver Steeg, G.; and Galstyan, A. In International Conference on Machine Learning, pages 164–172, 2016. PMLR
link   bibtex  
Latent space model for multi-modal social data. Cho, Y.; Ver Steeg, G.; Ferrara, E.; and Galstyan, A. In Proceedings of the 25th international conference on world wide web, pages 447–458, 2016.
link   bibtex  
Extracting biomolecular interactions using semantic parsing of biomedical text. Garg, S.; Galstyan, A.; Hermjakob, U.; and Marcu, D. In Proceedings of the AAAI Conference on Artificial Intelligence, volume 30, 2016.
link   bibtex  
The DARPA Twitter bot challenge. Subrahmanian, V. S; Azaria, A.; Durst, S.; Kagan, V.; Galstyan, A.; Lerman, K.; Zhu, L.; Ferrara, E.; Flammini, A.; and Menczer, F. Computer, 49(6): 38–46. 2016.
link   bibtex   10 downloads  
Predicting online extremism, content adopters, and interaction reciprocity. Ferrara, E.; Wang, W.; Varol, O.; Flammini, A.; and Galstyan, A. In Social Informatics: 8th International Conference, SocInfo 2016, Bellevue, WA, USA, November 11-14, 2016, Proceedings, Part II 8, pages 22–39, 2016. Springer International Publishing
link   bibtex  
Using social media, online social networks, and internet search as platforms for public health interventions: a pilot study. Huesch, M. D; Galstyan, A.; Ong, M. K; and Doctor, J. N Health services research, 51: 1273–1290. 2016.
link   bibtex  
Modeling Concept Dependencies in a Scientific Corpus. Gordon, J.; Zhu, L.; Galstyan, A.; Natarajan, P.; and Burns, G. In Proc. of the Association for Computational Linguistics (ACL), 2016.
link   bibtex  
Scalable temporal latent space inference for link prediction in dynamic social networks. Zhu, L.; Guo, D.; Yin, J.; Ver Steeg, G.; and Galstyan, A. IEEE Transactions on Knowledge and Data Engineering, 28(10): 2765–2777. 2016.
link   bibtex  
Emergence of leadership in communication. Allahverdyan, A. E; and Galstyan, A. PloS one, 11(8): e0159301. 2016.
link   bibtex  
Unsupervised entity resolution on multi-type graphs. Zhu, L.; Ghasemi-Gol, M.; Szekely, P.; Galstyan, A.; and Knoblock, C. A In The Semantic Web–ISWC 2016: 15th International Semantic Web Conference, Kobe, Japan, October 17–21, 2016, Proceedings, Part I 15, pages 649–667, 2016. Springer International Publishing
link   bibtex   39 downloads  
Variational information maximization for feature selection. Gao, S.; Ver Steeg, G.; and Galstyan, A. Advances in neural information processing systems, 29. 2016.
link   bibtex  
  2015 (2)
Estimating mutual information by local Gaussian approximation. Gao, S.; Steeg, G. V.; and Galstyan, A. In Uncertianty in Artificial Intelligence (UAI), 2015.
link   bibtex  
Efficient estimation of mutual information for strongly dependent variables. Gao, S.; Ver Steeg, G.; and Galstyan, A. In Artificial intelligence and statistics, pages 277–286, 2015. PMLR
link   bibtex  
  2014 (6)
Modeling temporal activity patterns in dynamic social networks. Raghavan, V.; Ver Steeg, G.; Galstyan, A.; and Tartakovsky, A. G IEEE Transactions on Computational Social Systems, 1(1): 89–107. 2014.
link   bibtex  
Tripartite graph clustering for dynamic sentiment analysis on social media. Zhu, L.; Galstyan, A.; Cheng, J.; and Lerman, K. In Proceedings of the 2014 ACM SIGMOD international conference on Management of data, pages 1531–1542, 2014.
link   bibtex   43 downloads  
Where and why users “check in”. Cho, Y.; Ver Steeg, G.; and Galstyan, A. In Proc. of AAAI, volume 14, pages 269–275, 2014.
link   bibtex   40 downloads  
Discovering structure in high-dimensional data through correlation explanation. Ver Steeg, G.; and Galstyan, A. Advances in Neural Information Processing Systems, 27. 2014.
link   bibtex  
Opinion dynamics with confirmation bias. Allahverdyan, A. E; and Galstyan, A. PloS one, 9(7): e99557. 2014.
