generated by bibbase.org
  2024 (44)
Co-ECL: Covariant Network with Equivariant Contrastive Learning for Oriented Object Detection in Remote Sensing Images. Zhang, Y.; Ren, Z.; Ding, Z.; Qian, H.; Li, H.; and Tao, C. Remote Sensing 2024, Vol. 16, Page 516, 16(3): 516. 1 2024.
Co-ECL: Covariant Network with Equivariant Contrastive Learning for Oriented Object Detection in Remote Sensing Images [link]Website   doi   link   bibtex   abstract  
Co-ECL: Covariant Network with Equivariant Contrastive Learning for Oriented Object Detection in Remote Sensing Images. Zhang, Y.; Ren, Z.; Ding, Z.; Qian, H.; Li, H.; and Tao, C. Remote Sensing 2024, Vol. 16, Page 516, 16(3): 516. 1 2024.
Co-ECL: Covariant Network with Equivariant Contrastive Learning for Oriented Object Detection in Remote Sensing Images [pdf]Paper   Co-ECL: Covariant Network with Equivariant Contrastive Learning for Oriented Object Detection in Remote Sensing Images [link]Website   doi   link   bibtex   abstract  
Oriented R-CNN and Beyond. Xie, X.; Cheng, G.; Wang, J.; Li, K.; Yao, X.; and Han, J. International Journal of Computer Vision,1-23. 1 2024.
Oriented R-CNN and Beyond [pdf]Paper   Oriented R-CNN and Beyond [link]Website   doi   link   bibtex   abstract  
YOLOv9: Learning What You Want to Learn Using Programmable Gradient Information. Wang, C.; Yeh, I.; and Liao, H., M. . 2 2024.
YOLOv9: Learning What You Want to Learn Using Programmable Gradient Information [pdf]Paper   YOLOv9: Learning What You Want to Learn Using Programmable Gradient Information [link]Website   link   bibtex   abstract  
YOLO-based Object Detection Models: A Review and its Applications. Vijayakumar, A.; and Vairavasundaram, S. Multimedia Tools and Applications,1-40. 3 2024.
YOLO-based Object Detection Models: A Review and its Applications [pdf]Paper   YOLO-based Object Detection Models: A Review and its Applications [link]Website   doi   link   bibtex   abstract  
YOLO-based Object Detection Models: A Review and its Applications. Vijayakumar, A.; and Vairavasundaram, S. Multimedia Tools and Applications,1-40. 3 2024.
YOLO-based Object Detection Models: A Review and its Applications [pdf]Paper   YOLO-based Object Detection Models: A Review and its Applications [link]Website   doi   link   bibtex   abstract  
On Boundary Discontinuity in Angle Regression Based Arbitrary Oriented Object Detection. Yu, Y.; and Da, F. IEEE Transactions on Pattern Analysis and Machine Intelligence. 2024.
On Boundary Discontinuity in Angle Regression Based Arbitrary Oriented Object Detection [pdf]Paper   doi   link   bibtex   abstract  
Explicit and Implicit Box Equivariance Learning for Weakly-Supervised Rotated Object Detection. Wang, L.; Zhan, Y.; Lin, X.; Yu, B.; Ding, L.; Zhu, J.; and Tao, D. IEEE Transactions on Emerging Topics in Computational Intelligence. 2024.
doi   link   bibtex   abstract  
Point2RBox: Combine Knowledge from Synthetic Visual Patterns for End-to-end Oriented Object Detection with Single Point Supervision. Yu, Y.; Yang, X.; Li, Q.; Da, F.; Dai, J.; Qiao, Y.; and Yan, J. 2024.
Point2RBox: Combine Knowledge from Synthetic Visual Patterns for End-to-end Oriented Object Detection with Single Point Supervision [pdf]Paper   Point2RBox: Combine Knowledge from Synthetic Visual Patterns for End-to-end Oriented Object Detection with Single Point Supervision [link]Website   link   bibtex   abstract  
PointOBB: Learning Oriented Object Detection via Single Point Supervision. Luo, J.; Yang, X.; Yu, Y.; Li, Q.; Yan, J.; and Li, Y. 2024.
PointOBB: Learning Oriented Object Detection via Single Point Supervision [pdf]Paper   PointOBB: Learning Oriented Object Detection via Single Point Supervision [link]Website   link   bibtex   abstract  
HDDet: A More Common Heading Direction Detector for Remote Sensing and Arbitrary Viewing Angle Images. Ding, S.; Liu, J.; Yang, F.; and Xu, M. IEEE Transactions on Geoscience and Remote Sensing, 62: 1-14. 2024.
HDDet: A More Common Heading Direction Detector for Remote Sensing and Arbitrary Viewing Angle Images [pdf]Paper   doi   link   bibtex   abstract  
Explicit and Implicit Box Equivariance Learning for Weakly-Supervised Rotated Object Detection. Wang, L.; Zhan, Y.; Lin, X.; Yu, B.; Ding, L.; Zhu, J.; and Tao, D. IEEE Transactions on Emerging Topics in Computational Intelligence. 2024.
Explicit and Implicit Box Equivariance Learning for Weakly-Supervised Rotated Object Detection [pdf]Paper   doi   link   bibtex   abstract  
Probabilistic Intersection-Over-Union for Training and Evaluation of Oriented Object Detectors. Murrugarra-Llerena, J.; Kirsten, L., N.; Zeni, L., F.; and Jung, C., R. IEEE Transactions on Image Processing, 33: 671-681. 2024.
Probabilistic Intersection-Over-Union for Training and Evaluation of Oriented Object Detectors [pdf]Paper   doi   link   bibtex   abstract  
A Stochastic-Geometrical Framework for Object Pose Estimation Based on Mixture Models Avoiding the Correspondence Problem. Hoegele, W. Journal of Mathematical Imaging and Vision, 66(5): 822-838. 10 2024.
A Stochastic-Geometrical Framework for Object Pose Estimation Based on Mixture Models Avoiding the Correspondence Problem [pdf]Paper   A Stochastic-Geometrical Framework for Object Pose Estimation Based on Mixture Models Avoiding the Correspondence Problem [link]Website   doi   link   bibtex   abstract  
Advancements in deep learning for accurate classification of grape leaves and diagnosis of grape diseases. Kunduracioglu, I.; and Pacal, I. Journal of Plant Diseases and Protection, 131(3): 1061-1080. 6 2024.
Advancements in deep learning for accurate classification of grape leaves and diagnosis of grape diseases [pdf]Paper   Advancements in deep learning for accurate classification of grape leaves and diagnosis of grape diseases [link]Website   doi   link   bibtex   abstract  
Artificial Intelligence Techniques in Grapevine Research: A Comparative Study with Extensive Review on Datasets, Diseases, and Techniques Evaluation. Gatou, P.; Tsiara, X.; Spitalas, A.; Sioutas, S.; and Vonitsanos, G. . 7 2024.
Artificial Intelligence Techniques in Grapevine Research: A Comparative Study with Extensive Review on Datasets, Diseases, and Techniques Evaluation [link]Website   doi   link   bibtex  
Vine Diseases Detection Trials in the Carpathian Region with Proximity Aerial Images. Tamas, L.; Gubo, S.; and Lukic, T. 2024 IEEE 22nd World Symposium on Applied Machine Intelligence and Informatics, SAMI 2024 - Proceedings,29-34. 2024.
Vine Diseases Detection Trials in the Carpathian Region with Proximity Aerial Images [pdf]Paper   doi   link   bibtex   abstract  
Evaluating the potential of high-resolution hyperspectral UAV imagery for grapevine viral disease detection in Australian vineyards. Mickey Wang, Y.; Ostendorf, B.; and Pagay, V. International Journal of Applied Earth Observation and Geoinformation, 130: 103876. 6 2024.
Evaluating the potential of high-resolution hyperspectral UAV imagery for grapevine viral disease detection in Australian vineyards [pdf]Paper   doi   link   bibtex   abstract  
AI-powered Solution for Plant Disease Detection in Viticulture. Madeira, M.; Porfírio, R., P.; Santos, P., A.; and Madeira, R., N. Procedia Computer Science, 238: 468-475. 1 2024.
AI-powered Solution for Plant Disease Detection in Viticulture [pdf]Paper   doi   link   bibtex  
A novel framework for semi-automated system for grape leaf disease detection. Kaur, N.; and Devendran, V. Multimedia Tools and Applications, 83(17): 50733-50755. 5 2024.
A novel framework for semi-automated system for grape leaf disease detection [pdf]Paper   A novel framework for semi-automated system for grape leaf disease detection [link]Website   doi   link   bibtex   abstract  
GLDCNet: A novel convolutional neural network for grapevine leafroll disease recognition using UAV-based imagery. Liu, Y.; Su, J.; Zheng, Z.; Liu, D.; Song, Y.; Fang, Y.; Yang, P.; and Su, B. Computers and Electronics in Agriculture, 218: 108668. 3 2024.
GLDCNet: A novel convolutional neural network for grapevine leafroll disease recognition using UAV-based imagery [pdf]Paper   doi   link   bibtex   abstract  
Vineyard Zoning and Vine Detection Using Machine Learning in Unmanned Aerial Vehicle Imagery. Gavrilović, M.; Jovanović, D.; Božović, P.; Benka, P.; and Govedarica, M. Remote Sensing 2024, Vol. 16, Page 584, 16(3): 584. 2 2024.
Vineyard Zoning and Vine Detection Using Machine Learning in Unmanned Aerial Vehicle Imagery [pdf]Paper   Vineyard Zoning and Vine Detection Using Machine Learning in Unmanned Aerial Vehicle Imagery [link]Website   doi   link   bibtex   abstract  
Rapid Detection of Grapevine Viral Disease with High-Resolution Hyperspectral Remote Sensing Technology. Wang, Y., M.; and Pagay, V. IGARSS 2024 - 2024 IEEE International Geoscience and Remote Sensing Symposium,4303-4306. 7 2024.
Rapid Detection of Grapevine Viral Disease with High-Resolution Hyperspectral Remote Sensing Technology [pdf]Paper   Rapid Detection of Grapevine Viral Disease with High-Resolution Hyperspectral Remote Sensing Technology [link]Website   doi   link   bibtex  
Disease Detection in Grape Cultivation Using Strategically Placed Cameras and Machine Learning Algorithms with a Focus on Powdery Mildew and Blotches. Khan, K., H.; Aljaedi, A.; Ishtiaq, M., S.; Imam, H.; Bassfar, Z.; and Jamal, S., S. IEEE Access. 2024.
Disease Detection in Grape Cultivation Using Strategically Placed Cameras and Machine Learning Algorithms with a Focus on Powdery Mildew and Blotches [pdf]Paper   doi   link   bibtex   abstract  
Vine Disease Detection UAV Multi Spectral Image using Segnet and Mobilenet Method. Aruna, M., G.; Silvia, E.; Al-Fatlawy, R., R.; Rao, H., K.; and Sowmya, M. International Conference on Distributed Computing and Optimization Techniques, ICDCOT 2024. 2024.
Vine Disease Detection UAV Multi Spectral Image using Segnet and Mobilenet Method [pdf]Paper   doi   link   bibtex   abstract  
GLAD: Advanced Attention Mechanism-Based Model for Grape Leaf Disease Detection. Thatha, V., N.; Mary, P.; Kumari, K.; Sirisha, U.; Venkata, V.; Manoj, R.; and Praveen, S., P. . 2024.
GLAD: Advanced Attention Mechanism-Based Model for Grape Leaf Disease Detection [pdf]Paper   GLAD: Advanced Attention Mechanism-Based Model for Grape Leaf Disease Detection [link]Website   doi   link   bibtex   abstract  
Comparison of different computer vision methods for vineyard canopy detection using UAV multispectral images. Ferro, M., V.; Sørensen, C., G.; and Catania, P. Computers and Electronics in Agriculture, 225. 10 2024.
Comparison of different computer vision methods for vineyard canopy detection using UAV multispectral images [pdf]Paper   doi   link   bibtex   abstract  
Intelligent vineyard monitoring using YOLOv7. Kuznetsov, P.; Voronin, D.; and Kotelnikov, D. E3S Web of Conferences, 548: 02002. 2024.
Intelligent vineyard monitoring using YOLOv7 [pdf]Paper   Intelligent vineyard monitoring using YOLOv7 [link]Website   doi   link   bibtex   abstract  
Deep Learning-based VGG16, VGG19, and ResNet Models for Grapevine Disease Classification. Vats, S.; Anand, J.; Kukreja, V.; and Sharma, R. 2024 IEEE 9th International Conference for Convergence in Technology, I2CT 2024. 2024.
Deep Learning-based VGG16, VGG19, and ResNet Models for Grapevine Disease Classification [pdf]Paper   doi   link   bibtex   abstract  
Proposed Fuzzy-Stranded-Neural Network Model That Utilizes IoT Plant-Level Sensory Monitoring and Distributed Services for the Early Detection of Downy Mildew in Viticulture. Kontogiannis, S.; Koundouras, S.; and Pikridas, C. Computers 2024, Vol. 13, Page 63, 13(3): 63. 2 2024.
Proposed Fuzzy-Stranded-Neural Network Model That Utilizes IoT Plant-Level Sensory Monitoring and Distributed Services for the Early Detection of Downy Mildew in Viticulture [pdf]Paper   Proposed Fuzzy-Stranded-Neural Network Model That Utilizes IoT Plant-Level Sensory Monitoring and Distributed Services for the Early Detection of Downy Mildew in Viticulture [link]Website   doi   link   bibtex   abstract  
Grapevine Disease Identification Using Resnet−50. Badriyah, A.; Sarosa, M.; Asmara, R., A.; Wardani, M., K.; and Al Riza, D., F. BIO Web of Conferences, 117: 01046. 7 2024.
Grapevine Disease Identification Using Resnet−50 [pdf]Paper   Grapevine Disease Identification Using Resnet−50 [link]Website   doi   link   bibtex   abstract  
Image analysis with deep learning for early detection of downy mildew in grapevine. Hernández, I.; Gutiérrez, S.; and Tardaguila, J. Scientia Horticulturae, 331: 113155. 5 2024.
Image analysis with deep learning for early detection of downy mildew in grapevine [pdf]Paper   doi   link   bibtex   abstract  
Dynamic Slicing and Reconstruction Algorithm for Precise Canopy Volume Estimation in 3D Citrus Tree Point Clouds. Li, W.; Tang, B.; Hou, Z.; Wang, H.; Bing, Z.; Yang, Q.; and Zheng, Y. Remote Sensing 2024, Vol. 16, Page 2142, 16(12): 2142. 6 2024.
Dynamic Slicing and Reconstruction Algorithm for Precise Canopy Volume Estimation in 3D Citrus Tree Point Clouds [pdf]Paper   Dynamic Slicing and Reconstruction Algorithm for Precise Canopy Volume Estimation in 3D Citrus Tree Point Clouds [link]Website   doi   link   bibtex   abstract  
The estimation of wheat yield combined with UAV canopy spectral and volumetric data. Liu, T.; Wu, F.; Mou, N.; Zhu, S.; Yang, T.; Zhang, W.; Wang, H.; Wu, W.; Zhao, Y.; Sun, C.; and Yao, Z. Food and Energy Security, 13(1): e527. 1 2024.
The estimation of wheat yield combined with UAV canopy spectral and volumetric data [pdf]Paper   The estimation of wheat yield combined with UAV canopy spectral and volumetric data [link]Website   doi   link   bibtex   abstract  
A comparison and development of methods for estimating shrub volume using drone-imagery-derived point clouds. Harrison, G., R.; Shrestha, A.; Strand, E., K.; and Karl, J., W. Ecosphere, 15(5): e4877. 5 2024.
A comparison and development of methods for estimating shrub volume using drone-imagery-derived point clouds [link]Website   doi   link   bibtex   abstract  
Deep learning method for leaf-density estimation based on wind-excited audio of fruit-tree canopies. Li, W.; Yang, S.; Zhao, H.; Jiang, S.; Zheng, Y.; Liu, X.; and Tan, Y. Computers and Electronics in Agriculture, 222: 109062. 7 2024.
Deep learning method for leaf-density estimation based on wind-excited audio of fruit-tree canopies [pdf]Paper   doi   link   bibtex   abstract  
Measuring ornamental tree canopy attributes for precision spraying using drone technology and self-supervised segmentation. Rayamajhi, A.; and Jahanifar, H. . 2024.
Measuring ornamental tree canopy attributes for precision spraying using drone technology and self-supervised segmentation [pdf]Paper   Measuring ornamental tree canopy attributes for precision spraying using drone technology and self-supervised segmentation [link]Website   doi   link   bibtex   abstract  
Maize height estimation using combined unmanned aerial vehicle oblique photography and LIDAR canopy dynamic characteristics. Liu, T.; Zhu, S.; Yang, T.; Zhang, W.; Xu, Y.; Zhou, K.; Wu, W.; Zhao, Y.; Yao, Z.; Yang, G.; Wang, Y.; Sun, C.; and Sun, J. Computers and Electronics in Agriculture, 218: 108685. 3 2024.
Maize height estimation using combined unmanned aerial vehicle oblique photography and LIDAR canopy dynamic characteristics [pdf]Paper   doi   link   bibtex   abstract  
Improved voxel-based volume estimation and pruning severity mapping of apple trees during the pruning period. Dong, X.; Kim, W., Y.; Yu, Z.; Oh, J., Y.; Ehsani, R.; and Lee, K., H. Computers and Electronics in Agriculture, 219: 108834. 4 2024.
Improved voxel-based volume estimation and pruning severity mapping of apple trees during the pruning period [pdf]Paper   doi   link   bibtex   abstract  
Limitations of estimating branch volume from terrestrial laser scanning. Morhart, C.; Schindler, Z.; Frey, J.; Sheppard, J., P.; Calders, K.; Disney, M.; Morsdorf, F.; Raumonen, P.; and Seifert, T. European Journal of Forest Research, 143(2): 687-702. 4 2024.
Limitations of estimating branch volume from terrestrial laser scanning [pdf]Paper   Limitations of estimating branch volume from terrestrial laser scanning [link]Website   doi   link   bibtex   abstract  
ASIPNet: Orientation-Aware Learning Object Detection for Remote Sensing Images. Dong, R.; Yin, S.; Jiao, L.; An, J.; and Wu, W. Remote Sensing 2024, Vol. 16, Page 2992, 16(16): 2992. 8 2024.
ASIPNet: Orientation-Aware Learning Object Detection for Remote Sensing Images [pdf]Paper   ASIPNet: Orientation-Aware Learning Object Detection for Remote Sensing Images [link]Website   doi   link   bibtex   abstract  
A Comparative Study of Loss Functions for Arbitrary-Oriented Object Detection in Aerial Images. San, K., H.; Kondo, T.; Marukatat, S.; and Hara-Azumi, Y. Proceedings - 21st International Joint Conference on Computer Science and Software Engineering, JCSSE 2024,22-27. 2024.
A Comparative Study of Loss Functions for Arbitrary-Oriented Object Detection in Aerial Images [pdf]Paper   doi   link   bibtex   abstract  
Attention-based mechanism for head-body fusion gaze estimation in dynamic scenes. Zhang, W.; Xiong, J.; Dong, X.; Wang, Q.; and Quan, G. In 2024 6th International Conference on Internet of Things, Automation and Artificial Intelligence, IoTAAI 2024, pages 484-489, 2024. Institute of Electrical and Electronics Engineers Inc.
Attention-based mechanism for head-body fusion gaze estimation in dynamic scenes [pdf]Paper   doi   link   bibtex   abstract  
FRESH: Fusion-Based 3D Apple Recognition via Estimating Stem Direction Heading. Son, G.; Lee, S.; and Choi, Y. Agriculture 2024, Vol. 14, Page 2161, 14(12): 2161. 11 2024.
FRESH: Fusion-Based 3D Apple Recognition via Estimating Stem Direction Heading [pdf]Paper   FRESH: Fusion-Based 3D Apple Recognition via Estimating Stem Direction Heading [link]Website   doi   link   bibtex   abstract  
  2023 (136)
Mapping the spatial variability of Botrytis bunch rot risk in vineyards using UAV multispectral imagery. Vélez, S.; Ariza-Sentís, M.; and Valente, J. European Journal of Agronomy, 142: 126691. 1 2023.
Mapping the spatial variability of Botrytis bunch rot risk in vineyards using UAV multispectral imagery [pdf]Paper   doi   link   bibtex  
The Fast Detection of Crop Disease Leaves Based on Single-Channel Gravitational Kernel Density Clustering. Ren, Y.; Li, Q.; and Liu, Z. Applied Sciences 2023, Vol. 13, Page 1172, 13(2): 1172. 1 2023.
The Fast Detection of Crop Disease Leaves Based on Single-Channel Gravitational Kernel Density Clustering [pdf]Paper   The Fast Detection of Crop Disease Leaves Based on Single-Channel Gravitational Kernel Density Clustering [link]Website   doi   link   bibtex   abstract  
Field-based robotic leaf angle detection and characterization of maize plants using stereo vision and deep convolutional neural networks. Xiang, L.; Gai, J.; Bao, Y.; Yu, J.; Patrick, |.; Schnable, S.; and Lie Tang, |. Journal of Field Robotics. 2 2023.
Field-based robotic leaf angle detection and characterization of maize plants using stereo vision and deep convolutional neural networks [pdf]Paper   Field-based robotic leaf angle detection and characterization of maize plants using stereo vision and deep convolutional neural networks [link]Website   doi   link   bibtex   abstract  
Towards Computer-Vision Based Vineyard Navigation for Quadruped Robots. Milburn, L.; Gamba, J.; and Semini, C. . 1 2023.
Towards Computer-Vision Based Vineyard Navigation for Quadruped Robots [pdf]Paper   Towards Computer-Vision Based Vineyard Navigation for Quadruped Robots [link]Website   doi   link   bibtex   abstract  
DualSeg: Fusing transformer and CNN structure for image segmentation in complex vineyard environment. Wang, J.; Zhang, Z.; Luo, L.; Wei, H.; Wang, W.; Chen, M.; and Luo, S. Computers and Electronics in Agriculture, 206(January): 107682. 2023.
DualSeg: Fusing transformer and CNN structure for image segmentation in complex vineyard environment [link]Website   doi   link   bibtex   abstract  
Designing a Proximal Sensing Camera Acquisition System for Vineyard Applications: Results and Feedback on 8 Years of Experiments. Rançon, F.; Keresztes, B.; Deshayes, A.; Tardif, M.; Abdelghafour, F.; Fontaine, G.; Da Costa, J., P.; and Germain, C. Sensors 2023, Vol. 23, Page 847, 23(2): 847. 1 2023.
Designing a Proximal Sensing Camera Acquisition System for Vineyard Applications: Results and Feedback on 8 Years of Experiments [pdf]Paper   Designing a Proximal Sensing Camera Acquisition System for Vineyard Applications: Results and Feedback on 8 Years of Experiments [link]Website   doi   link   bibtex   abstract  
DualSeg: Fusing transformer and CNN structure for image segmentation in complex vineyard environment. Wang, J.; Zhang, Z.; Luo, L.; Wei, H.; Wang, W.; Chen, M.; and Luo, S. Computers and Electronics in Agriculture, 206(September 2022): 107682. 2023.
DualSeg: Fusing transformer and CNN structure for image segmentation in complex vineyard environment [pdf]Paper   DualSeg: Fusing transformer and CNN structure for image segmentation in complex vineyard environment [link]Website   doi   link   bibtex   abstract  
Machine-Learning Methods for the Identification of Key Predictors of Site-Specific Vineyard Yield and Vine Size. Taylor, J., A.; Bates, T., R.; Jakubowski, R.; and Jones, H. American Journal of Enology and Viticulture,ajev.2022.22050. 1 2023.
Machine-Learning Methods for the Identification of Key Predictors of Site-Specific Vineyard Yield and Vine Size [pdf]Paper   Machine-Learning Methods for the Identification of Key Predictors of Site-Specific Vineyard Yield and Vine Size [link]Website   doi   link   bibtex   abstract  
Leaf area index estimation of pergola-trained vineyards in arid regions using classical and deep learning methods based on UAV-based RGB images. Ilniyaz, O.; Du, Q.; Shen, H.; He, W.; Feng, L.; Azadi, H.; Kurban, A.; and Chen, X. Computers and Electronics in Agriculture, 207(February): 107723. 2023.
Leaf area index estimation of pergola-trained vineyards in arid regions using classical and deep learning methods based on UAV-based RGB images [pdf]Paper   Leaf area index estimation of pergola-trained vineyards in arid regions using classical and deep learning methods based on UAV-based RGB images [link]Website   doi   link   bibtex   abstract  
Using deep learning for pruning region detection and plant organ segmentation in dormant spur-pruned grapevines. Guadagna, P.; Fernandes, ·., M.; Chen, ·., F.; Santamaria, ·., A.; Teng, ·., T.; Frioni, ·., T.; Caldwell, ·., D., G.; Poni, ·., S.; Semini, ·., C.; Gatti, ·., M.; and Gatti, M. Precision Agriculture 2023,1-23. 3 2023.
Using deep learning for pruning region detection and plant organ segmentation in dormant spur-pruned grapevines [pdf]Paper   Using deep learning for pruning region detection and plant organ segmentation in dormant spur-pruned grapevines [link]Website   doi   link   bibtex   abstract  
Early yield prediction in different grapevine varieties using computer vision and machine learning. Palacios, F.; Diago, M., P.; Melo-Pinto, P.; and Tardaguila, J. Precision Agriculture, 24(2): 407-435. 4 2023.
Early yield prediction in different grapevine varieties using computer vision and machine learning [pdf]Paper   Early yield prediction in different grapevine varieties using computer vision and machine learning [link]Website   doi   link   bibtex   abstract  
Grape Cs-Ml Database-Informed Methods for Contemporary Vineyard Management. Yakubreddy, K.; Vellela, S., S.; Sk, K., B.; B, V., R.; and Roja, D. International Research Journal of Modernization in Engineering Technology and Science, (03): 121-126. 2023.
Grape Cs-Ml Database-Informed Methods for Contemporary Vineyard Management [pdf]Paper   doi   link   bibtex  
GrapesNet: Indian RGB & RGB-D vineyard image datasets for deep learning applications. Barbole, D., K.; and Jadhav, P., M. Data in Brief, 48: 109100. 2023.
GrapesNet: Indian RGB & RGB-D vineyard image datasets for deep learning applications [pdf]Paper   GrapesNet: Indian RGB & RGB-D vineyard image datasets for deep learning applications [link]Website   doi   link   bibtex   abstract  
Dataset on unmanned aerial vehicle multispectral images acquired over a vineyard affected by Botrytis cinerea in northern Spain. Vélez, S.; Ariza-Sentís, M.; and Valente, J. Data in brief, 46. 2 2023.
Dataset on unmanned aerial vehicle multispectral images acquired over a vineyard affected by Botrytis cinerea in northern Spain [pdf]Paper   Dataset on unmanned aerial vehicle multispectral images acquired over a vineyard affected by Botrytis cinerea in northern Spain [link]Website   doi   link   bibtex   abstract  
Fields2Cover: An Open-Source Coverage Path Planning Library for Unmanned Agricultural Vehicles. Mier, G.; Valente, J.; and De Bruin, S. IEEE Robotics and Automation Letters, 8(4): 2166-2172. 2023.
doi   link   bibtex   abstract  
An expertized grapevine disease image database including five grape varieties focused on Flavescence dorée and its confounding diseases, biotic and abiotic stresses. Tardif, M.; Amri, A.; Deshayes, A.; Greven, M.; Keresztes, B.; Fontaine, G.; Sicaud, L.; Paulhac, L.; Bentejac, S.; and Da Costa, J., P. Data in Brief, 48: 109230. 6 2023.
An expertized grapevine disease image database including five grape varieties focused on Flavescence dorée and its confounding diseases, biotic and abiotic stresses [pdf]Paper   doi   link   bibtex   abstract  
AI-based Maize and Weeds Detection on the Edge with CornWeed Dataset. Iqbal, N.; Manss, C.; Scholz, C.; König, D.; Igelbrink, M.; and Ruckelshausen, A. . 2023.
AI-based Maize and Weeds Detection on the Edge with CornWeed Dataset [pdf]Paper   doi   link   bibtex   abstract  
Automatic diagnosis of a multi-symptom grapevine disease by decision trees and Graph Neural Networks. Tardif, M.; Keresztes, B.; Deshayes, A.; Martin, D.; Greven, M.; and {Da Costa}, J. Precision agriculture '23,1011–1017. 2023.
Automatic diagnosis of a multi-symptom grapevine disease by decision trees and Graph Neural Networks [pdf]Paper   link   bibtex   abstract  
Automatic diagnosis of a multi-symptom grape vine disease using computer vision. Tardif, M.; Amri, A.; Keresztes, B.; Deshayes, A.; Martin, D.; Greven, M.; and {Da Costa}, J. Acta Horticulturae, 1360: 53-60. 2023.
Automatic diagnosis of a multi-symptom grape vine disease using computer vision [pdf]Paper   doi   link   bibtex   abstract  
The Use of Computer Vision to Improve the Affinity of Rootstock-Graft Combinations and Identify Diseases of Grape Seedlings. Rudenko, M.; Plugatar, Y.; Korzin, V.; Kazak, A.; Gallini, N.; and Gorbunova, N. Inventions 2023, Vol. 8, Page 92, 8(4): 92. 7 2023.
The Use of Computer Vision to Improve the Affinity of Rootstock-Graft Combinations and Identify Diseases of Grape Seedlings [pdf]Paper   The Use of Computer Vision to Improve the Affinity of Rootstock-Graft Combinations and Identify Diseases of Grape Seedlings [link]Website   doi   link   bibtex   abstract  
Towards smart pruning: ViNet, a deep-learning approach for grapevine structure estimation. Gentilhomme, T.; Villamizar, M.; Corre, J.; and Odobez, J., M. Computers and Electronics in Agriculture, 207: 107736. 4 2023.
Towards smart pruning: ViNet, a deep-learning approach for grapevine structure estimation [pdf]Paper   doi   link   bibtex   abstract  
Vision-Based Monitoring of the Short-Term Dynamic Behaviour of Plants for Automated Phenotyping. Wagner, N.; and Cielniak, G. 2023.
Vision-Based Monitoring of the Short-Term Dynamic Behaviour of Plants for Automated Phenotyping [pdf]Paper   link   bibtex   abstract  
Grape yield estimation with a smartphone’s colour and depth cameras using machine learning and computer vision techniques. Parr, B.; Legg, M.; and Alam, F. Computers and Electronics in Agriculture, 213: 108174. 10 2023.
Grape yield estimation with a smartphone’s colour and depth cameras using machine learning and computer vision techniques [pdf]Paper   doi   link   bibtex   abstract  
Proximal sensing for geometric characterization of vines: A review of the latest advances. Moreno, H.; and Andújar, D. Computers and Electronics in Agriculture, 210: 107901. 7 2023.
Proximal sensing for geometric characterization of vines: A review of the latest advances [pdf]Paper   doi   link   bibtex   abstract  
An improved lightweight network based on deep learning for grape recognition in unstructured environments. Liu, B.; Zhang, Y.; Wang, J.; Luo, L.; Lu, Q.; Wei, H.; and Zhu, W. Information Processing in Agriculture. 2 2023.
An improved lightweight network based on deep learning for grape recognition in unstructured environments [pdf]Paper   doi   link   bibtex   abstract  
Weakly and semi-supervised detection, segmentation and tracking of table grapes with limited and noisy data. Ciarfuglia, T., A.; Motoi, I., M.; Saraceni, L.; Fawakherji, M.; Sanfeliu, A.; and Nardi, D. Computers and Electronics in Agriculture, 205: 107624. 2 2023.
Weakly and semi-supervised detection, segmentation and tracking of table grapes with limited and noisy data [pdf]Paper   doi   link   bibtex   abstract  
Real-time tracking and counting of grape clusters in the field based on channel pruning with YOLOv5s. Shen, L.; Su, J.; He, R.; Song, L.; Huang, R.; Fang, Y.; Song, Y.; and Su, B. Computers and Electronics in Agriculture, 206: 107662. 3 2023.
Real-time tracking and counting of grape clusters in the field based on channel pruning with YOLOv5s [pdf]Paper   doi   link   bibtex   abstract  
Exploratory approach for automatic detection of vine rows in terrace vineyards. Figueiredo, N.; Padua, L.; Cunha, A.; Sousa, J., J.; and Sousa, A. Procedia Computer Science, 219: 139-144. 1 2023.
Exploratory approach for automatic detection of vine rows in terrace vineyards [pdf]Paper   doi   link   bibtex   abstract  
Computer-Vision Based Real Time Waypoint Generation for Autonomous Vineyard Navigation with Quadruped Robots. Milburn, L.; Gamba, J.; Fernandes, M.; and Semini, C. 2023 IEEE International Conference on Autonomous Robot Systems and Competitions, ICARSC 2023,239-244. 2023.
Computer-Vision Based Real Time Waypoint Generation for Autonomous Vineyard Navigation with Quadruped Robots [pdf]Paper   doi   link   bibtex   abstract  
Object detection and tracking on UAV RGB videos for early extraction of grape phenotypic traits. Ariza-Sentís, M.; Baja, H.; Vélez, S.; and Valente, J. Computers and Electronics in Agriculture, 211: 108051. 8 2023.
Object detection and tracking on UAV RGB videos for early extraction of grape phenotypic traits [pdf]Paper   doi   link   bibtex   abstract  
Applying Knowledge Distillation on Pre-Trained Model for Early Grapevine Detection. Hollard, L.; and Mohimont, L. ,149-156. 6 2023.
Applying Knowledge Distillation on Pre-Trained Model for Early Grapevine Detection [pdf]Paper   Applying Knowledge Distillation on Pre-Trained Model for Early Grapevine Detection [link]Website   doi   link   bibtex   abstract  
Toward Grapevine Digital Ampelometry Through Vision Deep Learning Models. Magalhaes, S., C.; Castro, L.; Rodrigues, L.; Padilha, T., C.; De Carvalho, F.; Neves Dos Santos, F.; Pinho, T.; Moreira, G.; Cunha, J.; Cunha, M.; Silva, P.; and Moreira, A., P. IEEE Sensors Journal, 23(9): 10132-10139. 5 2023.
Toward Grapevine Digital Ampelometry Through Vision Deep Learning Models [pdf]Paper   doi   link   bibtex   abstract  
Segmentation Methods Evaluation on Grapevine Leaf Diseases. Molnár, S.; and Tamás, L. FedCSIS,1081-1085. 2023.
Segmentation Methods Evaluation on Grapevine Leaf Diseases [pdf]Paper   Segmentation Methods Evaluation on Grapevine Leaf Diseases [link]Website   doi   link   bibtex   abstract  
Early Yield Estimation in Viticulture Based on Grapevine Inflorescence Detection and Counting in Videos. Khokher, M., R.; Liao, Q.; Smith, A., L.; Sun, C.; MacKenzie, D.; Thomas, M., R.; Wang, D.; and Edwards, E., J. IEEE Access, 11: 37790-37808. 2023.
Early Yield Estimation in Viticulture Based on Grapevine Inflorescence Detection and Counting in Videos [pdf]Paper   doi   link   bibtex   abstract  
Comparison of deep learning methods for grapevine growth stage recognition. Schieck, M.; Krajsic, P.; Loos, F.; Hussein, A.; Franczyk, B.; Kozierkiewicz, A.; and Pietranik, M. Computers and Electronics in Agriculture, 211: 107944. 8 2023.
Comparison of deep learning methods for grapevine growth stage recognition [pdf]Paper   doi   link   bibtex   abstract  
Machine-Learning Methods to Identify Key Predictors of Site-Specific Vineyard Yield and Vine Size. Taylor, J., A.; Bates, T., R.; Jakubowski, R.; and Jones, H. American Journal of Enology and Viticulture, 74(1): 740013. 1 2023.
Machine-Learning Methods to Identify Key Predictors of Site-Specific Vineyard Yield and Vine Size [pdf]Paper   Machine-Learning Methods to Identify Key Predictors of Site-Specific Vineyard Yield and Vine Size [link]Website   doi   link   bibtex   abstract  
Machine-Learning Methods to Identify Key Predictors of Site-Specific Vineyard Yield and Vine Size. Taylor, J., A.; Bates, T., R.; Jakubowski, R.; and Jones, H. American Journal of Enology and Viticulture, 74(1): 740013. 1 2023.
Machine-Learning Methods to Identify Key Predictors of Site-Specific Vineyard Yield and Vine Size [pdf]Paper   Machine-Learning Methods to Identify Key Predictors of Site-Specific Vineyard Yield and Vine Size [link]Website   doi   link   bibtex   abstract  
Assessment of vineyard vigour and yield spatio-temporal variability based on UAV high resolution multispectral images. Ferro, M., V.; Catania, P.; Miccichè, D.; Pisciotta, A.; Vallone, M.; and Orlando, S. Biosystems Engineering, 231: 36-56. 7 2023.
Assessment of vineyard vigour and yield spatio-temporal variability based on UAV high resolution multispectral images [pdf]Paper   doi   link   bibtex   abstract  
Deep Learning for Post-Harvest Grape Diseases Detection. Mohimont, L. , 0. 2023.
Deep Learning for Post-Harvest Grape Diseases Detection [pdf]Paper   doi   link   bibtex   abstract  
International Journal of INTELLIGENT SYSTEMS AND APPLICATIONS IN ENGINEERING Grape Vision: A CNN-Based System for Yield Component Analysis of Grape Clusters. Dange, B., J.; Kumar Mishra, P.; Metre, K., V.; Gore, S.; Laxnamrao Kurkute, S.; Khodke, H., E.; and Gore, S. Original Research Paper International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2023(9s): 239-244. 2023.
International Journal of INTELLIGENT SYSTEMS AND APPLICATIONS IN ENGINEERING Grape Vision: A CNN-Based System for Yield Component Analysis of Grape Clusters [pdf]Paper   International Journal of INTELLIGENT SYSTEMS AND APPLICATIONS IN ENGINEERING Grape Vision: A CNN-Based System for Yield Component Analysis of Grape Clusters [link]Website   link   bibtex   abstract  
A Preliminary Method for Tracking In-Season Grapevine Cluster Closure Using Image Segmentation and Image Thresholding. Trivedi, M.; Zhou, Y.; Moon, J., H.; Meyers, J.; Jiang, Y.; Lu, G.; and Heuvel, J., V. . 2023.
A Preliminary Method for Tracking In-Season Grapevine Cluster Closure Using Image Segmentation and Image Thresholding [pdf]Paper   A Preliminary Method for Tracking In-Season Grapevine Cluster Closure Using Image Segmentation and Image Thresholding [link]Website   doi   link   bibtex   abstract  
Evaluating Critical Disease Occurrence in Grapevine Leaves using CNN: Use-Case in Eastern Europe. Oprea, C., C.; Dragulinescu, A., M., C.; Marcu, I., M.; and Pirnog, I. 2023 17th International Conference on Engineering of Modern Electric Systems, EMES 2023. 2023.
Evaluating Critical Disease Occurrence in Grapevine Leaves using CNN: Use-Case in Eastern Europe [pdf]Paper   doi   link   bibtex   abstract  
Benchmarking edge computing devices for grape bunches and trunks detection using accelerated object detection single shot multibox deep learning models. Magalhães, S., C.; dos Santos, F., N.; Machado, P.; Moreira, A., P.; and Dias, J. Engineering Applications of Artificial Intelligence, 117: 105604. 1 2023.
Benchmarking edge computing devices for grape bunches and trunks detection using accelerated object detection single shot multibox deep learning models [pdf]Paper   doi   link   bibtex   abstract  
Using deep learning for pruning region detection and plant organ segmentation in dormant spur-pruned grapevines. Guadagna, P.; Fernandes, M.; Chen, F.; Santamaria, A.; Teng, T.; Frioni, T.; Caldwell, D., G.; Poni, S.; Semini, C.; and Gatti, M. Precision Agriculture, 24(4): 1547-1569. 8 2023.
Using deep learning for pruning region detection and plant organ segmentation in dormant spur-pruned grapevines [pdf]Paper   Using deep learning for pruning region detection and plant organ segmentation in dormant spur-pruned grapevines [link]Website   doi   link   bibtex   abstract  
Automated Grapevine Inflorescence Counting in a Vineyard Using Deep Learning and Multi-object Tracking. Rahim, U., F.; Utsumi, T.; Iwaki, Y.; and Mineno, H. 2023 15th International Conference on Computer and Automation Engineering, ICCAE 2023,276-280. 2023.
Automated Grapevine Inflorescence Counting in a Vineyard Using Deep Learning and Multi-object Tracking [pdf]Paper   doi   link   bibtex   abstract  
YOLO-based Multi-Modal Analysis of Vineyards using RGB-D Detections. Clamens, T.; Rodriguez, J.; Delamare, M.; Lew-Yan-Voon, L.; Fauvet, E.; and Fofi, D. ,7-9. 6 2023.
YOLO-based Multi-Modal Analysis of Vineyards using RGB-D Detections [pdf]Paper   YOLO-based Multi-Modal Analysis of Vineyards using RGB-D Detections [link]Website   link   bibtex   abstract  
Localization of Mobile Manipulator in Vineyards for Autonomous Task Execution. Hrabar, I.; and Kovačić, Z. Machines, 11(4): 414. 4 2023.
Localization of Mobile Manipulator in Vineyards for Autonomous Task Execution [pdf]Paper   Localization of Mobile Manipulator in Vineyards for Autonomous Task Execution [link]Website   doi   link   bibtex   abstract  
Missing Plant Detection in Vineyards Using UAV Angled RGB Imagery Acquired in Dormant Period. Di Gennaro, S., F.; Vannini, G., L.; Berton, A.; Dainelli, R.; Toscano, P.; and Matese, A. Drones 2023, Vol. 7, Page 349, 7(6): 349. 5 2023.
Missing Plant Detection in Vineyards Using UAV Angled RGB Imagery Acquired in Dormant Period [pdf]Paper   Missing Plant Detection in Vineyards Using UAV Angled RGB Imagery Acquired in Dormant Period [link]Website   doi   link   bibtex   abstract  
Disease detection in Okra plant and Grape vein using image processing. Kavitha, R.; Harini, S., S.; and Akshatha, K. 2nd International Conference on Advancements in Electrical, Electronics, Communication, Computing and Automation, ICAECA 2023. 2023.
Disease detection in Okra plant and Grape vein using image processing [pdf]Paper   doi   link   bibtex   abstract  
Autonomous Navigation and Crop Row Detection in Vineyards Using Machine Vision with 2D Camera. Mendez, E.; Camacho, P.; Escobedo Cabello, J., ;.; Gómez-Espinosa, J., A., ;.; Autonomous, A.; Mendez, E.; Camacho, J., P.; Arturo, J.; Cabello, E.; and Gómez-Espinosa, A. Automation 2023, Vol. 4, Pages 309-326, 4(4): 309-326. 9 2023.
Autonomous Navigation and Crop Row Detection in Vineyards Using Machine Vision with 2D Camera [pdf]Paper   Autonomous Navigation and Crop Row Detection in Vineyards Using Machine Vision with 2D Camera [link]Website   doi   link   bibtex   abstract  
Intelligent Monitoring System to Assess Plant Development State Based on Computer Vision in Viticulture. Rudenko, M.; Kazak, A.; Oleinikov, N.; Mayorova, A.; Dorofeeva, A.; Nekhaychuk, D.; and Shutova, O. Computation 2023, Vol. 11, Page 171, 11(9): 171. 9 2023.
Intelligent Monitoring System to Assess Plant Development State Based on Computer Vision in Viticulture [pdf]Paper   Intelligent Monitoring System to Assess Plant Development State Based on Computer Vision in Viticulture [link]Website   doi   link   bibtex   abstract  
Using a Camera System for the In-Situ Assessment of Cordon Dieback due to Grapevine Trunk Diseases. Tang, J.; Yem, O.; Russell, F.; Stewart, C., A.; Lin, K.; Jayakody, H.; Ayres, M., R.; Sosnowski, M., R.; Whitty, M.; and Petrie, P., R. . 2023.
Using a Camera System for the In-Situ Assessment of Cordon Dieback due to Grapevine Trunk Diseases [pdf]Paper   Using a Camera System for the In-Situ Assessment of Cordon Dieback due to Grapevine Trunk Diseases [link]Website   doi   link   bibtex   abstract  
Phenotyping grapevine red blotch virus and grapevine leafroll-associated viruses before and after symptom expression through machine-learning analysis of hyperspectral images. Sawyer, E.; Laroche-Pinel, E.; Flasco, M.; Cooper, M., L.; Corrales, B.; Fuchs, M.; and Brillante, L. Frontiers in Plant Science, 14(March): 1-15. 2023.
Phenotyping grapevine red blotch virus and grapevine leafroll-associated viruses before and after symptom expression through machine-learning analysis of hyperspectral images [pdf]Paper   doi   link   bibtex   abstract  
A Deep Learning Approach for Precision Viticulture, Assessing Grape Maturity via YOLOv7. Badeka, E.; Karapatzak, E.; Karampatea, A.; Bouloumpasi, E.; Kalathas, I.; Lytridis, C.; Tziolas, E.; Tsakalidou, V., N.; and Kaburlasos, V., G. Sensors 2023, Vol. 23, Page 8126, 23(19): 8126. 9 2023.
A Deep Learning Approach for Precision Viticulture, Assessing Grape Maturity via YOLOv7 [pdf]Paper   A Deep Learning Approach for Precision Viticulture, Assessing Grape Maturity via YOLOv7 [link]Website   doi   link   bibtex   abstract  
Deep Learning YOLO-Based Solution for Grape Bunch Detection and Assessment of Biophysical Lesions. Pinheiro, I.; Moreira, G.; Queirós da Silva, D.; Magalhães, S.; Valente, A.; Moura Oliveira, P.; Cunha, M.; and Santos, F. Agronomy 2023, Vol. 13, Page 1120, 13(4): 1120. 4 2023.
Deep Learning YOLO-Based Solution for Grape Bunch Detection and Assessment of Biophysical Lesions [pdf]Paper   Deep Learning YOLO-Based Solution for Grape Bunch Detection and Assessment of Biophysical Lesions [link]Website   doi   link   bibtex   abstract  
Evolutionary conditional GANs for supervised data augmentation: The case of assessing berry number per cluster in grapevine. Gutiérrez, S.; and Tardaguila, J. Applied Soft Computing, 147: 110805. 11 2023.
Evolutionary conditional GANs for supervised data augmentation: The case of assessing berry number per cluster in grapevine [pdf]Paper   doi   link   bibtex  
Surgical Fine-Tuning for Grape Bunch Segmentation under Visual Domain Shifts. Chiatti, A.; Bertoglio, R.; Catalano, N.; Gatti, M.; and Matteucci, M. Proceedings of the 11th European Conference on Mobile Robots, ECMR 2023. 2023.
Surgical Fine-Tuning for Grape Bunch Segmentation under Visual Domain Shifts [pdf]Paper   doi   link   bibtex   abstract  
Modelling wine grapevines for autonomous robotic cane pruning. Williams, H.; Smith, D.; Shahabi, J.; Gee, T.; Nejati, M.; Mcguinness, B.; Black, K.; Tobias, J.; Jangali, R.; Lim, H.; Mcculloch, J.; Green, R.; O'connor, M.; Gounder, S.; Ndaka, A.; Burch, K.; Fourie, J.; Hsiao, J.; Werner, A.; Agnew, R.; Oliver, R.; and Macdonald, B., A. . 2023.