link   bibtex  
Maximally Informative Hierarchical Representations of High-Dimensional Data. Ver Steeg, G.; and Galstyan, A. In Artificial Intelligence and Statistics (AISTATS), 2014.
link   bibtex  
  2013 (6)
Continuous strategy replicator dynamics for multi-agent q-learning. Galstyan, A. Autonomous agents and multi-agent systems, 26: 37–53. 2013.
link   bibtex  
Hidden Markov models for the activity profile of terrorist groups. Raghavan, V.; Galstyan, A.; and Tartakovsky, A. G The Annals of Applied Statistics,2402–2430. 2013.
link   bibtex  
Sentiment prediction using collaborative filtering. Kim, J.; Yoo, J.; Lim, H.; Qiu, H.; Kozareva, Z.; and Galstyan, A. In Proceedings of the international AAAI conference on web and social media, volume 7, pages 685–688, 2013.
link   bibtex   6 downloads  
Coupled hidden markov models for user activity in social networks. Raghavan, V.; Ver Steeg, G.; Galstyan, A.; and Tartakovsky, A. G In 2013 IEEE International Conference on Multimedia and Expo Workshops (ICMEW), pages 1–6, 2013. IEEE
link   bibtex  
Demystifying information-theoretic clustering. Ver Steeg, G.; Galstyan, A.; Sha, F.; and DeDeo, S. In ICML, 2013.
link   bibtex  
Latent self-exciting point process model for spatial-temporal networks. Cho, Y.; Galstyan, A.; Brantingham, P J.; and Tita, G. arXiv preprint arXiv:1302.2671. 2013.
link   bibtex  
  2012 (2)
Dynamics of Boltzmann Q learning in two-player two-action games. Kianercy, A.; and Galstyan, A. Physical Review E—Statistical, Nonlinear, and Soft Matter Physics, 85(4): 041145. 2012.
link   bibtex   5 downloads  
Information-Theoretic Measures of Influence Based on Content Dynamics. Steeg, G. V.; and Galstyan, A. In WSDM 2013, 2012.
link   bibtex   7 downloads  
  2011 (4)
Information Transfer in Social Media. Ver Steeg, G.; and Galstyan, A. In WWW 2012, 2011.
link   bibtex   1 download  
Co-evolution of selection and influence in social networks. Cho, Y.; Ver Steeg, G.; and Galstyan, A. arXiv preprint arXiv:1106.2788. 2011.
link   bibtex   15 downloads  
Comparative Analysis of Viterbi Training and Maximum Likelihood Estimation for HMMs. Allahverdyan, A.; and Galstyan, A. In Neural Information Processing Systems (NIPS)., 2011.
link   bibtex  
A Sequence of Relaxations Constraining Hidden Variable Models. Ver Steeg, G.; and Galstyan, A. . 2011.
link   bibtex   5 downloads  
  2010 (1)
Community detection with and without prior information. Allahverdyan, A. E; Ver Steeg, G.; and Galstyan, A. Europhysics Letters, 90(1): 18002. 2010.
link   bibtex   3 downloads  
  2009 (2)
Maximizing influence propagation in networks with community structure. Galstyan, A.; Musoyan, V.; and Cohen, P. Physical Review E—Statistical, Nonlinear, and Soft Matter Physics, 79(5): 056102. 2009.
link   bibtex   1 download  
Tentacles: Self-configuring robotic radio networks in unknown environments. Chiu, H. C. H.; Ryu, B.; Zhu, H.; Szekely, P.; Maheswaran, R.; Rogers, C.; Galstyan, A.; Salemi, B.; Rubenstein, M.; and Shen, W. In 2009 IEEE/RSJ International Conference on Intelligent Robots and Systems, pages 1383–1388, 2009. IEEE
link   bibtex  
  2008 (2)
Analysis of social voting patterns on digg. Lerman, K.; and Galstyan, A. In Proceedings of the first workshop on Online social networks, pages 7–12, 2008.
link   bibtex   4 downloads  
Top-down vs bottom-up methodologies in multi-agent system design. Crespi, V.; Galstyan, A.; and Lerman, K. Autonomous Robots, 24: 303–313. 2008.
link   bibtex  
  2007 (2)
Cascading dynamics in modular networks. Galstyan, A.; and Cohen, P. Physical Review E—Statistical, Nonlinear, and Soft Matter Physics, 75(3): 036109. 2007.