Modelling wine grapevines for autonomous robotic cane pruning [link]Website   doi   link   bibtex   abstract  
Modelling wine grapevines for autonomous robotic cane pruning. Williams, H.; Smith, D.; Shahabi, J.; Gee, T.; Nejati, M.; Mcguinness, B.; Black, K.; Tobias, J.; Jangali, R.; Lim, H.; Mcculloch, J.; Green, R.; O'connor, M.; Gounder, S.; Ndaka, A.; Burch, K.; Fourie, J.; Hsiao, J.; Werner, A.; Agnew, R.; Oliver, R.; and Macdonald, B., A. . 2023.
Modelling wine grapevines for autonomous robotic cane pruning [pdf]Paper   Modelling wine grapevines for autonomous robotic cane pruning [link]Website   doi   link   bibtex   abstract  
Correlation of the Grapevine (Vitis vinifera L.) Leaf Chlorophyll Concentration with RGB Color Indices. Bodor-Pesti, P.; Taranyi, D.; Nyitrainé Sárdy, D., Á.; Le Phuong Nguyen, L.; and Baranyai, L. Horticulturae 2023, Vol. 9, Page 899, 9(8): 899. 8 2023.
Correlation of the Grapevine (Vitis vinifera L.) Leaf Chlorophyll Concentration with RGB Color Indices [pdf]Paper   Correlation of the Grapevine (Vitis vinifera L.) Leaf Chlorophyll Concentration with RGB Color Indices [link]Website   doi   link   bibtex   abstract  
Estimating soil and grapevine water status using ground based hyperspectral imaging under diffused lighting conditions: Addressing the effect of lighting variability in vineyards. Kang, C.; Diverres, G.; Achyut, P.; Karkee, M.; Zhang, Q.; and Keller, M. Computers and Electronics in Agriculture, 212: 108175. 9 2023.
Estimating soil and grapevine water status using ground based hyperspectral imaging under diffused lighting conditions: Addressing the effect of lighting variability in vineyards [pdf]Paper   doi   link   bibtex   abstract  
Potential detection of Flavescence dorée in the vineyard using close-range hyperspectral imaging. Barjaktarovic, M.; Santoni, M.; Faralli, M.; Bertamini, M.; and Bruzzone, L. International Conference on Electrical, Computer, Communications and Mechatronics Engineering, ICECCME 2023. 2023.
Potential detection of Flavescence dorée in the vineyard using close-range hyperspectral imaging [pdf]Paper   doi   link   bibtex   abstract  
Grapevine water status in a variably irrigated vineyard with NIR hyperspectral imaging from a UAV. Vasquez, K.; Laroche-Pinel, E.; Partida, G.; and Brillante, L. Precision agriculture '23,345–350. 2023.
Grapevine water status in a variably irrigated vineyard with NIR hyperspectral imaging from a UAV [pdf]Paper   link   bibtex  
Instance Segmentation and Berry Counting of Table Grape before Thinning Based on AS-SwinT. Du, W.; and Liu, P. Plant Phenomics, 5. 8 2023.
Instance Segmentation and Berry Counting of Table Grape before Thinning Based on AS-SwinT [pdf]Paper   Instance Segmentation and Berry Counting of Table Grape before Thinning Based on AS-SwinT [link]Website   doi   link   bibtex   abstract  
Detecting Grapevine Virus Infections in Red and White Winegrape Canopies Using Proximal Hyperspectral Sensing. Wang, Y., M.; Ostendorf, B.; and Pagay, V. Sensors 2023, Vol. 23, Page 2851, 23(5): 2851. 3 2023.
Detecting Grapevine Virus Infections in Red and White Winegrape Canopies Using Proximal Hyperspectral Sensing [pdf]Paper   Detecting Grapevine Virus Infections in Red and White Winegrape Canopies Using Proximal Hyperspectral Sensing [link]Website   doi   link   bibtex   abstract  
Detecting vineyard plants stress in situ using deep learning. Cándido-Mireles, M.; Hernández-Gama, R.; and Salas, J. Computers and Electronics in Agriculture, 210: 107837. 7 2023.
Detecting vineyard plants stress in situ using deep learning [pdf]Paper   doi   link   bibtex   abstract  
Scalable Early Detection of Grapevine Viral Infection with Airborne Imaging Spectroscopy. Romero Galvan, F.; Pavlick, R.; Trolley, G., R.; Aggarwal, S.; Sousa, D.; Starr, C.; Forrestel, E., J.; Bolton, S.; Alsina, M., d., M.; Dokoozlian, N.; and Gold, K., M. https://doi.org/10.1094/PHYTO-01-23-0030-R. 9 2023.
Scalable Early Detection of Grapevine Viral Infection with Airborne Imaging Spectroscopy [pdf]Paper   Scalable Early Detection of Grapevine Viral Infection with Airborne Imaging Spectroscopy [link]Website   doi   link   bibtex   abstract  
A Grape Dataset for Instance Segmentation and Maturity Estimation. Blekos, A.; Chatzis, K.; Kotaidou, M.; Chatzis, T.; Solachidis, V.; Konstantinidis, D.; and Dimitropoulos, K. Agronomy 2023, Vol. 13, Page 1995, 13(8): 1995. 7 2023.
A Grape Dataset for Instance Segmentation and Maturity Estimation [pdf]Paper   A Grape Dataset for Instance Segmentation and Maturity Estimation [link]Website   doi   link   bibtex   abstract  
Scalable Early Detection of Grapevine Viral Infection with Airborne Imaging Spectroscopy. Romero Galvan, F.; Pavlick, R.; Trolley, G., R.; Aggarwal, S.; Sousa, D.; Starr, C.; Forrestel, E., J.; Bolton, S.; Alsina, M., d., M.; Dokoozlian, N.; and Gold, K., M. https://doi.org/10.1094/PHYTO-01-23-0030-R. 9 2023.
Scalable Early Detection of Grapevine Viral Infection with Airborne Imaging Spectroscopy [pdf]Paper   Scalable Early Detection of Grapevine Viral Infection with Airborne Imaging Spectroscopy [link]Website   doi   link   bibtex   abstract  
Data Acquisition for Testing Potential Detection of Flavescence Dorée with a Designed, Affordable Multispectral Camera. Barjaktarović, M.; Santoni, M.; Faralli, M.; Bertamini, M.; and Bruzzone, L. Telfor Journal, 15(1). 2023.
Data Acquisition for Testing Potential Detection of Flavescence Dorée with a Designed, Affordable Multispectral Camera [pdf]Paper   link   bibtex   abstract  
NIR attribute selection for the development of vineyard water status predictive models. Marañón, M.; Fernández-Novales, J.; Tardaguila, J.; Gutiérrez, S.; and Diago, M., P. Biosystems Engineering, 229: 167-178. 5 2023.
NIR attribute selection for the development of vineyard water status predictive models [pdf]Paper   doi   link   bibtex   abstract  
Evaluating the Potential of High-Resolution Visible Remote Sensing to Detect Shiraz Disease in Grapevines. Wang, Y., M.; Ostendorf, B.; and Pagay, V. Australian Journal of Grape and Wine Research, 2023: 1-9. 5 2023.
Evaluating the Potential of High-Resolution Visible Remote Sensing to Detect Shiraz Disease in Grapevines [pdf]Paper   doi   link   bibtex   abstract  
Unstructured road extraction and roadside fruit recognition in grape orchards based on a synchronous detection algorithm. Zhou, X.; Zou, X.; Tang, W.; Yan, Z.; Meng, H.; and Luo, X. Frontiers in Plant Science, 14(June): 1-22. 2023.
Unstructured road extraction and roadside fruit recognition in grape orchards based on a synchronous detection algorithm [pdf]Paper   doi   link   bibtex   abstract  
Using a Camera System for the In-Situ Assessment of Cordon Dieback due to Grapevine Trunk Diseases. Tang, J.; Yem, O.; Russell, F.; Stewart, C., A.; Lin, K.; Jayakody, H.; Ayres, M., R.; Sosnowski, M., R.; Whitty, M.; and Petrie, P., R. . 2023.
Using a Camera System for the In-Situ Assessment of Cordon Dieback due to Grapevine Trunk Diseases [pdf]Paper   Using a Camera System for the In-Situ Assessment of Cordon Dieback due to Grapevine Trunk Diseases [link]Website   doi   link   bibtex   abstract  
Exploratory approach for automatic detection of vine rows in terrace vineyards. Figueiredo, N.; Padua, L.; Cunha, A.; Sousa, J., J.; and Sousa, A. Procedia Computer Science, 219: 139-144. 1 2023.
Exploratory approach for automatic detection of vine rows in terrace vineyards [pdf]Paper   doi   link   bibtex   abstract  
MLGNet: Multi-Task Learning Network with Attention-Guided Mechanism for Segmenting Agricultural Fields. Mondino, B.; Sarvia, F.; De Petris, S.; Orusa, T.; Luo, W.; Zhang, C.; Li, Y.; and Yan, Y. Remote Sensing 2023, Vol. 15, Page 3934, 15(16): 3934. 8 2023.
MLGNet: Multi-Task Learning Network with Attention-Guided Mechanism for Segmenting Agricultural Fields [pdf]Paper   MLGNet: Multi-Task Learning Network with Attention-Guided Mechanism for Segmenting Agricultural Fields [link]Website   doi   link   bibtex   abstract  
MTA-YOLACT: Multitask-aware network on fruit bunch identification for cherry tomato robotic harvesting. Li, Y.; Feng, Q.; Liu, C.; Xiong, Z.; Sun, Y.; Xie, F.; Li, T.; and Zhao, C. European Journal of Agronomy, 146: 126812. 5 2023.
MTA-YOLACT: Multitask-aware network on fruit bunch identification for cherry tomato robotic harvesting [pdf]Paper   doi   link   bibtex   abstract  
An efficient multi-task convolutional neural network for dairy farm object detection and segmentation. Tian, F.; Hu, G.; Yu, S.; Wang, R.; Song, Z.; Yan, Y.; Huang, H.; Wang, Q.; Wang, Z.; and Yu, Z. Computers and Electronics in Agriculture, 211: 108000. 8 2023.
An efficient multi-task convolutional neural network for dairy farm object detection and segmentation [pdf]Paper   doi   link   bibtex   abstract  
Grape Cold Hardiness Prediction via Multi-Task Learning. Saxena, A.; Pesantez-Cabrera, P.; Ballapragada, R.; Lam, K., H.; Keller, M.; and Fern, A. Proceedings of the AAAI Conference on Artificial Intelligence, 37(13): 15717-15723. 9 2023.
Grape Cold Hardiness Prediction via Multi-Task Learning [pdf]Paper   Grape Cold Hardiness Prediction via Multi-Task Learning [link]Website   doi   link   bibtex   abstract  
Multi-task Transfer Learning Facilitated by Segmentation and Denoising for Anomaly Detection of Rail Fasteners. Kim, B.; Jeon, Y.; Kang, J., W.; and Gwak, J. Journal of Electrical Engineering and Technology, 18(3): 2383-2394. 5 2023.
Multi-task Transfer Learning Facilitated by Segmentation and Denoising for Anomaly Detection of Rail Fasteners [pdf]Paper   Multi-task Transfer Learning Facilitated by Segmentation and Denoising for Anomaly Detection of Rail Fasteners [link]Website   doi   link   bibtex   abstract  
Plant-water relations. Dodd, I., C.; Hirons, A., D.; and Puértolas, J. Encyclopedia of Soils in the Environment,516-526. 2023.
doi   link   bibtex  
Scalable early detection of grapevine virus infection with airborne imaging spectroscopy. Romero Galvan, F.; Pavlick, R.; Trolley, G., R.; Aggarwal, S.; Sousa, D.; Starr, C.; Forrestel, E., J.; Bolton, S.; Alsina, M., d., M.; Dokoozlian, N.; and Gold, K., M. Phytopathology®. 8 2023.
Scalable early detection of grapevine virus infection with airborne imaging spectroscopy [pdf]Paper   Scalable early detection of grapevine virus infection with airborne imaging spectroscopy [link]Website   doi   link   bibtex   abstract  
Evaluating the Potential of High-Resolution Visible Remote Sensing to Detect Shiraz Disease in Grapevines. Wang, Y., M.; Ostendorf, B.; and Pagay, V. Australian Journal of Grape and Wine Research, 2023: 1-9. 5 2023.
Evaluating the Potential of High-Resolution Visible Remote Sensing to Detect Shiraz Disease in Grapevines [pdf]Paper   doi   link   bibtex   abstract  
Low-Cost Handheld Spectrometry for Detecting Flavescence Dorée in Vineyards. Imran, H., A.; Zeggada, A.; Ianniello, I.; Melgani, F.; Polverari, A.; Baroni, A.; Danzi, D.; and Goller, R. Applied Sciences 2023, Vol. 13, Page 2388, 13(4): 2388. 2 2023.
Low-Cost Handheld Spectrometry for Detecting Flavescence Dorée in Vineyards [pdf]Paper   Low-Cost Handheld Spectrometry for Detecting Flavescence Dorée in Vineyards [link]Website   doi   link   bibtex   abstract  
Detecting Grapevine Virus Infections in Red and White Winegrape Canopies Using Proximal Hyperspectral Sensing. Wang, Y., M.; Ostendorf, B.; and Pagay, V. Sensors 2023, Vol. 23, Page 2851, 23(5): 2851. 3 2023.
Detecting Grapevine Virus Infections in Red and White Winegrape Canopies Using Proximal Hyperspectral Sensing [pdf]Paper   Detecting Grapevine Virus Infections in Red and White Winegrape Canopies Using Proximal Hyperspectral Sensing [link]Website   doi   link   bibtex   abstract  
Drones in Plant Disease Assessment, Efficient Monitoring, and Detection: A Way Forward to Smart Agriculture. Abbas, A.; Zhang, Z.; Zheng, H.; Alami, M., M.; Alrefaei, A., F.; Abbas, Q.; Naqvi, S., A., H.; Rao, M., J.; Mosa, W., F.; Abbas, Q.; Hussain, A.; Hassan, M., Z.; and Zhou, L. Agronomy 2023, Vol. 13, Page 1524, 13(6): 1524. 5 2023.
Drones in Plant Disease Assessment, Efficient Monitoring, and Detection: A Way Forward to Smart Agriculture [pdf]Paper   Drones in Plant Disease Assessment, Efficient Monitoring, and Detection: A Way Forward to Smart Agriculture [link]Website   doi   link   bibtex   abstract  
GrapesNet: Indian RGB & RGB-D vineyard image datasets for deep learning applications. Barbole, D., K.; and Jadhav, P., M. Data in Brief, 48: 109100. 6 2023.
GrapesNet: Indian RGB & RGB-D vineyard image datasets for deep learning applications [pdf]Paper   doi   link   bibtex   abstract  
Deep Learning YOLO-Based Solution for Grape Bunch Detection and Assessment of Biophysical Lesions. Pinheiro, I.; Moreira, G.; Queirós da Silva, D.; Magalhães, S.; Valente, A.; Moura Oliveira, P.; Cunha, M.; and Santos, F. Agronomy 2023, Vol. 13, Page 1120, 13(4): 1120. 4 2023.
Deep Learning YOLO-Based Solution for Grape Bunch Detection and Assessment of Biophysical Lesions [pdf]Paper   Deep Learning YOLO-Based Solution for Grape Bunch Detection and Assessment of Biophysical Lesions [link]Website   doi   link   bibtex   abstract  
The Use of Computer Vision to Improve the Affinity of Rootstock-Graft Combinations and Identify Diseases of Grape Seedlings. Rudenko, M.; Plugatar, Y.; Korzin, V.; Kazak, A.; Gallini, N.; and Gorbunova, N. Inventions 2023, Vol. 8, Page 92, 8(4): 92. 7 2023.
The Use of Computer Vision to Improve the Affinity of Rootstock-Graft Combinations and Identify Diseases of Grape Seedlings [link]Website   doi   link   bibtex   abstract  
The Use of Computer Vision to Improve the Affinity of Rootstock-Graft Combinations and Identify Diseases of Grape Seedlings. Rudenko, M.; Plugatar, Y.; Korzin, V.; Kazak, A.; Gallini, N.; and Gorbunova, N. Inventions 2023, Vol. 8, Page 92, 8(4): 92. 7 2023.
The Use of Computer Vision to Improve the Affinity of Rootstock-Graft Combinations and Identify Diseases of Grape Seedlings [pdf]Paper   The Use of Computer Vision to Improve the Affinity of Rootstock-Graft Combinations and Identify Diseases of Grape Seedlings [link]Website   doi   link   bibtex   abstract  
Domain Generalization for Crop Segmentation with Knowledge Distillation. Angarano, S.; Martini, M.; Navone, A.; and Chiaberge, M. . 4 2023.
Domain Generalization for Crop Segmentation with Knowledge Distillation [pdf]Paper   Domain Generalization for Crop Segmentation with Knowledge Distillation [link]Website   link   bibtex   abstract  
Applying Knowledge Distillation on Pre-Trained Model for Early Grapevine Detection. Hollard, L.; and Mohimont, L. ,149-156. 6 2023.
Applying Knowledge Distillation on Pre-Trained Model for Early Grapevine Detection [pdf]Paper   Applying Knowledge Distillation on Pre-Trained Model for Early Grapevine Detection [link]Website   doi   link   bibtex   abstract  
Online Knowledge Distillation for Multi-Task Learning. Jacob, G., M.; Agarwal, V.; and Stenger, B. 2023.
Online Knowledge Distillation for Multi-Task Learning [pdf]Paper   link   bibtex   abstract  
Multi-Task Learning with Knowledge Distillation for Dense Prediction. Xu, Y.; Yang, Y.; and Zhang, L. 2023.
Multi-Task Learning with Knowledge Distillation for Dense Prediction [pdf]Paper   link   bibtex   abstract  
Research progress of autonomous navigation technology for multi-agricultural scenes. Xie, B.; Jin, Y.; Faheem, M.; Gao, W.; Liu, J.; Jiang, H.; Cai, L.; and Li, Y. 8 2023.
Research progress of autonomous navigation technology for multi-agricultural scenes [pdf]Paper   doi   link   bibtex   abstract  
MOT-DETR: 3D Single Shot Detection and Tracking with Transformers to build 3D representations for Agro-Food Robots. Rapado-Rincon, D.; Nap, H.; Smolenova, K.; van Henten, E., J.; and Kootstra, G. . 11 2023.
MOT-DETR: 3D Single Shot Detection and Tracking with Transformers to build 3D representations for Agro-Food Robots [pdf]Paper   MOT-DETR: 3D Single Shot Detection and Tracking with Transformers to build 3D representations for Agro-Food Robots [link]Website   link   bibtex   abstract  
Robots in the Garden: Artificial Intelligence and Adaptive Landscapes. Zhang, Z.; Epstein, S., L.; Breen, C.; Xia, S.; Zhu, Z.; and Volkmann, C. Journal of Digital Landscape Architecture, 2023(8): 264-272. 2023.
Robots in the Garden: Artificial Intelligence and Adaptive Landscapes [pdf]Paper   doi   link   bibtex   abstract  
Efficient Grapevine Structure Estimation in Vineyards Conditions. Gentilhomme, T.; Villamizar, M.; Corre, J.; and Odobez, J. In Proceedings of the IEEE/CVF International Conference on Computer Vision (ICCV) Workshops, pages 712-720, 2023.
link   bibtex  
Using a Camera System for the In-Situ Assessment of Cordon Dieback due to Grapevine Trunk Diseases. Tang, J.; Yem, O.; Russell, F.; Stewart, C., A.; Lin, K.; Jayakody, H.; Ayres, M., R.; Sosnowski, M., R.; Whitty, M.; Petrie, P., R.; and others Australian Journal of Grape and Wine Research, 2023: 8634742. 2023.
link   bibtex  
Mapping the spatial variability of Botrytis bunch rot risk in vineyards using UAV multispectral imagery. Vélez, S.; Ariza-Sentís, M.; and Valente, J. European Journal of Agronomy, 142: 126691. 2023.
link   bibtex  
Dataset on unmanned aerial vehicle multispectral images acquired over a vineyard affected by Botrytis cinerea in northern Spain. Vélez, S.; Ariza-Sentís, M.; and Valente, J. Data in Brief, 46: 108876. 2023.
link   bibtex  
Data acquisition for testing potential detection of Flavescence dorée with a designed, affordable multispectral camera. Barjaktarović, M.; Santoni, M.; Faralli, M.; Bertamini, M.; Bruzzone, L.; and others Telfor Journal, 2023(1): 2-7. 2023.
link   bibtex  
Detecting Grapevine Virus Infections in Red and White Winegrape Canopies Using Proximal Hyperspectral Sensing. Wang, Y., M.; Ostendorf, B.; and Pagay, V. Sensors, 23(5): 2851. 2023.
link   bibtex  
Drones in Plant Disease Assessment, Efficient Monitoring, and Detection: A Way Forward to Smart Agriculture. Abbas, A.; Zhang, Z.; Zheng, H.; Alami, M., M.; Alrefaei, A., F.; Abbas, Q.; Naqvi, S., A., H.; Rao, M., J.; Mosa, W., F., A.; Abbas, Q.; Hussain, A.; Hassan, M., Z.; and Zhou, L. Agronomy, 13(6): 1524. 2023.
link   bibtex  
GrapesNet: Indian RGB \& RGB-D vineyard image datasets for deep learning applications. Barbole, D., K.; and Jadhav, P., M. Data in Brief, 48: 109100. 2023.
link   bibtex  
Segmentation Methods Evaluation on Grapevine Leaf Diseases. Molnár, S.; and Tamás, L. In Proceedings of the 18th Conference on Computer Science and Intelligence Systems, FedCSIS 2023, Warsaw, Poland, September 17-20, 2023, volume 35, of Annals of Computer Science and Information Systems, pages 1081-1085, 2023.
link   bibtex  
A survey on deep learning-based identification of plant and crop diseases from UAV-based aerial images. Bouguettaya, A.; Zarzour, H.; Kechida, A.; and Taberkit, A., M. Cluster Computing, 26(2): 1297-1317. 2023.
link   bibtex  
Evaluating the Potential of High-Resolution Visible Remote Sensing to Detect Shiraz Disease in Grapevines. Wang, Y., M.; Ostendorf, B.; Pagay, V.; and others Australian Journal of Grape and Wine Research, 2023. 2023.
link   bibtex  
Amazon SageMaker. AWS 11 2023.
link   bibtex  
An expertized grapevine disease image database including five grape varieties focused on Flavescence dorée and its confounding diseases, biotic and abiotic stresses. Tardif, M.; Amri, A.; Deshayes, A.; Greven, M.; Keresztes, B.; Fontaine, G.; Sicaud, L.; Paulhac, L.; Bentejac, S.; and da Costa, J. Data in Brief, 48: 109230. 2023.
link   bibtex  
Scalable Early Detection of Grapevine Viral Infection with Airborne Imaging Spectroscopy. Galvan, F., E., R.; Pavlick, R.; Trolley, G.; Aggarwal, S.; Sousa, D.; Starr, C.; Forrestel, E.; Bolton, S.; Alsina, M., d., M.; Dokoozlian, N.; and Gold, K., M. Phytopathology, 113(8): 1439-1446. 2023.
link   bibtex  
Intelligent Monitoring System to Assess Plant Development State Based on Computer Vision in Viticulture. Rudenko, M.; Kazak, A.; Oleinikov, N.; Mayorova, A.; Dorofeeva, A.; Nekhaychuk, D.; and Shutova, O. Computation, 11(9): 171. 2023.
link   bibtex  
Potential detection of Flavescence dorée in the vineyard using close-range hyperspectral imaging. Barjaktarović, M.; Santoni, M.; Faralli, M.; Bertamini, M.; and Bruzzone, L. In 2023 3rd International Conference on Electrical, Computer, Communications and Mechatronics Engineering (ICECCME), pages 1-6, 2023.
link   bibtex  
Automatic diagnosis of a multi-symptom grape vine disease using computer vision. Tardif, M.; Amri, A.; Keresztes, B.; Deshayes, A.; Martin, D.; Greven, M.; and da Costa, J. In Acta Horticulturae, pages 53-60, 2023. International Society for Horticultural Science (ISHS), Leuven, Belgium
link   bibtex  
Deep Learning YOLO-Based Solution for Grape Bunch Detection and Assessment of Biophysical Lesions. Pinheiro, I.; Moreira, G.; da Silva, D.; Magalhães, S.; Valente, A.; Moura Oliveira, P.; Cunha, M.; and Santos, F. Agronomy, 13(4): 1120. 2023.
link   bibtex  
Automatic diagnosis of a multi-symptom grapevine disease by decision trees and Graph Neural Networks. Tardif, M.; Keresztes, B.; Deshayes, A.; Martin, D.; Greven, M.; and da Costa, J. Precision agriculture '23, pages 1011-1017. Wageningen Academic, 2023.
link   bibtex  
Dataset on UAV RGB videos acquired over a vineyard including bunch labels for object detection and tracking. Ariza-Sentís, M.; Vélez, S.; and Valente, J. Data in Brief, 46: 108848. 2023.
link   bibtex  
Implementation of drone technology for farm monitoring \& pesticide spraying: A review. Hafeez, A.; Husain, M., A.; Singh, S., P.; Chauhan, A.; Khan, M., T.; Kumar, N.; Chauhan, A.; and Soni, S., K. Information Processing in Agriculture, 10(2): 192-203. 2023.
link   bibtex  
Evaluating Critical Disease Occurrence in Grapevine Leaves using CNN: Use-Case in Eastern Europe. Oprea, C.; Drăgulinescu, A., C.; Marcu, I.; and Pirnog, I. In 2023 17th International Conference on Engineering of Modern Electric Systems (EMES), pages 1-4, 2023.
link   bibtex  
Proximal sensing for geometric characterization of vines: A review of the latest advances. Moreno, H.; and Andújar, D. Computers and Electronics in Agriculture, 210: 107901. 2023.
link   bibtex  
AOGC: Anchor-Free Oriented Object Detection Based on Gaussian Centerness. Xia, G.; Cheng, G.; Feng, J.; Mou, L.; Wang, Z.; Bao, C.; Cao, J.; and Hao, Q. Remote Sensing 2023, Vol. 15, Page 4690, 15(19): 4690. 9 2023.
AOGC: Anchor-Free Oriented Object Detection Based on Gaussian Centerness [pdf]Paper   AOGC: Anchor-Free Oriented Object Detection Based on Gaussian Centerness [link]Website   doi   link   bibtex   abstract  
A comprehensive survey of oriented object detection in remote sensing images. Wen, L.; Cheng, Y.; Fang, Y.; and Li, X. Expert Systems with Applications, 224: 119960. 8 2023.
A comprehensive survey of oriented object detection in remote sensing images [pdf]Paper   doi   link   bibtex   abstract  
ARS-DETR: Aspect Ratio Sensitive Oriented Object Detection with Transformer. Zeng, Y.; Yang, X.; Li, Q.; Chen, Y.; and Yan, J. . 2023.
ARS-DETR: Aspect Ratio Sensitive Oriented Object Detection with Transformer [pdf]Paper   ARS-DETR: Aspect Ratio Sensitive Oriented Object Detection with Transformer [link]Website   doi   link   bibtex   abstract  
Benchmarking Generations of You Only Look Once Architectures for Detection of Defective and Normal Long Rod Insulators. Békési, G., B. Journal of Control, Automation and Electrical Systems, 34(5): 1093-1107. 10 2023.
Benchmarking Generations of You Only Look Once Architectures for Detection of Defective and Normal Long Rod Insulators [pdf]Paper   Benchmarking Generations of You Only Look Once Architectures for Detection of Defective and Normal Long Rod Insulators [link]Website   doi   link   bibtex   abstract  
Investigation of You Only Look Once Networks for Vision-based Small Object Detection. Yang, L. International Journal of Advanced Computer Science and Applications, 14(4): 69-82. 38 2023.
Investigation of You Only Look Once Networks for Vision-based Small Object Detection [pdf]Paper   Investigation of You Only Look Once Networks for Vision-based Small Object Detection [link]Website   doi   link   bibtex   abstract  
Lightweight You Only Look Once v8: An Upgraded You Only Look Once v8 Algorithm for Small Object Identification in Unmanned Aerial Vehicle Images. Huangfu, Z.; and Li, S. Applied Sciences 2023, Vol. 13, Page 12369, 13(22): 12369. 11 2023.
Lightweight You Only Look Once v8: An Upgraded You Only Look Once v8 Algorithm for Small Object Identification in Unmanned Aerial Vehicle Images [pdf]Paper   Lightweight You Only Look Once v8: An Upgraded You Only Look Once v8 Algorithm for Small Object Identification in Unmanned Aerial Vehicle Images [link]Website   doi   link   bibtex   abstract  
YOLO-SE: Improved YOLOv8 for Remote Sensing Object Detection and Recognition. Wu, T.; and Dong, Y. Applied Sciences 2023, Vol. 13, Page 12977, 13(24): 12977. 12 2023.
YOLO-SE: Improved YOLOv8 for Remote Sensing Object Detection and Recognition [pdf]Paper   YOLO-SE: Improved YOLOv8 for Remote Sensing Object Detection and Recognition [link]Website   doi   link   bibtex   abstract  
G-Rep: Gaussian Representation for Arbitrary-Oriented Object Detection. Hou, L.; Lu, K.; Yang, X.; Li, Y.; and Xue, J. Remote Sensing, 15(3): 1-21. 2023.
G-Rep: Gaussian Representation for Arbitrary-Oriented Object Detection [pdf]Paper   doi   link   bibtex   abstract  
H2RBox-v2: Incorporating Symmetry for Boosting Horizontal Box Supervised Oriented Object Detection. Yu, Y.; Yang, X.; Li, Q.; Zhou, Y.; Zhang, G.; Da, F.; and Yan, J. Advances in Neural Information Processing Systems, 36: 59137-59150. 12 2023.
H2RBox-v2: Incorporating Symmetry for Boosting Horizontal Box Supervised Oriented Object Detection [pdf]Paper   link   bibtex   abstract  
AgriDet: Plant Leaf Disease severity classification using agriculture detection framework. Pal, A.; and Kumar, V. Engineering Applications of Artificial Intelligence, 119: 105754. 3 2023.
AgriDet: Plant Leaf Disease severity classification using agriculture detection framework [pdf]Paper   doi   link   bibtex   abstract  
Plant Disease Severity Detection and Fertilizer Recommendation using Deep Learning Techniques. Sudhir, B.; Teja, D., C.; Sai, K.; Sridhar, P.; and Daniya, T. Proceedings of the 2nd International Conference on Applied Artificial Intelligence and Computing, ICAAIC 2023,215-221. 2023.
Plant Disease Severity Detection and Fertilizer Recommendation using Deep Learning Techniques [pdf]Paper   doi   link   bibtex   abstract  
Apparatus and method for image-guided agriculture. . 2 2023.
Apparatus and method for image-guided agriculture [pdf]Paper   link   bibtex   abstract  
Behavior-Aware Pedestrian Trajectory Prediction in Ego-Centric Camera Views with Spatio-Temporal Ego-Motion Estimation †. Czech, P.; Braun, M.; Kreßel, U.; and Yang, B. Machine Learning and Knowledge Extraction, 5(3): 957-978. 9 2023.
Behavior-Aware Pedestrian Trajectory Prediction in Ego-Centric Camera Views with Spatio-Temporal Ego-Motion Estimation † [pdf]Paper   doi   link   bibtex   abstract  
Learning power Gaussian modeling loss for dense rotated object detection in remote sensing images. LI, Y.; WANG, H.; FANG, Y.; WANG, S.; LI, Z.; and JIANG, B. Chinese Journal of Aeronautics, 36(10): 353-365. 10 2023.
Learning power Gaussian modeling loss for dense rotated object detection in remote sensing images [pdf]Paper   doi   link   bibtex   abstract  
Evaluating the Economic and Sustainability Impacts of Drones in Viticulture using BPMN-based Simulation. Schieck, M.; Roemer, I.; Oertel, A.; and Franczyk, B. Procedia Computer Science, 225: 892-901. 1 2023.
Evaluating the Economic and Sustainability Impacts of Drones in Viticulture using BPMN-based Simulation [pdf]Paper   doi   link   bibtex   abstract  
Cost Analysis of Using UAV Sprayers for Olive Fruit Fly Control. Cavalaris, C.; Tagarakis, A., C.; Kateris, D.; and Bochtis, D. AgriEngineering, 5(4): 1925-1942. 12 2023.
Cost Analysis of Using UAV Sprayers for Olive Fruit Fly Control [pdf]Paper   doi   link   bibtex   abstract  
  2022 (125)
An annotated image dataset of vegetable crops at an early stage of growth for proximal sensing applications. Lac, L.; Keresztes, B.; Louargant, M.; Donias, M.; and {Da Costa}, J. Data in Brief, 42(2352-3409): 108035. 1 2022.
An annotated image dataset of vegetable crops at an early stage of growth for proximal sensing applications [pdf]Paper   doi   link   bibtex   abstract  
Spectral Comparison of UAV-Based Hyper and Multispectral Cameras for Precision Viticulture. Di Gennaro, S., F.; Toscano, P.; Gatti, M.; Poni, S.; Berton, A.; and Matese, A. Remote Sensing, 14(3). 2022.
Spectral Comparison of UAV-Based Hyper and Multispectral Cameras for Precision Viticulture [pdf]Paper   doi   link   bibtex   abstract  
A Review of Multi-Sensor Fusion SLAM Systems Based on 3D LIDAR. Jiang, C.; Meng, Q.; Xu, B.; Gao, W.; Wu, P.; Guan, L.; Li, Z.; Xu, X.; Zhang, L.; Yang, J.; Cao, C.; Wang, W.; Ran, Y.; Tan, Z.; and Luo, M. Remote Sensing 2022, Vol. 14, Page 2835, 14(12): 2835. 6 2022.
A Review of Multi-Sensor Fusion SLAM Systems Based on 3D LIDAR [pdf]Paper   A Review of Multi-Sensor Fusion SLAM Systems Based on 3D LIDAR [link]Website   doi   link   bibtex   abstract  
A Comprehensive Survey of Visual SLAM Algorithms. Macario Barros, A.; Michel, M.; Moline, Y.; Corre, G.; and Carrel, F. Robotics 2022, Vol. 11, Page 24, 11(1): 24. 2 2022.
A Comprehensive Survey of Visual SLAM Algorithms [pdf]Paper   A Comprehensive Survey of Visual SLAM Algorithms [link]Website   doi   link   bibtex   abstract  
Simultaneous Localization and Mapping (SLAM) and Data Fusion in Unmanned Aerial Vehicles: Recent Advances and Challenges. Gupta, A.; and Fernando, X. Drones 2022, Vol. 6, Page 85, 6(4): 85. 3 2022.
Simultaneous Localization and Mapping (SLAM) and Data Fusion in Unmanned Aerial Vehicles: Recent Advances and Challenges [pdf]Paper   Simultaneous Localization and Mapping (SLAM) and Data Fusion in Unmanned Aerial Vehicles: Recent Advances and Challenges [link]Website   doi   link   bibtex   abstract  
Visual SLAM Algorithms and their Application for AR, Mapping, Localization and Wayfinding. Theodorou, C.; Velisavljevic, V.; Dyo, V.; and Nonyelu, F. Array, 15: 100222. 2022.
Visual SLAM Algorithms and their Application for AR, Mapping, Localization and Wayfinding [pdf]Paper   link   bibtex   abstract  
LCDNet: Deep Loop Closure Detection and Point Cloud Registration for LiDAR SLAM. Cattaneo, D.; Vaghi, M.; and Valada, A. IEEE Transactions on Robotics, 38(4): 2074-2093. 2022.
LCDNet: Deep Loop Closure Detection and Point Cloud Registration for LiDAR SLAM [pdf]Paper   doi   link   bibtex   abstract  
Depth camera based row-end detection and headland manuvering in orchard navigation without GNSS. Peng, C.; Fei, Z.; and Vougioukas, S., G. 2022 30th Mediterranean Conference on Control and Automation, MED 2022,538-544. 2022.
Depth camera based row-end detection and headland manuvering in orchard navigation without GNSS [pdf]Paper   doi   link   bibtex   abstract  
Crop stem detection and tracking for precision hoeing using deep learning. Lac, L.; Da Costa, J., P.; Donias, M.; Keresztes, B.; and Bardet, A. Computers and Electronics in Agriculture, 192(December 2021): 106606. 2022.
Crop stem detection and tracking for precision hoeing using deep learning [pdf]Paper   Crop stem detection and tracking for precision hoeing using deep learning [link]Website   doi   link   bibtex   abstract  
Pseudo-label Generation for Agricultural Robotics Applications. Ciarfuglia, T., A.; Marian Motoi, I.; Saraceni, L.; and Nardi, D. In IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops, CVPR Workshops 2022, New Orleans, LA, USA, June 19-20, 2022, pages 1685-1693, 2022.
Pseudo-label Generation for Agricultural Robotics Applications [pdf]Paper   doi   link   bibtex  
Integrating UAVs and Canopy Height Models in Vineyard Management: A Time-Space Approach. Sassu, A.; Ghiani, L.; Salvati, L.; Mercenaro, L.; Deidda, A.; and Gambella, F. Remote Sensing, 14(1): 1-14. 2022.
Integrating UAVs and Canopy Height Models in Vineyard Management: A Time-Space Approach [pdf]Paper   doi   link   bibtex   abstract  
Semi-supervised deep learning and low-cost cameras for the semantic segmentation of natural images in viticulture. Casado-García, A.; Heras, J.; Milella, A.; and Marani, R. Precision Agriculture, (0123456789). 2022.
Semi-supervised deep learning and low-cost cameras for the semantic segmentation of natural images in viticulture [pdf]Paper   Semi-supervised deep learning and low-cost cameras for the semantic segmentation of natural images in viticulture [link]Website   doi   link   bibtex   abstract  
Remote sensing-based vineyard image segmentation with deep computer vision for precision agriculture. {Sierra PARDO}, C., A.; CHIABERGE, M.; SALVETTI, F.; and ANGARANO, S. , (July). 2022.
Remote sensing-based vineyard image segmentation with deep computer vision for precision agriculture [pdf]Paper   link   bibtex  
A survey on deep learning-based identification of plant and crop diseases from UAV-based aerial images. Bouguettaya, A.; Zarzour, H.; Kechida, A.; and Taberkit, A., M. Cluster Computing, 0123456789. 2022.
A survey on deep learning-based identification of plant and crop diseases from UAV-based aerial images [pdf]Paper   A survey on deep learning-based identification of plant and crop diseases from UAV-based aerial images [link]Website   doi   link   bibtex   abstract  
Multispectral vineyard segmentation: A deep learning comparison study. Barros, T.; Conde, P.; Gonçalves, G.; Premebida, C.; Monteiro, M.; Ferreira, C., S.; and Nunes, U., J. Computers and Electronics in Agriculture, 195(August 2021): 106782. 2022.
Multispectral vineyard segmentation: A deep learning comparison study [pdf]Paper   Multispectral vineyard segmentation: A deep learning comparison study [link]Website   doi   link   bibtex   abstract  
A Survey of Deep Learning Methods for Fruit and Vegetable Detection and Yield Estimation. Aslam, F.; Khan, Z.; and Perveen, K. 2022.
A Survey of Deep Learning Methods for Fruit and Vegetable Detection and Yield Estimation [pdf]Paper   doi   link   bibtex  
Deep learning and computer vision for assessing the number of actual berries in commercial vineyards. Palacios, F.; Melo-Pinto, P.; Diago, M., P.; and Tardaguila, J. Biosystems Engineering, 218: 175-188. 2022.
Deep learning and computer vision for assessing the number of actual berries in commercial vineyards [pdf]Paper   Deep learning and computer vision for assessing the number of actual berries in commercial vineyards [link]Website   doi   link   bibtex   abstract  
Fruit yield prediction and estimation in orchards: A state-of-the-art comprehensive review for both direct and indirect methods. He, L.; Fang, W.; Zhao, G.; Wu, Z.; Fu, L.; Li, R.; Majeed, Y.; and Dhupia, J. Computers and Electronics in Agriculture, 195(September 2021): 106812. 2022.
Fruit yield prediction and estimation in orchards: A state-of-the-art comprehensive review for both direct and indirect methods [pdf]Paper   Fruit yield prediction and estimation in orchards: A state-of-the-art comprehensive review for both direct and indirect methods [link]Website   doi   link   bibtex   abstract  
A CNN-SVM study based on selected deep features for grapevine leaves classification. Koklu, M.; Unlersen, M., F.; Ozkan, I., A.; Aslan, M., F.; and Sabanci, K. Measurement: Journal of the International Measurement Confederation, 188(November 2021): 110425. 2022.
A CNN-SVM study based on selected deep features for grapevine leaves classification [pdf]Paper   A CNN-SVM study based on selected deep features for grapevine leaves classification [link]Website   doi   link   bibtex   abstract  
Implementation of drone technology for farm monitoring & pesticide spraying: A review. Hafeez, A.; Husain, M., A.; Singh, S., P.; Chauhan, A.; Khan, M., T.; Kumar, N.; Chauhan, A.; and Soni, S., K. Information Processing in Agriculture, (xxxx). 2022.
Implementation of drone technology for farm monitoring & pesticide spraying: A review [pdf]Paper   Implementation of drone technology for farm monitoring & pesticide spraying: A review [link]Website   doi   link   bibtex   abstract  
Convolutional Neural Networks in Detection of Plant Leaf Diseases: A Review. Tugrul, B.; Elfatimi, E.; and Eryigit, R. Agriculture, 12(8): 1192. 2022.
Convolutional Neural Networks in Detection of Plant Leaf Diseases: A Review [pdf]Paper   doi   link   bibtex   abstract  
A Concurrent Multiscale Detector for End-to-End Image Matching. Quan, D.; Wang, S.; Huyan, N.; Li, Y.; Lei, R.; Chanussot, J.; Hou, B.; and Jiao, L. IEEE Transactions on Neural Networks and Learning Systems,1-15. 2022.
A Concurrent Multiscale Detector for End-to-End Image Matching [pdf]Paper   doi   link   bibtex   abstract  
Sim2Real Object-Centric Keypoint Detection and Description. Zhong, C.; Yang, C.; Sun, F.; Qi, J.; Mu, X.; Liu, H.; and Huang, W. Proceedings of the AAAI Conference on Artificial Intelligence, 36(5): 5440-5449. 2022.
Sim2Real Object-Centric Keypoint Detection and Description [pdf]Paper   doi   link   bibtex   abstract  
Edible and Poisonous Mushrooms Classification by Machine Learning Algorithms. Tutuncu, K.; Cinar, I.; Kursun, R.; and Koklu, M. In 2022 11th Mediterranean Conference on Embedded Computing, MECO 2022, 2022. Institute of Electrical and Electronics Engineers Inc.
Edible and Poisonous Mushrooms Classification by Machine Learning Algorithms [pdf]Paper   doi   link   bibtex   abstract  
Efficient Large-scale Localization by Global Instance Recognition. Xue, F.; Budvytis, I.; Olmeda Reino, D.; and Cipolla, R. Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition,17348-17357. 2022.
Efficient Large-scale Localization by Global Instance Recognition [pdf]Paper   link   bibtex   abstract  
Grapevine Segmentation in RGB Images using Deep Learning. Carneiro, G., A.; Magalhães, R.; Neto, A.; Sousa, J., J.; and Cunha, A. Procedia Computer Science, 196: 101-106. 1 2022.
Grapevine Segmentation in RGB Images using Deep Learning [pdf]Paper   doi   link   bibtex   abstract  
PyTorch-OOD: A Library for Out-of-Distribution Detection based on PyTorch. Kirchheim, K.; Filax, M.; and Ortmeier, F. IEEE Computer Society Conference on Computer Vision and Pattern Recognition Workshops, 2022-June: 4350-4359. 2022.
PyTorch-OOD: A Library for Out-of-Distribution Detection based on PyTorch [pdf]Paper   doi   link   bibtex   abstract  
Comparison of Deep Neural Networks in Detecting Field Grapevine Diseases Using Transfer Learning. Morellos, A.; Pantazi, X., E.; Paraskevas, C.; and Moshou, D. Remote Sensing 2022, Vol. 14, Page 4648, 14(18): 4648. 9 2022.
Comparison of Deep Neural Networks in Detecting Field Grapevine Diseases Using Transfer Learning [pdf]Paper   Comparison of Deep Neural Networks in Detecting Field Grapevine Diseases Using Transfer Learning [link]Website   doi   link   bibtex   abstract  
A Novel Enhanced VGG16 Model to Tackle Grapevine Leaves Diseases With Automatic Method. Mousavi, S.; and Farahani, G. IEEE Access, 10: 111564-111578. 2022.
A Novel Enhanced VGG16 Model to Tackle Grapevine Leaves Diseases With Automatic Method [pdf]Paper   doi   link   bibtex   abstract  
Fields2Cover: An open-source coverage path planning library for unmanned agricultural vehicles. Mier, G.; Valente, J.; and de Bruin, S. . 10 2022.
Fields2Cover: An open-source coverage path planning library for unmanned agricultural vehicles [pdf]Paper   Fields2Cover: An open-source coverage path planning library for unmanned agricultural vehicles [link]Website   doi   link   bibtex   abstract  
Deep semantic segmentation for the quantification of grape foliar diseases in the vineyard. Liu, E.; Gold, K., M.; Combs, D.; Cadle-Davidson, L.; and Jiang, Y. Frontiers in Plant Science, 13. 2022.
Deep semantic segmentation for the quantification of grape foliar diseases in the vineyard [pdf]Paper   doi   link   bibtex   abstract  
VineInspector: The Vineyard Assistant. Mendes, J.; Peres, E.; Neves Dos Santos, F.; Silva, N.; Silva, R.; Sousa, J., J.; Cortez, I.; and Morais, R. Agriculture 2022, Vol. 12, Page 730, 12(5): 730. 5 2022.
VineInspector: The Vineyard Assistant [pdf]Paper   VineInspector: The Vineyard Assistant [link]Website   doi   link   bibtex   abstract  
TOWARD A LOW-COST, MULTISPECTRAL, HIGH ACCURACY MAPPING SYSTEM FOR VINEYARD INSPECTION. Beniaouf, S.; Mabillard, R.; and Gressin, A. The International Archives of Photogrammetry, Remote Sensing and Spatial Information Sciences, 43: 849--854. 2022.
TOWARD A LOW-COST, MULTISPECTRAL, HIGH ACCURACY MAPPING SYSTEM FOR VINEYARD INSPECTION [pdf]Paper   TOWARD A LOW-COST, MULTISPECTRAL, HIGH ACCURACY MAPPING SYSTEM FOR VINEYARD INSPECTION [link]Website   doi   link   bibtex   abstract  
LDD: A Dataset for Grape Diseases Object Detection and Instance Segmentation. Rossi, L.; Valenti, M.; Legler, S., E.; and Prati, A. Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), 13232 LNCS: 383-393. 6 2022.