link   bibtex   5 downloads  
Empirical comparison of “hard” and “soft” label propagation for relational classification. Galstyan, A.; and Cohen, P. R In International Conference on Inductive Logic Programming, pages 98–111, 2007. Springer Berlin Heidelberg Berlin, Heidelberg
link   bibtex  
  2006 (1)
Analysis of dynamic task allocation in multi-robot systems. Lerman, K.; Jones, C.; Galstyan, A.; and Matarić, M. J The International Journal of Robotics Research, 25(3): 225–241. 2006.
link   bibtex   5 downloads  
  2005 (3)
A review of probabilistic macroscopic models for swarm robotic systems. Lerman, K.; Martinoli, A.; and Galstyan, A. Swarm Robotics,143–152. 2005.
link   bibtex   4 downloads  
Resource allocation in the grid with learning agents. Galstyan, A.; Czajkowski, K.; and Lerman, K. Journal of Grid Computing, 3: 91–100. 2005.
link   bibtex  
Modeling and mathematical analysis of swarms of microscopic robots. Galstyan, A.; Hogg, T.; and Lerman, K. In Proceedings 2005 IEEE Swarm Intelligence Symposium, 2005. SIS 2005., pages 201–208, 2005. IEEE
link   bibtex   7 downloads  
  2004 (5)
Distributed online localization in sensor networks using a moving target. Galstyan, A.; Krishnamachari, B.; Lerman, K.; and Pattem, S. In Proceedings of the 3rd international symposium on Information processing in sensor networks, pages 61–70, 2004.
link   bibtex  
Hormone-inspired self-organization and distributed control of robotic swarms. Shen, W.; Will, P.; Galstyan, A.; and Chuong, C. Autonomous Robots, 17(1): 93–105. 2004.
link   bibtex   1 download  
Resource allocation in the grid using reinforcement learning. Galstyan, A.; Czajkowski, K.; and Lerman, K. In Proceedings of the Third International Joint Conference on Autonomous Agents and Multiagent Systems, 2004. AAMAS 2004., volume 1, pages 1314–1315, 2004. IEEE Computer Society
link   bibtex  
Two paradigms for the design of artificial collectives. Lerman, K.; and Galstyan, A. In Collectives and the design of complex systems, pages 231–256. Springer New York New York, NY, 2004.
link   bibtex   2 downloads  
Resource allocation and emergent coordination in wireless sensor networks. Galstyan, A.; Krishnamachari, B.; and Lerman, K. In AAAI Workshop on Sensor Networks, 2004.
link   bibtex   3 downloads  
  2003 (3)
Resource allocation games with changing resource capacities. Galstyan, A.; Kolar, S.; and Lerman, K. In Proceedings of the second international joint conference on Autonomous agents and multiagent systems, pages 145–152, 2003.
link   bibtex   2 downloads  
Agent memory and adaptation in multi-agent systems. Lerman, K.; and Galstyan, A. In Proceedings of the second international joint conference on Autonomous agents and multiagent systems, pages 797–803, 2003.
link   bibtex   2 downloads  
Macroscopic analysis of adaptive task allocation in robots. Lerman, K.; and Galstyan, A. In Proceedings 2003 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS 2003)(Cat. No. 03CH37453), volume 2, pages 1951–1956, 2003. IEEE
link   bibtex  
  2002 (2)
Mathematical model of foraging in a group of robots: Effect of interference. Lerman, K.; and Galstyan, A. Autonomous Robots, 13(2): 127–141. 2002.
link   bibtex   2 downloads  
Adaptive Boolean networks and minority games with time-dependent capacities. Galstyan, A.; and Lerman, K. Physical Review E, 66(1): 015103. 2002.
link   bibtex  
  2001 (2)
A macroscopic analytical model of collaboration in distributed robotic systems. Lerman, K.; Galstyan, A.; Martinoli, A.; and Ijspeert, A. Artificial Life, 7(4): 375–393. 2001.
link   bibtex   2 downloads  
A general methodology for mathematical analysis of multi-agent systems. Lerman, K.; and Galstyan, A. ISI-TR-529, USC Information Sciences Institute, Marina del Rey, CA. 2001.
link   bibtex   1 download  
  2000 (1)
Emission spectrum of a dipole in a semi-infinite periodic dielectric structure: effect of the boundary. Galstyan, A.; Raikh, M.; and Vardeny, Z. Physical Review B, 62(3): 1780. 2000.
link   bibtex  
  1997 (1)
Localization and conductance fluctuations in the integer quantum Hall effect: Real-space renormalization-group approach. Galstyan, A.; and Raikh, M. Physical Review B, 56(3): 1422. 1997.
link   bibtex