LDD: A Dataset for Grape Diseases Object Detection and Instance Segmentation [pdf]Paper   LDD: A Dataset for Grape Diseases Object Detection and Instance Segmentation [link]Website   doi   link   bibtex   abstract  
Reusing the Task-specific Classifier as a Discriminator: Discriminator-free Adversarial Domain Adaptation. Chen, L.; Chen, H.; Wei, Z.; Jin, X.; Tan, X.; Jin, Y.; and Chen, E. In IEEE/CVF Conference on Computer Vision and Pattern Recognition, CVPR 2022, New Orleans, LA, USA, June 18-24, 2022, pages 7181-7190, 2022.
Reusing the Task-specific Classifier as a Discriminator: Discriminator-free Adversarial Domain Adaptation [pdf]Paper   Reusing the Task-specific Classifier as a Discriminator: Discriminator-free Adversarial Domain Adaptation [link]Website   link   bibtex   abstract  
Deliberated Domain Bridging for Domain Adaptive Semantic Segmentation. Chen, L.; Wei, Z.; Jin, X.; Chen, H.; Miao Zheng, †.; Chen, K.; and Jin, Y. . 9 2022.
Deliberated Domain Bridging for Domain Adaptive Semantic Segmentation [pdf]Paper   Deliberated Domain Bridging for Domain Adaptive Semantic Segmentation [link]Website   doi   link   bibtex   abstract  
Two-stage automatic diagnosis of Flavescence Dorée based on proximal imaging and artificial intelligence: a multi-year and multi-variety experimental study. Tardif, M.; Amri, A.; Keresztes, B.; Deshayes, A.; Martin, D.; Greven, M.; and Da Costa, J., P. Oeno One, 56(3): 371-384. 2022.
doi   link   bibtex   abstract  
Two-stage automatic diagnosis of Flavescence Dorée based on proximal imaging and artificial intelligence: a multi-year and multi-variety experimental study. Tardif, M.; Amri, A.; Keresztes, B.; Deshayes, A.; Martin, D.; Greven, M.; and Da Costa, J., P. OENO One, 56(3): 371-384. 9 2022.
Two-stage automatic diagnosis of Flavescence Dorée based on proximal imaging and artificial intelligence: a multi-year and multi-variety experimental study [pdf]Paper   Two-stage automatic diagnosis of Flavescence Dorée based on proximal imaging and artificial intelligence: a multi-year and multi-variety experimental study [link]Website   doi   link   bibtex   abstract  
Computer Vision and Deep Learning for Precision Viticulture. Mohimont, L.; Alin, F.; Rondeau, M.; Gaveau, N.; and Steffenel, L., A. Agronomy, 12(10): 1-31. 2022.
Computer Vision and Deep Learning for Precision Viticulture [pdf]Paper   doi   link   bibtex   abstract  
Is it all a cluster game? - Exploring Out-of-Distribution Detection based on Clustering in the Embedding Space. Sinhamahapatra, P.; Koner, R.; Roscher, K.; and Günnemann, S. CEUR Workshop Proceedings, 3087. 2022.
Is it all a cluster game? - Exploring Out-of-Distribution Detection based on Clustering in the Embedding Space [pdf]Paper   link   bibtex   abstract  
Semantic Novelty Detection via Relational Reasoning. Borlino, F., C.; Bucci, S.; and Tommasi, T. Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), 13685 LNCS: 183-200. 2022.
Semantic Novelty Detection via Relational Reasoning [pdf]Paper   doi   link   bibtex   abstract  
A System-Level View on Out-of-Distribution Data in Robotics. Sinha, R.; Sharma, A.; Banerjee, S.; Lew, T.; Luo, R.; Richards, S., M.; Sun, Y.; Schmerling, E.; and Pavone, M. . 2022.
A System-Level View on Out-of-Distribution Data in Robotics [pdf]Paper   A System-Level View on Out-of-Distribution Data in Robotics [link]Website   link   bibtex   abstract  
Data Invariants to Understand Unsupervised Out-of-Distribution Detection. Doorenbos, L.; Sznitman, R.; and Márquez-Neila, P. Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), 13691 LNCS: 133-150. 2022.
Data Invariants to Understand Unsupervised Out-of-Distribution Detection [pdf]Paper   doi   link   bibtex   abstract  
Detection of Anomalous Grapevine Berries Using Variational Autoencoders. Miranda, M.; Zabawa, L.; Kicherer, A.; Strothmann, L.; Rascher, U.; and Roscher, R. Frontiers in Plant Science, 13: 1483. 6 2022.
Detection of Anomalous Grapevine Berries Using Variational Autoencoders [pdf]Paper   doi   link   bibtex   abstract  
Anomalib: a Deep Learning Library for Anomaly Detection. Akcay, S.; Ameln, D.; Vaidya, A.; Lakshmanan, B.; Ahuja, N.; and Genc, U. Proceedings - International Conference on Image Processing, ICIP,1706-1710. 2022.
Anomalib: a Deep Learning Library for Anomaly Detection [pdf]Paper   doi   link   bibtex   abstract  
Anomaly Detection via Reverse Distillation from One-Class Embedding. Deng, H.; and Li, X. Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, 2022-June: 9727-9736. 1 2022.
Anomaly Detection via Reverse Distillation from One-Class Embedding [pdf]Paper   Anomaly Detection via Reverse Distillation from One-Class Embedding [link]Website   doi   link   bibtex   abstract  
Real-time detection and identification of plant leaf diseases using convolutional neural networks on an embedded platform. Gajjar, R.; Gajjar, N.; Thakor, V., J.; Patel, N., P.; and Ruparelia, S. Visual Computer, 38(8): 2923-2938. 8 2022.
Real-time detection and identification of plant leaf diseases using convolutional neural networks on an embedded platform [pdf]Paper   Real-time detection and identification of plant leaf diseases using convolutional neural networks on an embedded platform [link]Website   doi   link   bibtex   abstract  
ResGANet: Residual group attention network for medical image classification and segmentation. Cheng, J.; Tian, S.; Yu, L.; Gao, C.; Kang, X.; Ma, X.; Wu, W.; Liu, S.; and Lu, H. Medical Image Analysis, 76: 102313. 2022.
ResGANet: Residual group attention network for medical image classification and segmentation [pdf]Paper   ResGANet: Residual group attention network for medical image classification and segmentation [link]Website   doi   link   bibtex   abstract  
A 3D grape bunch reconstruction pipeline based on constraint-based optimisation and restricted reconstruction grammar. Xin, B.; and Whitty, M. Computers and Electronics in Agriculture, 196: 106840. 5 2022.
A 3D grape bunch reconstruction pipeline based on constraint-based optimisation and restricted reconstruction grammar [pdf]Paper   doi   link   bibtex   abstract  
An end-to-end lightweight model for grape and picking point simultaneous detection. Zhao, R.; Zhu, Y.; and Li, Y. Biosystems Engineering, 223: 174-188. 11 2022.
An end-to-end lightweight model for grape and picking point simultaneous detection [pdf]Paper   doi   link   bibtex   abstract  
AUTOMATED LAG PHASE DETECTION IN WINE GRAPES. Priyanka Upadhyaya; Karkee, M.; Kshetri, S.; and Zhang, X. , (2018): 1-15. 2022.
AUTOMATED LAG PHASE DETECTION IN WINE GRAPES [pdf]Paper   AUTOMATED LAG PHASE DETECTION IN WINE GRAPES [link]Website   link   bibtex  
Pr rin t no t p ee r r ep rin t no t p ee r r. Ogayar, C., J.; Feito, F., R.; and Sousa, J., J. . 2022.
Pr rin t no t p ee r r ep rin t no t p ee r r [pdf]Paper   link   bibtex  
Leaf Area Index Estimation of Pergola-Trained Vineyards in Arid Regions Based on UAV RGB and Multispectral Data Using Machine Learning Methods. Ilniyaz, O.; Kurban, A.; and Du, Q. Remote Sensing 2022, Vol. 14, Page 415, 14(2): 415. 1 2022.
Leaf Area Index Estimation of Pergola-Trained Vineyards in Arid Regions Based on UAV RGB and Multispectral Data Using Machine Learning Methods [pdf]Paper   Leaf Area Index Estimation of Pergola-Trained Vineyards in Arid Regions Based on UAV RGB and Multispectral Data Using Machine Learning Methods [link]Website   doi   link   bibtex   abstract  
GRAPE QUALITY PREDICTION WITH PRE-POST HARVESTING USING FUSION DEEP LEARNING. Patil, N.; Bhise, A.; Kumar Tiwari, R.; and Scholar, R. I) Journal, 11. 2022.
GRAPE QUALITY PREDICTION WITH PRE-POST HARVESTING USING FUSION DEEP LEARNING [pdf]Paper   link   bibtex   abstract  
Grapevine Plant Image Dataset for Pruning. Apostolidis, K., D.; Kalampokas, T.; Pachidis, T., P.; and Kaburlasos, V., G. Data 2022, Vol. 7, Page 110, 7(8): 110. 8 2022.
Grapevine Plant Image Dataset for Pruning [pdf]Paper   Grapevine Plant Image Dataset for Pruning [link]Website   doi   link   bibtex   abstract  
Assessment of downy mildew in grapevine using computer vision and fuzzy logic. Development and validation of a new method. Hernández, I.; Gutiérrez, S.; Ceballos, S.; Palacios, F.; Toffolatti, S., L.; Maddalena, G.; Diago, M., P.; and Tardaguila, J. Oeno One, 56(3): 41-53. 6 2022.
Assessment of downy mildew in grapevine using computer vision and fuzzy logic. Development and validation of a new method [pdf]Paper   doi   link   bibtex   abstract  
Automatic detection of Flavescense Dorée grapevine disease in hyperspectral images using machine learning. Silva, D., M.; Bernardin, T.; Fanton, K.; Nepaul, R.; Pádua, L.; Sousa, J., J.; and Cunha, A. Procedia Computer Science, 196: 125-132. 1 2022.
Automatic detection of Flavescense Dorée grapevine disease in hyperspectral images using machine learning [pdf]Paper   doi   link   bibtex   abstract  
Integrated IoT System for Prediction of Diseases in the Vineyards. Jovanovska, E., M.; Chorbev, I.; Davcev, D.; and Mitreski, K. International Conference on Electrical, Computer, Communications and Mechatronics Engineering, ICECCME 2022. 2022.
Integrated IoT System for Prediction of Diseases in the Vineyards [pdf]Paper   doi   link   bibtex   abstract  
Detection of Vineyard Diseases Using the Internet of Things Technology and Machine Learning Algorithms. Roscaneanu, R.; Balaceanu, C., M.; Suciu, G.; Maria, A.; Dragulinescu, C.; Roșcăneanu, R.; Streche, R.; Osiac, F.; Bălăceanu, C.; Drăgulinescu, A., M.; and Marcu, I. Air and Water – Components of the Environment” Conference Proceedings, Cluj-Napoca, Romania,128-139. 2022.
Detection of Vineyard Diseases Using the Internet of Things Technology and Machine Learning Algorithms [pdf]Paper   Detection of Vineyard Diseases Using the Internet of Things Technology and Machine Learning Algorithms [link]Website   doi   link   bibtex   abstract  
Meteorological Data and UAV Images for the Detection and Identification of Grapevine Disease Using Deep Learning. Ouhami, M.; Es-Saady, Y.; El Hajj, M.; Canals, R.; and Hafiane, A. 2022 10th E-Health and Bioengineering Conference, EHB 2022. 2022.
Meteorological Data and UAV Images for the Detection and Identification of Grapevine Disease Using Deep Learning [pdf]Paper   doi   link   bibtex   abstract  
Near Real-Time Vineyard Downy Mildew Detection and Severity Estimation. Liu, E.; Gold, K.; Cadle-Davidson, L.; Combs, D.; and Jiang, Y. IEEE International Conference on Intelligent Robots and Systems, 2022-October: 9187-9194. 2022.
doi   link   bibtex   abstract  
Identification of Grape Leaf Diseases Using Proposed Enhanced VGG16. Farahani, G.; Mousavi, S.; Farahani, A.; and Farahani, H. 2022 27th International Conference on Automation and Computing: Smart Systems and Manufacturing, ICAC 2022. 2022.
Identification of Grape Leaf Diseases Using Proposed Enhanced VGG16 [pdf]Paper   doi   link   bibtex   abstract  
Deep Learning Based Automatic Grape Downy Mildew Detection. Zhang, Z.; Qiao, Y.; Guo, Y.; and He, D. Frontiers in Plant Science, 13: 872107. 6 2022.
Deep Learning Based Automatic Grape Downy Mildew Detection [pdf]Paper   doi   link   bibtex   abstract  
Attention classification-and-segmentation network for micro-crack anomaly detection of photovoltaic module cells. Jiang, Y.; and Zhao, C. Solar Energy, 238: 291-304. 5 2022.
Attention classification-and-segmentation network for micro-crack anomaly detection of photovoltaic module cells [pdf]Paper   doi   link   bibtex   abstract  
Multitask Learning of Alfalfa Nutritive Value from UAV-Based Hyperspectral Images. Feng, L.; Zhang, Z.; Ma, Y.; Sun, Y.; Du, Q.; Williams, P.; Drewry, J.; and Luck, B. IEEE Geoscience and Remote Sensing Letters, 19. 2022.
doi   link   bibtex   abstract  
Multitask Learning of Alfalfa Nutritive Value from UAV-Based Hyperspectral Images. Feng, L.; Zhang, Z.; Ma, Y.; Sun, Y.; Du, Q.; Williams, P.; Drewry, J.; and Luck, B. IEEE Geoscience and Remote Sensing Letters, 19. 2022.
Multitask Learning of Alfalfa Nutritive Value from UAV-Based Hyperspectral Images [pdf]Paper   doi   link   bibtex   abstract  
Early detection of plant virus infection using multispectral imaging and spatial–spectral machine learning. Peng, Y.; Dallas, M., M.; Ascencio-Ibáñez, J., T.; Hoyer, J., S.; Legg, J.; Hanley-Bowdoin, L.; Grieve, B.; and Yin, H. Scientific Reports, 12(1). 12 2022.
Early detection of plant virus infection using multispectral imaging and spatial–spectral machine learning [pdf]Paper   doi   link   bibtex   abstract  
Plant Viral Disease Detection: From Molecular Diagnosis to Optical Sensing Technology—A Multidisciplinary Review. Wang, Y., M.; Ostendorf, B.; Gautam, D.; Habili, N.; and Pagay, V. Remote Sensing 2022, Vol. 14, Page 1542, 14(7): 1542. 3 2022.
Plant Viral Disease Detection: From Molecular Diagnosis to Optical Sensing Technology—A Multidisciplinary Review [pdf]Paper   Plant Viral Disease Detection: From Molecular Diagnosis to Optical Sensing Technology—A Multidisciplinary Review [link]Website   doi   link   bibtex   abstract  
A grape leaves disease recognition using Amazon Sage Maker. Angela Tockova, Zoran Zlatev, S., K. BALKAN JOURNAL OF APPLIED MATHEMATICS AND INFORMATICS (BJAMI), 5(2): 45-56. 2022.
A grape leaves disease recognition using Amazon Sage Maker [pdf]Paper   link   bibtex  
How important is UAVs RTK accuracy for the identification of certain vine diseases?. Zottele, F.; Crocetta, P.; and Baiocchi, V. 2022 IEEE Workshop on Metrology for Agriculture and Forestry, MetroAgriFor 2022 - Proceedings,239-243. 2022.
How important is UAVs RTK accuracy for the identification of certain vine diseases? [pdf]Paper   doi   link   bibtex   abstract  
A multispectral acquisition system for potential detection of Flavescence dorée. Barjaktarovic, M.; Faralli, M.; Bertamini, M.; Bruzzone, L.; and Santoni, M. 2022 30th Telecommunications Forum, TELFOR 2022 - Proceedings. 2022.
A multispectral acquisition system for potential detection of Flavescence dorée [pdf]Paper   doi   link   bibtex   abstract  
Lite CNN Models for Real-Time Post-Harvest Grape Disease Detection. Mohimont, L.; Alin, F.; Gaveau, N.; and Steffenel, L., A. ,116-125. 6 2022.
Lite CNN Models for Real-Time Post-Harvest Grape Disease Detection [pdf]Paper   Lite CNN Models for Real-Time Post-Harvest Grape Disease Detection [link]Website   doi   link   bibtex   abstract  
Design of Intelligent Detection Platform for Wine Grape Pests and Diseases in Ningxia. Wang, Y.; Wei, C.; Sun, H.; and Qu, A. Plants 2023, Vol. 12, Page 106, 12(1): 106. 12 2022.
Design of Intelligent Detection Platform for Wine Grape Pests and Diseases in Ningxia [pdf]Paper   Design of Intelligent Detection Platform for Wine Grape Pests and Diseases in Ningxia [link]Website   doi   link   bibtex   abstract  
Near Real-Time Vineyard Downy Mildew Detection and Severity Estimation. Liu, E.; Gold, K.; Cadle-Davidson, L.; Combs, D.; and Jiang, Y. IEEE International Conference on Intelligent Robots and Systems, 2022-Octob: 9187-9194. 2022.
Near Real-Time Vineyard Downy Mildew Detection and Severity Estimation [pdf]Paper   doi   link   bibtex   abstract  
wGrapeUNIPD-DL: An open dataset for white grape bunch detection. Sozzi, M.; Cantalamessa, S.; Cogato, A.; Kayad, A.; and Marinello, F. Data in Brief, 43: 108466. 8 2022.
wGrapeUNIPD-DL: An open dataset for white grape bunch detection [pdf]Paper   doi   link   bibtex   abstract  
Semi-supervised deep learning and low-cost cameras for the semantic segmentation of natural images in viticulture. Casado-García, A.; Heras, J.; Milella, A.; and Marani, R. Precision Agriculture, 23(6): 2001-2026. 12 2022.
Semi-supervised deep learning and low-cost cameras for the semantic segmentation of natural images in viticulture [pdf]Paper   Semi-supervised deep learning and low-cost cameras for the semantic segmentation of natural images in viticulture [link]Website   doi   link   bibtex   abstract  
Cross-Task Knowledge Distillation in Multi-Task Recommendation. Yang, C.; Pan, J.; Gao, X.; Jiang, T.; Liu, D.; and Chen, G. Proceedings of the AAAI Conference on Artificial Intelligence, 36(4): 4318-4326. 6 2022.
Cross-Task Knowledge Distillation in Multi-Task Recommendation [pdf]Paper   Cross-Task Knowledge Distillation in Multi-Task Recommendation [link]Website   doi   link   bibtex   abstract  
Design and Implementation of an Urban Farming Robot. Moraitis, M.; Vaiopoulos, K.; and Balafoutis, A., T. Micromachines, 13(2). 2 2022.
Design and Implementation of an Urban Farming Robot [pdf]Paper   doi   link   bibtex   abstract  
Heatmap-based Explanation of YOLOv5 Object Detection with Layer-wise Relevance Propagation. Karasmanoglou, A.; Antonakakis, M.; and Zervakis, M. IST 2022 - IEEE International Conference on Imaging Systems and Techniques, Proceedings. 2022.
Heatmap-based Explanation of YOLOv5 Object Detection with Layer-wise Relevance Propagation [pdf]Paper   doi   link   bibtex   abstract  
Industry Best Practices in Robotics Software Engineering. Bocchino, R.; Thackston Waymo, A.; Angerer XITASO GmbH, A.; and Ciccozzi, F. Technical Report 2022.
Industry Best Practices in Robotics Software Engineering [pdf]Paper   Industry Best Practices in Robotics Software Engineering [link]Website   link   bibtex   abstract  
FlexBRDF: A flexible BRDF correction for grouped processing of airborne imaging spectroscopy flightlines. Queally, N.; Ye, Z.; Zheng, T.; Chlus, A.; Schneider, F.; Pavlick, R., P.; and Townsend, P., A. Journal of Geophysical Research: Biogeosciences, 127(1): e2021JG006622. 2022.
link   bibtex  
A grape leaves disease recognition using Amazon Sage Maker. Tockova, A.; Zlatev, Z.; and Koceski, S. Balkan Journal of Applied Mathematics and Informatics, 5(2): 45-55. 2022.
link   bibtex  
A CNN-SVM study based on selected deep features for grapevine leaves classification. Koklu, M.; Unlersen, M., F.; Ozkan, I., A.; Aslan, M., F.; and Sabanci, K. Measurement, 188: 110425. 2022.
link   bibtex  
How important is UAVs RTK accuracy for the identification of certain vine diseases?. Zottele, F.; Crocetta, P.; and Baiocchi, V. In 2022 IEEE Workshop on Metrology for Agriculture and Forestry (MetroAgriFor), pages 239-243, 2022.
link   bibtex  
Meteorological Data and UAV Images for the Detection and Identification of Grapevine Disease Using Deep Learning. Ouhami, M.; Es-saady, Y.; Hajj, M., E.; Canals, R.; and Hafiane, A. In 2022 E-Health and Bioengineering Conference (EHB), pages 1-4, 2022.
link   bibtex  
Deep semantic segmentation for the quantification of grape foliar diseases in the vineyard. Liu, E.; Gold, K., M.; Combs, D.; Cadle-Davidson, L.; and Jiang, Y. Frontiers in Plant Science, 13: 978761. 2022.
link   bibtex  
The spectral mixture residual: A source of low-variance information to enhance the explainability and accuracy of surface biology and geology retrievals. Sousa, D.; Brodrick, P.; Cawse-Nicholson, K.; Fisher, J., B.; Pavlick, R.; Small, C.; and Thompson, D., R. Journal of Geophysical Research: Biogeosciences, 127(2): e2021JG006672. 2022.
link   bibtex  
Comparison of Deep Neural Networks in Detecting Field Grapevine Diseases Using Transfer Learning. Morellos, A.; Pantazi, X., E.; Paraskevas, C.; and Moshou, D. Remote Sensing, 14(18): 4648. 2022.
link   bibtex  
A Novel Enhanced VGG16 Model to Tackle Grapevine Leaves Diseases With Automatic Method. Mousavi, S., A.; and Farahani, G. IEEE Access, 10: 111564-111578. 2022.
link   bibtex  
Grapevine Plant Image Dataset for Pruning. Apostolidis, K., D.; Kalampokas, T.; Pachidis, T., P.; and Kaburlasos, V., G. Data, 7(8): 110. 2022.
link   bibtex  
VineInspector: The Vineyard Assistant. Mendes, J.; Peres, E.; dos Santos, F.; Silva, N.; Silva, R.; Sousa, J., J.; Cortez, I.; and Morais, R. Agriculture, 12(5): 730. 2022.
link   bibtex  
wGrapeUNIPD-DL: An open dataset for white grape bunch detection. Sozzi, M.; Cantalamessa, S.; Cogato, A.; Kayad, A.; and Marinello, F. Data in Brief, 43: 108466. 2022.
link   bibtex  
Detection of Vineyard Diseases Using the Internet of Things Technology and Machine Learning Algorithms. Ro\csc\uaneanu, R.; Streche, R.; Osiac, F.; B\ual\uaceanu, C.; Suciu, G.; Dr\uagulinescu, A., M.; and Marcu, I. Aerul si Apa. Componente ale Mediului,128-139. 2022.
link   bibtex  
Deep Learning Based Automatic Grape Downy Mildew Detection. Zhang, Z.; Qiao, Y.; Guo, Y.; and He, D. Frontiers in Plant Science, 13. 2022.
link   bibtex  
Fruit yield prediction and estimation in orchards: a state-of-the-art comprehensive review for both direct and indirect methods. He, L.; Fang, W.; Zhao, G.; Wu, Z.; Fu, L.; Li, R.; Majeed, Y.; and Dhupia, J., S. Computers and Electronics in Agriculture, 195: 106812. 2022.
link   bibtex  
Detection of Anomalous Grapevine Berries Using Variational Autoencoders. Miranda, M.; Zabawa, L.; Kicherer, A.; Strothmann, L.; Rascher, U.; and Roscher, R. Frontiers in Plant Science, 13: 729097. 2022.
link   bibtex  
Integrated IoT System for Prediction of Diseases in the Vineyards. Jovanovska, E., M.; Chorbev, I.; Davcev, D.; and Mitreski, K. In 2022 International Conference on Electrical, Computer, Communications and Mechatronics Engineering (ICECCME), pages 1-6, 2022.
link   bibtex  
Computer Vision and Deep Learning for Precision Viticulture. Mohimont, L.; Alin, F.; Rondeau, M.; Gaveau, N.; and Steffenel, L., A. Agronomy, 12(10): 2463. 2022.
link   bibtex  
A multispectral acquisition system for potential detection of Flavescence dorée. Barjaktarović, M.; Santoni, M.; Faralli, M.; Bertamini, M.; and Bruzzone, L. In 2022 30th Telecommunications Forum (TELFOR), pages 1-4, 2022.
link   bibtex  
Design of Intelligent Detection Platform for Wine Grape Pests and Diseases in Ningxia. Wang, Y.; Wei, C.; Sun, H.; and Qu, A. Plants, 12(1): 106. 2022.
link   bibtex  
VitiVisor Vineyard Datasets. Collins, C.; Kiely, W.; and Grigg, D. 2022.
VitiVisor Vineyard Datasets [link]Website   link   bibtex  
Identification of Grape Leaf Diseases Using Proposed Enhanced VGG16. Farahani, G.; Mousavi, S.; Farahani, A.; and Farahani, H. In 2022 27th International Conference on Automation and Computing (ICAC), pages 1-6, 2022.
link   bibtex  
Semi-supervised deep learning and low-cost cameras for the semantic segmentation of natural images in viticulture. Casado-García, A.; Heras, J.; Milella, A.; and Marani, R. Precision Agriculture,1-26. 2022.
link   bibtex  
Multispectral vineyard segmentation: a deep learning comparison study. Barros, T.; Conde, P.; Gonçalves, G.; Premebida, C.; Monteiro, M.; Ferreira, C., S., S.; and Nunes, U., J. Computers and Electronics in Agriculture, 195: 106782. 2022.
link   bibtex  
Plant Viral Disease Detection: From Molecular Diagnosis to Optical Sensing Technology - A Multidisciplinary Review. Wang, Y., M.; Ostendorf, B.; Gautam, D.; Habili, N.; and Pagay, V. Remote Sensing, 14(7): 1542. 2022.
link   bibtex  
A General Gaussian Heatmap Label Assignment for Arbitrary-Oriented Object Detection. Huang, Z.; Li, W.; Xia, X., G.; and Tao, R. IEEE Transactions on Image Processing, 31: 1895-1910. 2022.
A General Gaussian Heatmap Label Assignment for Arbitrary-Oriented Object Detection [pdf]Paper   doi   link   bibtex   abstract  
Align Deep Features for Oriented Object Detection. Han, J.; Ding, J.; Li, J.; and Xia, G., S. IEEE Transactions on Geoscience and Remote Sensing, 60. 2022.
Align Deep Features for Oriented Object Detection [pdf]Paper   doi   link   bibtex   abstract  
Align Deep Features for Oriented Object Detection. Han, J.; Ding, J.; Li, J.; and Xia, G., S. IEEE Transactions on Geoscience and Remote Sensing, 60. 2022.
Align Deep Features for Oriented Object Detection [pdf]Paper   doi   link   bibtex   abstract  
Anchor-Free Oriented Proposal Generator for Object Detection. Cheng, G.; Wang, J.; Li, K.; Xie, X.; Lang, C.; Yao, Y.; and Han, J. IEEE Transactions on Geoscience and Remote Sensing, 60. 2022.
Anchor-Free Oriented Proposal Generator for Object Detection [pdf]Paper   doi   link   bibtex   abstract  
Anchor-Free Oriented Proposal Generator for Object Detection. Cheng, G.; Wang, J.; Li, K.; Xie, X.; Lang, C.; Yao, Y.; and Han, J. IEEE Transactions on Geoscience and Remote Sensing, 60. 2022.
Anchor-Free Oriented Proposal Generator for Object Detection [pdf]Paper   doi   link   bibtex   abstract  
A General Gaussian Heatmap Label Assignment for Arbitrary-Oriented Object Detection. Huang, Z.; Li, W.; Xia, X., G.; and Tao, R. IEEE Transactions on Image Processing, 31: 1895-1910. 2022.
A General Gaussian Heatmap Label Assignment for Arbitrary-Oriented Object Detection [pdf]Paper   doi   link   bibtex   abstract  
RAOD: refined oriented detector with augmented feature in remote sensing images object detection. Shi, Q.; Zhu, Y.; Fang, C.; Wang, N.; and Lin, J. Applied Intelligence, 52(13): 15278-15294. 2022.
RAOD: refined oriented detector with augmented feature in remote sensing images object detection [pdf]Paper   doi   link   bibtex   abstract  
Align Deep Features for Oriented Object Detection. Han, J.; Ding, J.; Li, J.; and Xia, G., S. IEEE Transactions on Geoscience and Remote Sensing, 60: 1-10. 2022.
Align Deep Features for Oriented Object Detection [pdf]Paper   doi   link   bibtex   abstract  
An Elliptic Centerness for Object Instance Segmentation in Aerial Images. Luo, Y.; Han, J.; Liu, Z.; Wang, M.; and Xia, G., S. Journal of Remote Sensing (United States), 2022. 2022.
An Elliptic Centerness for Object Instance Segmentation in Aerial Images [pdf]Paper   doi   link   bibtex   abstract  
On the Arbitrary-Oriented Object Detection: Classification Based Approaches Revisited. Yang, X.; and Yan, J. International Journal of Computer Vision, 130(5): 1340-1365. 2022.
On the Arbitrary-Oriented Object Detection: Classification Based Approaches Revisited [pdf]Paper   doi   link   bibtex   abstract  
RTMDet: An Empirical Study of Designing Real-Time Object Detectors. Lyu, C.; Zhang, W.; Huang, H.; Zhou, Y.; Wang, Y.; Liu, Y.; Zhang, S.; and Chen, K. ,63-65. 2022.
RTMDet: An Empirical Study of Designing Real-Time Object Detectors [pdf]Paper   RTMDet: An Empirical Study of Designing Real-Time Object Detectors [link]Website   link   bibtex   abstract  
Object Detection using YOLO: A Survey. Tripathi, A.; Gupta, M., K.; Srivastava, C.; Dixit, P.; and Pandey, S., K. Proceedings of 5th International Conference on Contemporary Computing and Informatics, IC3I 2022, (December 2022): 747-752. 2022.
Object Detection using YOLO: A Survey [pdf]Paper   doi   link   bibtex   abstract  
A Review of Yolo Algorithm Developments. Jiang, P.; Ergu, D.; Liu, F.; Cai, Y.; and Ma, B. Procedia Computer Science, 199: 1066-1073. 1 2022.
A Review of Yolo Algorithm Developments [pdf]Paper   doi   link   bibtex   abstract  
Anchor-Free Oriented Proposal Generator for Object Detection. Cheng, G.; Wang, J.; Li, K.; Xie, X.; Lang, C.; Yao, Y.; and Han, J. IEEE Transactions on Geoscience and Remote Sensing, 60. 2022.
doi   link   bibtex   abstract  
Align Deep Features for Oriented Object Detection. Han, J.; Ding, J.; Li, J.; and Xia, G., S. IEEE Transactions on Geoscience and Remote Sensing, 60. 2022.
doi   link   bibtex   abstract  
H2RBox: Horizontal Box Annotation is All You Need for Oriented Object Detection. Yang, X.; Zhang, G.; Li, W.; Wang, X.; Zhou, Y.; Yan, J.; and Key, M. . 10 2022.
H2RBox: Horizontal Box Annotation is All You Need for Oriented Object Detection [pdf]Paper   H2RBox: Horizontal Box Annotation is All You Need for Oriented Object Detection [link]Website   link   bibtex   abstract  
Disease detection, severity prediction, and crop loss estimation in MaizeCrop using deep learning. Kundu, N.; Rani, G.; Dhaka, V., S.; Gupta, K.; Nayaka, S., C.; Vocaturo, E.; and Zumpano, E. Artificial Intelligence in Agriculture, 6: 276-291. 1 2022.
Disease detection, severity prediction, and crop loss estimation in MaizeCrop using deep learning [pdf]Paper   doi   link   bibtex   abstract  
Driver and Pedestrian Mutual Awareness for Path Prediction and Collision Risk Estimation. Roth, M.; Stapel, J.; Happee, R.; and Gavrila, D., M. IEEE TRANSACTIONS ON INTELLIGENT VEHICLES, 7(4). 2022.
Driver and Pedestrian Mutual Awareness for Path Prediction and Collision Risk Estimation [pdf]Paper   Driver and Pedestrian Mutual Awareness for Path Prediction and Collision Risk Estimation [link]Website   doi   link   bibtex   abstract  
On-Board Pedestrian Trajectory Prediction Using Behavioral Features. Czech, P.; Braun, M.; Kreßel, U.; and Yang, B. In Proceedings - 21st IEEE International Conference on Machine Learning and Applications, ICMLA 2022, pages 437-443, 2022. Institute of Electrical and Electronics Engineers Inc.
On-Board Pedestrian Trajectory Prediction Using Behavioral Features [pdf]Paper   doi   link   bibtex   abstract  
Drones in agriculture: A review and bibliometric analysis. Rejeb, A.; Abdollahi, A.; Rejeb, K.; and Treiblmaier, H. Computers and Electronics in Agriculture, 198: 107017. 7 2022.
Drones in agriculture: A review and bibliometric analysis [pdf]Paper   doi   link   bibtex   abstract  
  2021 (127)
An annotated image dataset of downy mildew symptoms on Merlot grape variety. Abdelghafour, F.; Keresztes, B.; Deshayes, A.; Germain, C.; and Da Costa, J. Data in Brief, 37: 107250. 8 2021.
An annotated image dataset of downy mildew symptoms on Merlot grape variety [pdf]Paper   doi   link   bibtex   abstract  
Knowledge Distillation: A Survey. Gou, J.; Yu, B.; Maybank, S., J.; and Tao, D. Int. J. Comput. Vis., 129(6): 1789--1819. 6 2021.
Knowledge Distillation: A Survey [pdf]Paper   Knowledge Distillation: A Survey [link]Website   doi   link   bibtex   abstract  
Visual and Visual-Inertial SLAM: State of the Art, Classification, and Experimental Benchmarking. Servières, M.; Renaudin, V.; Dupuis, A.; and Antigny, N. Journal of Sensors, 2021. 2021.
Visual and Visual-Inertial SLAM: State of the Art, Classification, and Experimental Benchmarking [pdf]Paper   doi   link   bibtex   abstract  
Survey and Evaluation of RGB-D SLAM. Zhang, S.; Zheng, L.; and Tao, W. IEEE Access, 9: 21367-21387. 2021.
Survey and Evaluation of RGB-D SLAM [pdf]Paper   doi   link   bibtex   abstract  
ORB-SLAM3: An Accurate Open-Source Library for Visual, Visual-Inertial, and Multimap SLAM. Campos, C.; Elvira, R.; Rodriguez, J., J.; Montiel, J., M.; and Tardos, J., D. IEEE Transactions on Robotics, 37(6): 1874-1890. 12 2021.
ORB-SLAM3: An Accurate Open-Source Library for Visual, Visual-Inertial, and Multimap SLAM [pdf]Paper   doi   link   bibtex   abstract  
Research on the Application of Visual SLAM in Embedded GPU. Ma, T.; Bai, N.; Shi, W.; Wu, X.; Wang, L.; Wu, T.; and Zhao, C. Wireless Communications and Mobile Computing, 2021. 2021.
Research on the Application of Visual SLAM in Embedded GPU [pdf]Paper   doi   link   bibtex   abstract  
Kimera-Multi: a System for Distributed Multi-Robot Metric-Semantic Simultaneous Localization and Mapping. Chang, Y.; Tian, Y.; How, J., P.; and Carlone, L. In IEEE International Conference on Robotics and Automation, ICRA 2021, Xi'an, China, May 30 - June 5, 2021, 2021.
Kimera-Multi: a System for Distributed Multi-Robot Metric-Semantic Simultaneous Localization and Mapping [pdf]Paper   link   bibtex   abstract  
NICE-SLAM: Neural Implicit Scalable Encoding for SLAM. Zhu, Z.; Peng, S.; Larsson, V.; Xu, W.; Bao, H.; Cui, Z.; Oswald, M., R.; and Pollefeys, M. CoRR. 2021.
NICE-SLAM: Neural Implicit Scalable Encoding for SLAM [pdf]Paper   NICE-SLAM: Neural Implicit Scalable Encoding for SLAM [link]Website   link   bibtex   abstract  
iMAP: Implicit Mapping and Positioning in Real-Time. Sucar, E.; Liu, S.; Ortiz, J.; and Davison, A., J. In 2021 IEEE/CVF International Conference on Computer Vision, ICCV 2021, Montreal, QC, Canada, October 10-17, 2021, pages 6209--6218, 2021.
iMAP: Implicit Mapping and Positioning in Real-Time [pdf]Paper   link   bibtex   abstract  
Neural Reprojection Error: Merging Feature Learning and Camera Pose Estimation. Germain, H.; Lepetit, V.; and Bourmaud, G. Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition,414-423. 2021.
Neural Reprojection Error: Merging Feature Learning and Camera Pose Estimation [pdf]Paper   doi   link   bibtex   abstract  
Deep Semantic Segmentation at the Edge for Autonomous Navigation in Vineyard Rows. Aghi, D.; Cerrato, S.; Mazzia, V.; and Chiaberge, M. IEEE International Conference on Intelligent Robots and Systems,3421-3428. 2021.
Deep Semantic Segmentation at the Edge for Autonomous Navigation in Vineyard Rows [pdf]Paper   doi   link   bibtex   abstract  
Unmanned vehicles in smart farming: A survey and a glance at future horizons. Madroñal, D.; Palumbo, F.; Capotondi, A.; and Marongiu, A. ACM International Conference Proceeding Series,1-8. 2021.
Unmanned vehicles in smart farming: A survey and a glance at future horizons [pdf]Paper   doi   link   bibtex   abstract  
In-field automatic detection of grape bunches under a totally uncontrolled environment. Ghiani, L.; Sassu, A.; Palumbo, F.; Mercenaro, L.; and Gambella, F. Sensors, 21(11). 2021.
In-field automatic detection of grape bunches under a totally uncontrolled environment [pdf]Paper   doi   link   bibtex   abstract  
InLoc: Indoor Visual Localization with Dense Matching and View Synthesis. Taira, H.; Okutomi, M.; Sattler, T.; Cimpoi, M.; Pollefeys, M.; Sivic, J.; Pajdla, T.; and Torii, A. IEEE Transactions on Pattern Analysis and Machine Intelligence, 43(4): 1293-1307. 2021.
InLoc: Indoor Visual Localization with Dense Matching and View Synthesis [pdf]Paper   doi   link   bibtex   abstract  
Technological support for detection and prediction of plant diseases: A systematic mapping study. Bischoff, V.; Farias, K.; Menzen, J., P.; and Pessin, G. Computers and Electronics in Agriculture, 181(June 2019): 105922. 2021.
Technological support for detection and prediction of plant diseases: A systematic mapping study [pdf]Paper   Technological support for detection and prediction of plant diseases: A systematic mapping study [link]Website   doi   link   bibtex   abstract  
A grapevine leaves dataset for early detection and classification of esca disease in vineyards through machine learning. Alessandrini, M.; Calero Fuentes Rivera, R.; Falaschetti, L.; Pau, D.; Tomaselli, V.; and Turchetti, C. Data in Brief, 35: 106809. 2021.
A grapevine leaves dataset for early detection and classification of esca disease in vineyards through machine learning [pdf]Paper   A grapevine leaves dataset for early detection and classification of esca disease in vineyards through machine learning [link]Website   doi   link   bibtex   abstract  
Computer vision, IoT and data fusion for crop disease detection using machine learning: A survey and ongoing research. Ouhami, M.; Hafiane, A.; Es-Saady, Y.; El Hajji, M.; and Canals, R. Remote Sensing, 13(13). 2021.
Computer vision, IoT and data fusion for crop disease detection using machine learning: A survey and ongoing research [pdf]Paper   doi   link   bibtex   abstract  
Deep learning for the differentiation of downy mildew and spider mite in grapevine under field conditions. Gutiérrez, S.; Hernández, I.; Ceballos, S.; Barrio, I.; Díez-Navajas, A., M.; and Tardaguila, J. Computers and Electronics in Agriculture, 182(February): 1-9. 2021.
Deep learning for the differentiation of downy mildew and spider mite in grapevine under field conditions [pdf]Paper   doi   link   bibtex   abstract  
Advances in agriculture robotics: A state-of-the-art review and challenges ahead. Oliveira, L., F.; Moreira, A., P.; and Silva, M., F. Robotics, 10(2): 1-31. 2021.
Advances in agriculture robotics: A state-of-the-art review and challenges ahead [pdf]Paper   doi   link   bibtex   abstract  
Real-time multispectral image processing and registration on 3D point Cloud for Vineyard Analysis. Clamens, T.; Alexakis, G.; Duverne, R.; Seulin, R.; Fauvet, E.; and Fofi, D. VISIGRAPP 2021 - Proceedings of the 16th International Joint Conference on Computer Vision, Imaging and Computer Graphics Theory and Applications, 4(Visigrapp): 388-398. 2021.
Real-time multispectral image processing and registration on 3D point Cloud for Vineyard Analysis [pdf]Paper   doi   link   bibtex   abstract  
LiDAR-based Structure Tracking for Agricultural Robots: Application to Autonomous Navigation in Vineyards. Nehme, H.; Aubry, C.; Solatges, T.; Savatier, X.; Rossi, R.; and Boutteau, R. Journal of Intelligent and Robotic Systems: Theory and Applications, 103(4): 1-16. 2021.
LiDAR-based Structure Tracking for Agricultural Robots: Application to Autonomous Navigation in Vineyards [pdf]Paper   doi   link   bibtex   abstract  
Smart applications and digital technologies in viticulture: A review. Tardaguila, J.; Stoll, M.; Gutiérrez, S.; Proffitt, T.; and Diago, M., P. Smart Agricultural Technology, 1(July): 100005. 2021.
Smart applications and digital technologies in viticulture: A review [pdf]Paper   Smart applications and digital technologies in viticulture: A review [link]Website   doi   link   bibtex   abstract  
Smart Farming in Europe. Moysiadis, V.; Sarigiannidis, P.; Vitsas, V.; and Khelifi, A. Computer Science Review, 39: 100345. 2021.
Smart Farming in Europe [pdf]Paper   Smart Farming in Europe [link]Website   doi   link   bibtex   abstract  
AI-powered mobile image acquisition of vineyard insect traps with automatic quality and adequacy assessment. Faria, P.; Nogueira, T.; Ferreira, A.; Carlos, C.; and Rosado, L. Agronomy, 11(4): 1-18. 2021.
AI-powered mobile image acquisition of vineyard insect traps with automatic quality and adequacy assessment [pdf]Paper   doi   link   bibtex   abstract  
State of the art of monitoring technologies and data processing for precision viticulture. Ammoniaci, M.; Kartsiotis, S., P.; Perria, R.; and Storchi, P. Agriculture (Switzerland), 11(3): 1-21. 2021.
State of the art of monitoring technologies and data processing for precision viticulture [pdf]Paper   doi   link   bibtex   abstract  
Monitoring vineyard water status using sentinel-2 images: Qualitative survey on five wine estates in the south of france. Laroche-Pinel, E.; Duthoit, S.; Costard, A., D.; Rousseau, J.; Hourdel, J.; Vidal-Vigneron, M.; Cheret, V.; and Clenet, H. Oeno One, 55(4): 115-127. 2021.
Monitoring vineyard water status using sentinel-2 images: Qualitative survey on five wine estates in the south of france [pdf]Paper   doi   link   bibtex   abstract  
Advances in unmanned aerial system remote sensing for precision viticulture. Sassu, A.; Gambella, F.; Ghiani, L.; Mercenaro, L.; Caria, M.; and Pazzona, A., L. Sensors (Switzerland), 21(3): 1-21. 2021.
Advances in unmanned aerial system remote sensing for precision viticulture [pdf]Paper   doi   link   bibtex   abstract  
Grapevine Leaf Disease Identification Using Transfer Learning. Nagi, R.; and Tripathy, S., S. In 2021 IEEE International Women in Engineering (WIE) Conference on Electrical and Computer Engineering (WIECON-ECE), pages 43-46, 2021. IEEE
Grapevine Leaf Disease Identification Using Transfer Learning [pdf]Paper   link   bibtex  
Machine vision for ripeness estimation in viticulture automation. Vrochidou, E.; Bazinas, C.; Manios, M.; Papakostas, G., A.; Pachidis, T., P.; and Kaburlasos, V., G. Horticulturae, 7(9). 2021.
Machine vision for ripeness estimation in viticulture automation [pdf]Paper   doi   link   bibtex   abstract  
A Review on Grape Disease Detection and Classification using Image Processing. Niharika S, N V Sahana, G., J. Irjet, 8(9): 411-425. 2021.
A Review on Grape Disease Detection and Classification using Image Processing [pdf]Paper   link   bibtex  
Early stage detection of Downey and Powdery Mildew grape disease using atmospheric parameters through sensor nodes. Sanghavi, K.; Sanghavi, M.; and Rajurkar, A., M. Artificial Intelligence in Agriculture, 5: 223-232. 2021.
Early stage detection of Downey and Powdery Mildew grape disease using atmospheric parameters through sensor nodes [pdf]Paper   Early stage detection of Downey and Powdery Mildew grape disease using atmospheric parameters through sensor nodes [link]Website   doi   link   bibtex   abstract  
Potential Phenotyping Methodologies to Assess Inter- and Intravarietal Variability and to Select Grapevine Genotypes Tolerant to Abiotic Stress. Carvalho, L., C.; Gonçalves, E., F.; Marques da Silva, J.; and Costa, J., M. Frontiers in Plant Science, 12(October). 2021.
Potential Phenotyping Methodologies to Assess Inter- and Intravarietal Variability and to Select Grapevine Genotypes Tolerant to Abiotic Stress [pdf]Paper   doi   link   bibtex   abstract  
Embedded Machine Learning for the implementation of Autonomous Mobile Sensor Nodes (AMSNs). Di Nunzio, L. In pages 4-4, 12 2021. Institute of Electrical and Electronics Engineers (IEEE)
Embedded Machine Learning for the implementation of Autonomous Mobile Sensor Nodes (AMSNs) [pdf]Paper   doi   link   bibtex  
Embedded System for Eye Blink Detection Using Machine Learning Technique. Ibrahim, B., R.; Khalifa, F., M.; Zeebaree, S., R.; Othman, N., A.; Alkhayyat, A.; Zebari, R., R.; and Sadeeq, M., A. In 1st Babylon International Conference on Information Technology and Science 2021, BICITS 2021, pages 58-62, 2021. Institute of Electrical and Electronics Engineers Inc.
Embedded System for Eye Blink Detection Using Machine Learning Technique [pdf]Paper   doi   link   bibtex   abstract  
Pedestrian Detection System with Edge Computing Integration on Embedded Vehicle. Su, C., L.; Lai, W., C.; and Li, C., T. In 3rd International Conference on Artificial Intelligence in Information and Communication, ICAIIC 2021, pages 450-453, 4 2021. Institute of Electrical and Electronics Engineers Inc.
Pedestrian Detection System with Edge Computing Integration on Embedded Vehicle [pdf]Paper   doi   link   bibtex   abstract  
Run-Time Monitoring of Machine Learning for Robotic Perception: A Survey of Emerging Trends. Rahman, Q., M.; Corke, P.; and Dayoub, F. IEEE Access, 9: 20067-20075. 2021.
Run-Time Monitoring of Machine Learning for Robotic Perception: A Survey of Emerging Trends [pdf]Paper   doi   link   bibtex   abstract  
Patch2Pix: Epipolar-Guided Pixel-Level Correspondences. Zhou, Q.; Sattler, T.; and Leal-Taixé, L. Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition,4667-4676. 2021.
Patch2Pix: Epipolar-Guided Pixel-Level Correspondences [pdf]Paper   doi   link   bibtex   abstract  
Back to the Feature: Learning Robust Camera Localization from Pixels to Pose. Sarlin, P., E.; Unagar, A.; Larsson, M.; Germain, H.; Toft, C.; Larsson, V.; Pollefeys, M.; Lepetit, V.; Hammarstrand, L.; Kahl, F.; and Sattler, T. Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition,3246-3256. 2021.
Back to the Feature: Learning Robust Camera Localization from Pixels to Pose [pdf]Paper   doi   link   bibtex   abstract  
Vineyard yield estimation, prediction, and forecasting: A systematic literature review. Barriguinha, A.; Neto, M., d., C.; and Gil, A. 9 2021.
Vineyard yield estimation, prediction, and forecasting: A systematic literature review [pdf]Paper   doi   link   bibtex   abstract  
Towards Vine Water Status Monitoring on a Large Scale Using Sentinel-2 Images. Laroche-Pinel, E.; Duthoit, S.; Albughdadi, M.; Costard, A., D.; Rousseau, J.; Chéret, V.; and Clenet, H. Remote Sensing, 13(9): 1837. 5 2021.
Towards Vine Water Status Monitoring on a Large Scale Using Sentinel-2 Images [pdf]Paper   Towards Vine Water Status Monitoring on a Large Scale Using Sentinel-2 Images [link]Website   doi   link   bibtex   abstract  
Entropy Maximization and Meta Classification for Out-of-Distribution Detection in Semantic Segmentation. Chan, R.; Rottmann, M.; and Gottschalk, H. In Proceedings of the IEEE/CVF International Conference on Computer Vision (ICCV), pages 5128-5137, 2021.
Entropy Maximization and Meta Classification for Out-of-Distribution Detection in Semantic Segmentation [pdf]Paper   link   bibtex   abstract  
Generalized Out-of-Distribution Detection: A Survey. Yang, J.; Zhou, K.; Li, Y.; and Liu, Z. . 10 2021.
Generalized Out-of-Distribution Detection: A Survey [pdf]Paper   Generalized Out-of-Distribution Detection: A Survey [link]Website   doi   link   bibtex   abstract  
Estimation of leaf area index in vineyards by analysing projected shadows using uav imagery. Vélez, S.; Poblete-Echeverría, C.; Rubio, J., A.; Vacas, R.; and Barajas, E. Oeno One, 55(4): 159-180. 2021.
Estimation of leaf area index in vineyards by analysing projected shadows using uav imagery [pdf]Paper   doi   link   bibtex   abstract  
Impact of Leaf Occlusions on Yield Assessment by Computer Vision in Commercial Vineyards. Íñiguez, R.; Palacios, F.; Barrio, I.; Hernández, I.; Gutiérrez, S.; and Tardaguila, J. Agronomy 2021, Vol. 11, Page 1003, 11(5): 1003. 5 2021.
Impact of Leaf Occlusions on Yield Assessment by Computer Vision in Commercial Vineyards [pdf]Paper   Impact of Leaf Occlusions on Yield Assessment by Computer Vision in Commercial Vineyards [link]Website   doi   link   bibtex   abstract  
Data-Driven Artificial Intelligence Applications for Sustainable Precision Agriculture. Linaza, M., T.; Posada, J.; Bund, J.; Eisert, P.; Quartulli, M.; Döllner, J.; Pagani, A.; Olaizola, I., G.; Barriguinha, A.; Moysiadis, T.; and Lucat, L. Agronomy 2021, Vol. 11, Page 1227, 11(6): 1227. 6 2021.
Data-Driven Artificial Intelligence Applications for Sustainable Precision Agriculture [pdf]Paper   Data-Driven Artificial Intelligence Applications for Sustainable Precision Agriculture [link]Website   doi   link   bibtex   abstract  
Beyond the traditional NDVI index as a key factor to mainstream the use of UAV in precision viticulture. Matese, A.; and Di Gennaro, S., F. Scientific Reports 2021 11:1, 11(1): 1-13. 2 2021.
Beyond the traditional NDVI index as a key factor to mainstream the use of UAV in precision viticulture [pdf]Paper   Beyond the traditional NDVI index as a key factor to mainstream the use of UAV in precision viticulture [link]Website   doi   link   bibtex   abstract  
Grape Cluster Detection Using UAV Photogrammetric Point Clouds as a Low-Cost Tool for Yield Forecasting in Vineyards. Torres‐sánchez, J.; Mesas‐carrascosa, F., J.; Santesteban, L., G.; Jiménez‐brenes, F., M.; Oneka, O.; Villa‐llop, A.; Loidi, M.; and López‐granados, F. Sensors 2021, Vol. 21, Page 3083, 21(9): 3083. 4 2021.
Grape Cluster Detection Using UAV Photogrammetric Point Clouds as a Low-Cost Tool for Yield Forecasting in Vineyards [pdf]Paper   Grape Cluster Detection Using UAV Photogrammetric Point Clouds as a Low-Cost Tool for Yield Forecasting in Vineyards [link]Website   doi   link   bibtex   abstract  
Adversarial Reweighting for Partial Domain Adaptation. Gu, X.; Yu, X.; Yang, Y.; Sun, J.; and Xu, Z. In Advances in Neural Information Processing Systems 34: Annual Conference on Neural Information Processing Systems 2021, NeurIPS 2021, December 6-14, 2021, virtual, pages 14860--14872, 2021.
Adversarial Reweighting for Partial Domain Adaptation [pdf]Paper   Adversarial Reweighting for Partial Domain Adaptation [link]Website   link   bibtex   abstract  
Weed and crop classification with domain adaptation for precision agriculture. Ekinci, S.; and Aptoula, E. SIU 2021 - 29th IEEE Conference on Signal Processing and Communications Applications, Proceedings. 6 2021.
doi   link   bibtex   abstract  
Augmenting Crop Detection for Precision Agriculture with Deep Visual Transfer Learning—A Case Study of Bale Detection. Zhao, W.; Yamada, W.; Li, T.; Digman, M.; and Runge, T. Remote Sensing, 13(1): 23. 12 2021.
Augmenting Crop Detection for Precision Agriculture with Deep Visual Transfer Learning—A Case Study of Bale Detection [pdf]Paper   Augmenting Crop Detection for Precision Agriculture with Deep Visual Transfer Learning—A Case Study of Bale Detection [link]Website   doi   link   bibtex   abstract  
Multiresolution knowledge distillation for anomaly detection. Salehi, M.; Sadjadi, N.; Baselizadeh, S.; Rohban, M., H.; and Rabiee, H., R. Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition,14897-14907. 2021.
Multiresolution knowledge distillation for anomaly detection [pdf]Paper   doi   link   bibtex   abstract  
OODformer: Out-Of-Distribution Detection Transformer. Koner, R.; Sinhamahapatra, P.; Roscher, K.; Günnemann, S.; and Tresp, V. . 7 2021.
OODformer: Out-Of-Distribution Detection Transformer [pdf]Paper   OODformer: Out-Of-Distribution Detection Transformer [link]Website   link   bibtex   abstract  
SSD: A Unified Framework for Self-Supervised Outlier Detection. Sehwag, V.; Chiang, M.; and Mittal, P. ,1-17. 2021.
SSD: A Unified Framework for Self-Supervised Outlier Detection [pdf]Paper   SSD: A Unified Framework for Self-Supervised Outlier Detection [link]Website   link   bibtex   abstract  
Generalized Out-of-Distribution Detection: A Survey. Yang, J.; Zhou, K.; Li, Y.; and Liu, Z. ,1-22. 2021.
Generalized Out-of-Distribution Detection: A Survey [pdf]Paper   Generalized Out-of-Distribution Detection: A Survey [link]Website   link   bibtex   abstract  
A Unified Survey on Anomaly, Novelty, Open-Set, and Out-of-Distribution Detection: Solutions and Future Challenges. Salehi, M.; Mirzaei, H.; Hendrycks, D.; Li, Y.; Rohban, M., H.; and Sabokrou, M. . 2021.
A Unified Survey on Anomaly, Novelty, Open-Set, and Out-of-Distribution Detection: Solutions and Future Challenges [pdf]Paper   A Unified Survey on Anomaly, Novelty, Open-Set, and Out-of-Distribution Detection: Solutions and Future Challenges [link]Website   link   bibtex   abstract  
Towards Total Recall in Industrial Anomaly Detection. Roth, K.; Pemula, L.; Zepeda, J.; Scholkopf, B.; Brox, T.; and Gehler, P. Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, 2022-June: 14298-14308. 6 2021.
Towards Total Recall in Industrial Anomaly Detection [link]Website   doi   link   bibtex   abstract  
Student-Teacher Feature Pyramid Matching for Anomaly Detection. Wang, G.; Han, S.; Ding, E.; and Huang, D. . 3 2021.
Student-Teacher Feature Pyramid Matching for Anomaly Detection [pdf]Paper   Student-Teacher Feature Pyramid Matching for Anomaly Detection [link]Website   link   bibtex   abstract  
FastFlow: Unsupervised Anomaly Detection and Localization via 2D Normalizing Flows. Yu, J.; Zheng, Y.; Wang, X.; Li, W.; Wu, Y.; Zhao, R.; and Wu, L. . 11 2021.
FastFlow: Unsupervised Anomaly Detection and Localization via 2D Normalizing Flows [pdf]Paper   FastFlow: Unsupervised Anomaly Detection and Localization via 2D Normalizing Flows [link]Website   link   bibtex   abstract  
Content Disentanglement for Semantically Consistent Synthetic-to-Real Domain Adaptation. Keser, M.; Savkin, A.; and Tombari, F. IEEE International Conference on Intelligent Robots and Systems,3844-3849. 5 2021.
Content Disentanglement for Semantically Consistent Synthetic-to-Real Domain Adaptation [link]Website   doi   link   bibtex   abstract  
Content Disentanglement for Semantically Consistent Synthetic-to-Real Domain Adaptation. Keser, M.; Savkin, A.; and Tombari, F. IEEE International Conference on Intelligent Robots and Systems,3844-3849. 5 2021.
Content Disentanglement for Semantically Consistent Synthetic-to-Real Domain Adaptation [pdf]Paper   Content Disentanglement for Semantically Consistent Synthetic-to-Real Domain Adaptation [link]Website   doi   link   bibtex   abstract  
A review of the issues, methods and perspectives for yield estimation, prediction and forecasting in viticulture. Laurent, C.; Oger, B.; Taylor, J., A.; Scholasch, T.; Metay, A.; and Tisseyre, B. European Journal of Agronomy, 130: 126339. 10 2021.
A review of the issues, methods and perspectives for yield estimation, prediction and forecasting in viticulture [pdf]Paper   doi   link   bibtex   abstract  
Deep neural networks for grape bunch segmentation in natural images from a consumer-grade camera. Marani, R.; Milella, A.; Petitti, A.; and Reina, G. Precision Agriculture, 22(2): 387-413. 4 2021.
Deep neural networks for grape bunch segmentation in natural images from a consumer-grade camera [pdf]Paper   Deep neural networks for grape bunch segmentation in natural images from a consumer-grade camera [link]Website   doi   link   bibtex   abstract  
SDNet: Unconstrained Object Structure Detector Network for In-Field Real-Time Crop Part Location And Phenotyping. Lac, L.; Da Costa, J.; Donias, M.; Keresztes, B.; and Louargant, M. In 11 2021.
link   bibtex  
YOEO–You Only Encode Once: A CNN for Embedded Object Detection and Semantic Segmentation. Vahl, F.; Gutsche, J.; Bestmann, M.; and Zhang, J. In 2021 IEEE International Conference on Robotics and Biomimetics (ROBIO), pages 619-624, 12 2021. IEEE
YOEO–You Only Encode Once: A CNN for Embedded Object Detection and Semantic Segmentation [pdf]Paper   YOEO–You Only Encode Once: A CNN for Embedded Object Detection and Semantic Segmentation [link]Website   doi   link   bibtex  
SDNet: Unconstrained Object Structure Detector Network for In-Field Real-Time Crop Part Location And Phenotyping. Lac, L.; Da Costa, J.; Donias, M.; Keresztes, B.; and Louargant, M. In 11 2021.
SDNet: Unconstrained Object Structure Detector Network for In-Field Real-Time Crop Part Location And Phenotyping [link]Website   link   bibtex  
Content Disentanglement for Semantically Consistent Synthetic-to-Real Domain Adaptation. Keser, M.; Savkin, A.; and Tombari, F. IEEE International Conference on Intelligent Robots and Systems,3844-3849. 5 2021.
Content Disentanglement for Semantically Consistent Synthetic-to-Real Domain Adaptation [pdf]Paper   Content Disentanglement for Semantically Consistent Synthetic-to-Real Domain Adaptation [link]Website   doi   link   bibtex   abstract  
Artificial Intelligence and Novel Sensing Technologies for Assessing Downy Mildew in Grapevine. Hernández, I.; Gutiérrez, S.; Ceballos, S.; Iñíguez, R.; Barrio, I.; and Tardaguila, J. Horticulturae 2021, Vol. 7, Page 103, 7(5): 103. 5 2021.
Artificial Intelligence and Novel Sensing Technologies for Assessing Downy Mildew in Grapevine [pdf]Paper   Artificial Intelligence and Novel Sensing Technologies for Assessing Downy Mildew in Grapevine [link]Website   doi   link   bibtex   abstract  
SDNet: Unconstrained Object Structure Detector Network for In-Field Real-Time Crop Part Location And Phenotyping. Lac, L.; Da Costa, J.; Donias, M.; Keresztes, B.; and Louargant, M. . 2021.
SDNet: Unconstrained Object Structure Detector Network for In-Field Real-Time Crop Part Location And Phenotyping [pdf]Paper   SDNet: Unconstrained Object Structure Detector Network for In-Field Real-Time Crop Part Location And Phenotyping [link]Website   link   bibtex   abstract  
Early Detection of Plant Viral Disease Using Hyperspectral Imaging and Deep Learning. Nguyen, C.; Sagan, V.; Maimaitiyiming, M.; Maimaitijiang, M.; Bhadra, S.; and Kwasniewski, M., T. Sensors 2021, Vol. 21, Page 742, 21(3): 742. 1 2021.
Early Detection of Plant Viral Disease Using Hyperspectral Imaging and Deep Learning [pdf]Paper   Early Detection of Plant Viral Disease Using Hyperspectral Imaging and Deep Learning [link]Website   doi   link   bibtex   abstract  
A Low-Cost, Low-Power and Real-Time Image Detector for Grape Leaf Esca Disease Based on a Compressed CNN. Falaschetti, L.; Manoni, L.; Rivera, R., C., F.; Pau, D.; Romanazzi, G.; Silvestroni, O.; Tomaselli, V.; and Turchetti, C. IEEE Journal on Emerging and Selected Topics in Circuits and Systems, 11(3): 468-481. 9 2021.
A Low-Cost, Low-Power and Real-Time Image Detector for Grape Leaf Esca Disease Based on a Compressed CNN [pdf]Paper   doi   link   bibtex   abstract  
Parallel Detection-and-Segmentation Learning for Weakly Supervised Instance Segmentation. Shen, Y.; Cao, L.; Chen, Z.; Zhang, B.; Su, C.; Wu, Y.; Huang, F.; and Ji, R. 2021.
Parallel Detection-and-Segmentation Learning for Weakly Supervised Instance Segmentation [pdf]Paper   link   bibtex   abstract  
Predicting Grain Losses and Waste Rate along the Entire Chain: A Multitask Multigated Recurrent Unit Autoencoder Based Method. Cao, J.; Wang, Y.; He, J.; Liang, W.; Tao, H.; and Zhu, G. IEEE Transactions on Industrial Informatics, 17(6): 4390-4400. 6 2021.
Predicting Grain Losses and Waste Rate along the Entire Chain: A Multitask Multigated Recurrent Unit Autoencoder Based Method [pdf]Paper   doi   link   bibtex   abstract  
YieldNet: A Convolutional Neural Network for Simultaneous Corn and Soybean Yield Prediction Based on Remote Sensing Data. Khaki, S.; Pham, H.; and Wang, L. bioRxiv,2020.12.05.413203. 3 2021.
YieldNet: A Convolutional Neural Network for Simultaneous Corn and Soybean Yield Prediction Based on Remote Sensing Data [pdf]Paper   YieldNet: A Convolutional Neural Network for Simultaneous Corn and Soybean Yield Prediction Based on Remote Sensing Data [link]Website   doi   link   bibtex   abstract  
Identifying Individual Nutrient Deficiencies of Grapevine Leaves Using Hyperspectral Imaging. Debnath, S.; Paul, M.; Motiur Rahaman, D., M.; Debnath, T.; Zheng, L.; Baby, T.; Schmidtke, L., M.; and Rogiers, S., Y. Remote Sensing 2021, Vol. 13, Page 3317, 13(16): 3317. 8 2021.
Identifying Individual Nutrient Deficiencies of Grapevine Leaves Using Hyperspectral Imaging [pdf]Paper   Identifying Individual Nutrient Deficiencies of Grapevine Leaves Using Hyperspectral Imaging [link]Website   doi   link   bibtex   abstract  
An IoT Architecture as a means of Optimizing Downy and Powdery Mildew Diseases Recognition in Portuguese Vineyards. Gomes, B., P. . 10 2021.
An IoT Architecture as a means of Optimizing Downy and Powdery Mildew Diseases Recognition in Portuguese Vineyards [pdf]Paper   An IoT Architecture as a means of Optimizing Downy and Powdery Mildew Diseases Recognition in Portuguese Vineyards [link]Website   link   bibtex   abstract  
Climate Change and Internet of Things Technologies—Sustainable Premises of Extending the Culture of the Amurg Cultivar in Transylvania—A Use Case for Târnave Vineyard. Chedea, V., S.; Dragulinescu, A., M.; Tomoiaga, L., L.; Balaceanu, C.; and Iliescu, M., L. Sustainability 2021, Vol. 13, Page 8170, 13(15): 8170. 7 2021.
Climate Change and Internet of Things Technologies—Sustainable Premises of Extending the Culture of the Amurg Cultivar in Transylvania—A Use Case for Târnave Vineyard [pdf]Paper   Climate Change and Internet of Things Technologies—Sustainable Premises of Extending the Culture of the Amurg Cultivar in Transylvania—A Use Case for Târnave Vineyard [link]Website   doi   link   bibtex   abstract  
A Multi-Source Data Fusion Decision-Making Method for Disease and Pest Detection of Grape Foliage Based on ShuffleNet V2. Yang, R.; Lu, X.; Huang, J.; Zhou, J.; Jiao, J.; Liu, Y.; Liu, F.; Su, B.; and Gu, P. Remote Sensing 2021, Vol. 13, Page 5102, 13(24): 5102. 12 2021.
A Multi-Source Data Fusion Decision-Making Method for Disease and Pest Detection of Grape Foliage Based on ShuffleNet V2 [pdf]Paper   A Multi-Source Data Fusion Decision-Making Method for Disease and Pest Detection of Grape Foliage Based on ShuffleNet V2 [link]Website   doi   link   bibtex   abstract  
Multi-Task Knowledge Distillation for Eye Disease Prediction. Chelaramani, S.; Gupta, M.; Agarwal, V.; Gupta, P.; and Habash, R. 2021.
Multi-Task Knowledge Distillation for Eye Disease Prediction [pdf]Paper   Multi-Task Knowledge Distillation for Eye Disease Prediction [link]Website   doi   link   bibtex   abstract  
Unmanned Vehicles in Smart Farming: a Survey and a Glance at Future Horizons. Madroñal, D.; Palumbo, F.; Capotondi, A.; and Marongiu, A. In DroneSE and RAPIDO '21: Methods and Tools, Budapest, Hungary, January 18, 2021, pages 1-8, 2021. ACM
link   bibtex  
Machine Vision for Ripeness Estimation in Viticulture Automation. Vrochidou, E.; Bazinas, C.; Manios, M.; Papakostas, G., A.; Pachidis, T., P.; and Kaburlasos, V., G. Horticulturae, 7(9): 282. 2021.
link   bibtex  
Deep learning for the differentiation of downy mildew and spider mite in grapevine under field conditions. Gutiérrez, S.; Hernández, I.; Ceballos, S.; Barrio, I.; Díez-Navajas, A., M.; and Tardaguila, J. Computers and Electronics in Agriculture, 182: 105991. 2021.
link   bibtex  
AI4Agriculture Grape Dataset. Morros, J., R.; Lobo, T., P.; Salmeron-Majadas, S.; Villazan, J.; Merino, D.; Antunes, A.; Datcu, M.; Karmakar, C.; Guerra, E.; Pantazi, D.; and Stamoulis, G. 11 2021.
AI4Agriculture Grape Dataset [link]Website   link   bibtex  
Vineyard Yield Estimation, Prediction, and Forecasting: A Systematic Literature Review. Barriguinha, A.; De Castro Neto, M.; and Gil, A. Agronomy, 11(9): 1789. 2021.
link   bibtex  
An annotated image dataset of downy mildew symptoms on Merlot grape variety. Abdelghafour, F.; Keresztes, B.; Deshayes, A.; Germain, C.; and da Costa, J. Data in Brief, 37: 107250. 2021.
link   bibtex  
Deep learning-based autonomous downy mildew detection and severity estimation in vineyards. Liu, E.; Gold, K., M.; Combs, D.; Cadle-Davidson, L.; and Jiang, Y. In 2021 ASABE Annual International Virtual Meeting, pages 1, 2021.
link   bibtex   13 downloads  
Smart applications and digital technologies in viticulture: A review. Tardaguila, J.; Stoll, M.; Gutiérrez, S.; Proffitt, T.; and Diago, M., P. Smart Agricultural Technology, 1: 100005. 2021.
link   bibtex  
Smart Farming in Europe. Moysiadis, V.; Sarigiannidis, P., G.; Vitsas, V.; and Khelifi, A. Computer Science Review, 39: 100345. 2021.
link   bibtex  
Early Detection of Plant Viral Disease Using Hyperspectral Imaging and Deep Learning. Nguyen, C.; Sagan, V.; Maimaitiyiming, M.; Maimaitijiang, M.; Bhadra, S.; and Kwasniewski, M., T. Sensors, 21(3): 742. 2021.
link   bibtex  
Advances in Agriculture Robotics: a State-of-the-Art Review and Challenges Ahead. de Oliveira, L., F., P.; Moreira, A., P.; and Silva, M., F. Robotics, 10(2): 52. 2021.
link   bibtex  
A grapevine leaves dataset for early detection and classification of esca disease in vineyards through machine learning. Alessandrini, M.; Calero Fuentes Rivera, R.; Falaschetti, L.; Pau, D.; Tomaselli, V.; and Turchetti, C. Data in Brief, 35: 106809. 2021.
link   bibtex  
Technological support for detection and prediction of plant diseases: a systematic mapping study. Bischoff, V.; Farias, K.; Menzen, J., P.; and Pessin, G. Computers and Electronics in Agriculture, 181: 105922. 2021.
link   bibtex  
Combination of multivariate curve resolution with factorial discriminant analysis for the detection of grapevine diseases using hyperspectral imaging. A case study: flavescence dorée. Garcia, S., M.; Ryckewaert, M.; Abdelghafour, F.; Metz, M.; Moura, D.; Feilhes, C.; Prezman, F.; and Bendoula, R. Analyst, 146(24): 7730-7739. 2021.
link   bibtex  
Potential Phenotyping Methodologies to Assess Inter- and Intravarietal Variability and to Select Grapevine Genotypes Tolerant to Abiotic Stress. Carvalho, L., C.; Gonçalves, E., F.; da Silva, J.; and Costa, J., M. Frontiers in Plant Science, 12: 718202. 2021.
link   bibtex  
Deep Semantic Segmentation at the Edge for Autonomous Navigation in Vineyard Rows. Aghi, D.; Cerrato, S.; Mazzia, V.; and Chiaberge, M. In IEEE/RSJ International Conference on Intelligent Robots and Systems, IROS 2021, Prague, Czech Republic, September 27 - October 1, 2021, pages 3421-3428, 2021. IEEE
link   bibtex  
State of the Art of Monitoring Technologies and Data Processing for Precision Viticulture. Ammoniaci, M.; Kartsiotis, S.; Perria, R.; and Storchi, P. Agriculture, 11(3): 201. 2021.
link   bibtex  
Computer Vision, IoT and Data Fusion for Crop Disease Detection Using Machine Learning: a Survey and Ongoing Research. Ouhami, M.; Hafiane, A.; Es-Saady, Y.; Hajji, M., E.; and Canals, R. Remote Sensing, 13(13): 2486. 2021.
link   bibtex  
A Low-Cost, Low-Power and Real-Time Image Detector for Grape Leaf Esca Disease Based on a Compressed CNN. Falaschetti, L.; Manoni, L.; Rivera, R., C., F.; Pau, D.; Romanazzi, G.; Silvestroni, O.; Tomaselli, V.; and Turchetti, C. IEEE Journal on Emerging and Selected Topics in Circuits and Systems, 11(3): 468-481. 2021.
link   bibtex  
Detecting Spectral Signals in Imaging for Disease Detection in Apple and Grape. Peller, J.; Polder, G.; Blok, P., M.; and Malounas, I. Agricultural Engineering AgEng2021,63. 2021.
link   bibtex  
Advances in Unmanned Aerial System Remote Sensing for Precision Viticulture. Sassu, A.; Gambella, F.; Ghiani, L.; Mercenaro, L.; Caria, M.; and Pazzona, A., L. Sensors, 21(3): 956. 2021.
link   bibtex  
The PRISMA 2020 statement: an updated guideline for reporting systematic reviews. Page, M., J.; McKenzie, J., E.; Bossuyt, P., M.; Boutron, I.; Hoffmann, T., C.; Mulrow, C., D.; Shamseer, L.; Tetzlaff, J., M.; Akl, E., A.; Brennan, S., E.; Chou, R.; Glanville, J.; Grimshaw, J., M.; Hróbjartsson, A.; Lalu, M., M.; Li, T.; Loder, E., W.; Mayo-Wilson, E.; McDonald, S.; McGuinness, L., A.; Stewart, L., A.; Thomas, J.; Tricco, A., C.; Welch, V., A.; Whiting, P.; and Moher, D. International Journal of Surgery, 88(1743-9191): 105906. 2021.
link   bibtex  
YOLOX: Exceeding YOLO Series in 2021. Ge, Z.; Liu, S.; Wang, F.; Li, Z.; and Sun, J. Computing Research Repository, abs/2107.0. 2021.
link   bibtex  
Estimation of Leaf Area Index in vineyards by analysing projected shadows using UAV imagery. Vélez, S.; Poblete-Echeverría, C.; Rubio, J., A.; Barajas, E.; and others OENO One, 55(4): 159-180. 2021.
link   bibtex  
Coordinate Attention for Efficient Mobile Network Design. Hou, Q.; Zhou, D.; and Feng, J. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pages 13713-13722, 2021.
link   bibtex  
A Multi-Source Data Fusion Decision-Making Method for Disease and Pest Detection of Grape Foliage Based on ShuffleNet V2. Yang, R.; Lu, X.; Huang, J.; Zhou, J.; Jiao, J.; Liu, Y.; Liu, F.; Su, B.; and Gu, P. Remote Sensing, 13(24): 5102. 2021.
link   bibtex  
Grapevine Leaves. Vlah, M. 2021.
Grapevine Leaves [link]Website   link   bibtex  
Compiling Stan to generative probabilistic languages and extension to deep probabilistic programming. Baudart, G.; Burroni, J.; Hirzel, M.; Mandel, L.; and Shinnar, A. In Proceedings of the 42nd ACM SIGPLAN International Conference on Programming Language Design and Implementation, pages 497-510, 2021.
link   bibtex  
Scaled-YOLOv4: Scaling Cross Stage Partial Network. Wang, C.; Bochkovskiy, A.; and Liao, H., M. In IEEE Conference on Computer Vision and Pattern Recognition, CVPR 2021, virtual, June 19-25, 2021, pages 13029-13038, 2021. IEEE
link   bibtex  
Point-Based Estimator for Arbitrary-Oriented Object Detection in Aerial Images. Fu, K.; Chang, Z.; Zhang, Y.; and Sun, X. IEEE Transactions on Geoscience and Remote Sensing, 59(5): 4370-4387. 5 2021.
Point-Based Estimator for Arbitrary-Oriented Object Detection in Aerial Images [pdf]Paper   doi   link   bibtex   abstract  
Oriented R-CNN for Object Detection. Xie, X.; Cheng, G.; Wang, J.; Yao, X.; and Han, J. 2021.
Oriented R-CNN for Object Detection [pdf]Paper   Oriented R-CNN for Object Detection [link]Website   link   bibtex   abstract  
Dynamic Anchor Learning for Arbitrary-Oriented Object Detection. Ming, Q.; Zhou, Z.; Miao, L.; Zhang, H.; and Li, L. Proceedings of the AAAI Conference on Artificial Intelligence, 35(3): 2355-2363. 5 2021.
Dynamic Anchor Learning for Arbitrary-Oriented Object Detection [pdf]Paper   Dynamic Anchor Learning for Arbitrary-Oriented Object Detection [link]Website   doi   link   bibtex   abstract  
Dynamic Anchor Learning for Arbitrary-Oriented Object Detection. Ming, Q.; Zhou, Z.; Miao, L.; Zhang, H.; and Li, L. Proceedings of the AAAI Conference on Artificial Intelligence, 35(3): 2355-2363. 5 2021.
Dynamic Anchor Learning for Arbitrary-Oriented Object Detection [pdf]Paper   Dynamic Anchor Learning for Arbitrary-Oriented Object Detection [link]Website   doi   link   bibtex   abstract  
ReDet: A Rotation-Equivariant Detector for Aerial Object Detection. Han, J.; Ding, J.; Xue, N.; and Xia, G. 2021.
ReDet: A Rotation-Equivariant Detector for Aerial Object Detection [pdf]Paper   link   bibtex   abstract  
Gliding Vertex on the Horizontal Bounding Box for Multi-Oriented Object Detection. Xu, Y.; Fu, M.; Wang, Q.; Wang, Y.; Chen, K.; Xia, G., S.; and Bai, X. IEEE Transactions on Pattern Analysis and Machine Intelligence, 43(4): 1452-1459. 4 2021.
Gliding Vertex on the Horizontal Bounding Box for Multi-Oriented Object Detection [pdf]Paper   doi   link   bibtex   abstract  
Dynamic Anchor Learning for Arbitrary-Oriented Object Detection. Ming, Q.; Zhou, Z.; Miao, L.; Zhang, H.; and Li, L. 35th AAAI Conference on Artificial Intelligence, AAAI 2021, 3B: 2355-2363. 2021.
Dynamic Anchor Learning for Arbitrary-Oriented Object Detection [pdf]Paper   doi   link   bibtex   abstract  
Oriented R-CNN for Object Detection. Xie, X.; Cheng, G.; Wang, J.; Yao, X.; and Han, J. 2021.
Oriented R-CNN for Object Detection [link]Website   link   bibtex   abstract  
Oriented object detection in aerial images with box boundary-aware vectors. Yi, J.; Wu, P.; Liu, B.; Huang, Q.; Qu, H.; and Metaxas, D. Proceedings - 2021 IEEE Winter Conference on Applications of Computer Vision, WACV 2021,2149-2158. 2021.
Oriented object detection in aerial images with box boundary-aware vectors [pdf]Paper   doi   link   bibtex   abstract  
Rethinking Rotated Object Detection with Gaussian Wasserstein Distance Loss. Yang, X.; Yan, J.; Ming, Q.; Wang, W.; Zhang, X.; and Tian, Q. Proceedings of Machine Learning Research, 139: 11830-11841. 2021.
Rethinking Rotated Object Detection with Gaussian Wasserstein Distance Loss [pdf]Paper   link   bibtex   abstract  
Monocular 3D object detection using dual quadric for autonomous driving. Li, P.; and Zhao, H. Neurocomputing, 441: 151-160. 6 2021.
Monocular 3D object detection using dual quadric for autonomous driving [pdf]Paper   doi   link   bibtex   abstract  
GDR-Net: Geometry-Guided Direct Regression Network for Monocular 6D Object Pose Estimation. Liu, C.; Sun, W.; Zhang, K.; Liu, J.; Zhang, X.; and Fan, S. Chinese Control Conference, CCC, 2022-July: 6241-6246. 2 2021.
GDR-Net: Geometry-Guided Direct Regression Network for Monocular 6D Object Pose Estimation [pdf]Paper   GDR-Net: Geometry-Guided Direct Regression Network for Monocular 6D Object Pose Estimation [link]Website   doi   link   bibtex   abstract  
A self-controlled unmanned aerial vehicle system for farming applications and its working method thereof. Masih, J.; Deshpande, M.; Singh, H.; Malik, B.; Malik, N.; Dubinsky, Z.; Kwasi Bannor, R.; Maludin, S.; Rajasekaran, R.; Neema, R.; Singh Lodhi, A.; Masih, I.; Kwasi, R.; and Singh, A. , (12). 8 2021.
A self-controlled unmanned aerial vehicle system for farming applications and its working method thereof [pdf]Paper   link   bibtex   abstract  
A method of selectively treating vegetation in a field. . 6 2021.
A method of selectively treating vegetation in a field [pdf]Paper   link   bibtex   abstract  
Remotely piloted aircraft suitable for aerial survey and spraying activities, and aerial survey and spraying system. . 5 2021.
Remotely piloted aircraft suitable for aerial survey and spraying activities, and aerial survey and spraying system [pdf]Paper   link   bibtex   abstract  
Autonomous detection and treatment of agricultural objects via precision treatment delivery system. Sibley . 12 2021.
Autonomous detection and treatment of agricultural objects via precision treatment delivery system [pdf]Paper   link   bibtex   abstract  
High-capacity agricultural drone for carrying-out phytosanitary treatments in field crops. Brevet De Invenție, C., D. AP, 9(72). 11 2021.
High-capacity agricultural drone for carrying-out phytosanitary treatments in field crops [pdf]Paper   link   bibtex   abstract  
System for damage evaluation in agriculture, based on satellite images and data privacy mechanisms. . 5 2021.
System for damage evaluation in agriculture, based on satellite images and data privacy mechanisms [pdf]Paper   link   bibtex   abstract  
Gradient-Based Training of Gaussian Mixture Models for High-Dimensional Streaming Data. Gepperth, A.; and Pfülb, B. Neural Processing Letters, 53(6): 4331-4348. 12 2021.
Gradient-Based Training of Gaussian Mixture Models for High-Dimensional Streaming Data [pdf]Paper   Gradient-Based Training of Gaussian Mixture Models for High-Dimensional Streaming Data [link]Website   doi   link   bibtex   abstract  
VRU Pose-SSD: Multiperson Pose Estimation For Automated Driving. Kumar, C.; Ramesh, J.; Chakraborty, B.; Raman, R.; Weinrich, C.; Mundhada, A.; Jain, A.; and Flohr, F., B. Technical Report 2021.
VRU Pose-SSD:  Multiperson  Pose  Estimation  For  Automated  Driving [pdf]Paper   VRU Pose-SSD:  Multiperson  Pose  Estimation  For  Automated  Driving [link]Website   link   bibtex   abstract  
  2020 (90)
Individual grapevine analysis in a multi-temporal context using UAV-based multi-sensor imagery. Pádua, L.; Adão, T.; Sousa, A.; Peres, E.; and Sousa, J., J. Remote Sensing, 12(1). 2020.
Individual grapevine analysis in a multi-temporal context using UAV-based multi-sensor imagery [pdf]Paper   doi   link   bibtex   abstract  
In field detection of downy mildew symptoms with proximal colour imaging. Abdelghafour, F.; Keresztes, B.; Germain, C.; and Da Costa, J., P. Sensors (Switzerland), 20(16): 1-22. 8 2020.
In field detection of downy mildew symptoms with proximal colour imaging [pdf]Paper   doi   link   bibtex   abstract  
Automatic Detection of Flavescence Dorée Symptoms Across White Grapevine Varieties Using Deep Learning. Boulent, J.; St-Charles, P., L.; Foucher, S.; and Théau, J. Frontiers in Artificial Intelligence, 3. 11 2020.
Automatic Detection of Flavescence Dorée Symptoms Across White Grapevine Varieties Using Deep Learning [pdf]Paper   doi   link   bibtex   abstract  
CNN-based monocular decentralized SLAM on embedded FPGA. Yu, J.; Gao, F.; Cao, J.; Yu, C.; Zhang, Z.; Huang, Z.; Wang, Y.; and Yang, H. Proceedings - 2020 IEEE 34th International Parallel and Distributed Processing Symposium Workshops, IPDPSW 2020,66-73. 2020.
CNN-based monocular decentralized SLAM on embedded FPGA [pdf]Paper   doi   link   bibtex   abstract  
GNSS/IMU/ODO/LiDAR-SLAM Integrated Navigation System Using IMU/ODO Pre-Integration. Chang, L.; Niu, X.; and Liu, T. Sensors 2020, Vol. 20, Page 4702, 20(17): 4702. 8 2020.
GNSS/IMU/ODO/LiDAR-SLAM Integrated Navigation System Using IMU/ODO Pre-Integration [pdf]Paper   GNSS/IMU/ODO/LiDAR-SLAM Integrated Navigation System Using IMU/ODO Pre-Integration [link]Website   doi   link   bibtex   abstract  
Evaluating a Visual Simultaneous Localization and Mapping Solution on Embedded Platforms. Silveira, O., C.; De Melo, J., G.; Moreira, L., A.; Pinto, J., B.; Rodrigues, L., R.; and Rosa, P., F. IEEE International Symposium on Industrial Electronics, 2020-June: 530-535. 6 2020.
doi   link   bibtex   abstract  
DeepFactors: Real-Time Probabilistic Dense Monocular SLAM. Czarnowski, J.; Laidlow, T.; Clark, R.; and Davison, A., J. IEEE Robotics Autom. Lett., 5(2): 721--728. 2020.
DeepFactors: Real-Time Probabilistic Dense Monocular SLAM [pdf]Paper   link   bibtex   abstract  
Grape detection, segmentation, and tracking using deep neural networks and three-dimensional association. Santos, T., T.; de Souza, L., L.; dos Santos, A., A.; and Avila, S. Computers and Electronics in Agriculture, 170(August 2019): 105247. 2020.
Grape detection, segmentation, and tracking using deep neural networks and three-dimensional association [pdf]Paper   Grape detection, segmentation, and tracking using deep neural networks and three-dimensional association [link]Website   doi   link   bibtex   abstract  
S2DNet: Learning Accurate Correspondences for Sparse-to-Dense Feature Matching. Germain, H.; Bourmaud, G.; and Lepetit, V. ,11-13. 2020.
S2DNet: Learning Accurate Correspondences for Sparse-to-Dense Feature Matching [pdf]Paper   S2DNet: Learning Accurate Correspondences for Sparse-to-Dense Feature Matching [link]Website   link   bibtex   abstract  
Vine disease detection in UAV multispectral images using optimized image registration and deep learning segmentation approach. Kerkech, M.; Hafiane, A.; and Canals, R. Computers and Electronics in Agriculture, 174(December 2019). 2020.
Vine disease detection in UAV multispectral images using optimized image registration and deep learning segmentation approach [pdf]Paper   doi   link   bibtex   abstract  
Computer vision technology in agricultural automation —A review. Tian, H.; Wang, T.; Liu, Y.; Qiao, X.; and Li, Y. Information Processing in Agriculture, 7(1): 1-19. 2020.
Computer vision technology in agricultural automation —A review [pdf]Paper   Computer vision technology in agricultural automation —A review [link]Website   doi   link   bibtex   abstract  
Towards an Integrated Low-Cost Agricultural Monitoring System with Unmanned Aircraft System. Karatzinis, G., D.; Apostolidis, S., D.; Kapoutsis, A., C.; Panagiotopoulou, L.; Boutalis, Y., S.; and Kosmatopoulos, E., B. 2020 International Conference on Unmanned Aircraft Systems, ICUAS 2020,1131-1138. 2020.
Towards an Integrated Low-Cost Agricultural Monitoring System with Unmanned Aircraft System [pdf]Paper   doi   link   bibtex   abstract  
Robots in human life. Gradetsky, V., G.; Tokhi, M., O.; Bolotnik, N., N.; Silva, M.; and Virk, G., S. 2020.
Robots in human life [pdf]Paper   link   bibtex   abstract  
Systematic Literature Review of Embedded Computer Vision in Autonomous Vehicles. Machado, G.; and Wangenheim, A., V. . 2020.
Systematic Literature Review of Embedded Computer Vision in Autonomous Vehicles [pdf]Paper   link   bibtex  
Evaluation of vineyard cropping systems using on-board rgb-depth perception. Moreno, H.; Rueda-Ayala, V.; Ribeiro, A.; Bengochea-Guevara, J.; Lopez, J.; Peteinatos, G.; Valero, C.; and Andújar, D. Sensors (Switzerland), 20(23): 1-14. 2020.
Evaluation of vineyard cropping systems using on-board rgb-depth perception [pdf]Paper   doi   link   bibtex   abstract  
Local motion planner for autonomous navigation in vineyards with a RGB-D camera-based algorithm and deep learning synergy. Aghi, D.; Mazzia, V.; and Chiaberge, M. Machines, 8(2): 1-16. 2020.
Local motion planner for autonomous navigation in vineyards with a RGB-D camera-based algorithm and deep learning synergy [pdf]Paper   doi   link   bibtex   abstract  
A deep learning algorithm for detection of potassium deficiency in a red grapevine and spraying actuation using a raspberry pi3. Ukacgbu, U.; Tartibu, L.; Laseinde, T.; Okwu, M.; and Olayode, I. 2020 International Conference on Artificial Intelligence, Big Data, Computing and Data Communication Systems, icABCD 2020 - Proceedings. 2020.
A deep learning algorithm for detection of potassium deficiency in a red grapevine and spraying actuation using a raspberry pi3 [pdf]Paper   doi   link   bibtex   abstract  
Different sensor based intelligent spraying systems in Agriculture. Abbas, I.; Liu, J.; Faheem, M.; Noor, R., S.; Shaikh, S., A.; Solangi, K., A.; and Raza, S., M. Sensors and Actuators, A: Physical, 316: 112265. 2020.
Different sensor based intelligent spraying systems in Agriculture [pdf]Paper   Different sensor based intelligent spraying systems in Agriculture [link]Website   doi   link   bibtex   abstract  
Detection of grapevine leafroll-associated virus 1 and 3 in white and red grapevine cultivars using hyperspectral imaging. Bendel, N.; Kicherer, A.; Backhaus, A.; Köckerling, J.; Maixner, M.; Bleser, E.; Klück, H., C.; Seiffert, U.; Voegele, R., T.; and Töpfer, R. Remote Sensing, 12(10): 1-26. 2020.
Detection of grapevine leafroll-associated virus 1 and 3 in white and red grapevine cultivars using hyperspectral imaging [pdf]Paper   doi   link   bibtex   abstract  
In field detection of downy mildew symptoms with proximal colour imaging. Abdelghafour, F.; Keresztes, B.; Germain, C.; and Da Costa, J., P. Sensors (Switzerland), 20(16): 1-22. 8 2020.
In field detection of downy mildew symptoms with proximal colour imaging [pdf]Paper   doi   link   bibtex   abstract  
UAV IMAGES AND DEEP-LEARNING ALGORITHMS FOR DETECTING FLAVESCENCE DOREE DISEASE IN GRAPEVINE ORCHARDS Commission TCIII-IVc. Musci, M., A.; Persello, C.; and Lingua, A., M. International Archives of the Photogrammetry, Remote Sensing \& Spatial Information Sciences, 43. 2020.
UAV IMAGES AND DEEP-LEARNING ALGORITHMS FOR DETECTING FLAVESCENCE DOREE DISEASE IN GRAPEVINE ORCHARDS Commission TCIII-IVc [pdf]Paper   UAV IMAGES AND DEEP-LEARNING ALGORITHMS FOR DETECTING FLAVESCENCE DOREE DISEASE IN GRAPEVINE ORCHARDS Commission TCIII-IVc [link]Website   doi   link   bibtex   abstract  
Accelerating deep learning inference in constrained embedded devices using hardware loops and a dot product unit. Vreca, J.; Sturm, K., J.; Gungl, E.; Merchant, F.; Bientinesi, P.; Leupers, R.; and Brezocnik, Z. IEEE Access, 8: 165913-165926. 2020.
Accelerating deep learning inference in constrained embedded devices using hardware loops and a dot product unit [pdf]Paper   doi   link   bibtex   abstract  
Using AI Methods to Evaluate a Minimal Model for Perception. Prentner, R.; and Fields, C. Open Philosophy, 2(1): 503-524. 1 2020.
Using AI Methods to Evaluate a Minimal Model for Perception [pdf]Paper   doi   link   bibtex   abstract  
Vehicle automatic driving system based on embedded and machine learning. Fang, P.; Zecong, W.; and Zhang, X. In Proceedings - 2020 International Conference on Computer Vision, Image and Deep Learning, CVIDL 2020, pages 281-284, 7 2020. Institute of Electrical and Electronics Engineers Inc.
Vehicle automatic driving system based on embedded and machine learning [pdf]Paper   doi   link   bibtex   abstract  
S2DNet: Learning Image Features for Accurate Sparse-to-Dense Matching. Germain, H.; Bourmaud, G.; and Lepetit, V. Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), 12348 LNCS: 626-643. 2020.
S2DNet: Learning Image Features for Accurate Sparse-to-Dense Matching [pdf]Paper   doi   link   bibtex   abstract  
Grape Leaf Disease Identification Using Improved Deep Convolutional Neural Networks. Liu, B.; Ding, Z.; Tian, L.; He, D.; Li, S.; and Wang, H. Frontiers in Plant Science, 11. 7 2020.
Grape Leaf Disease Identification Using Improved Deep Convolutional Neural Networks [pdf]Paper   doi   link   bibtex   abstract  
Automatic Grapevine Trunk Detection on UAV-Based Point Cloud. Jurado, J., M.; Pádua, L.; Feito, F., R.; and Sousa, J., J. Remote Sensing 2020, Vol. 12, Page 3043, 12(18): 3043. 9 2020.
Automatic Grapevine Trunk Detection on UAV-Based Point Cloud [pdf]Paper   Automatic Grapevine Trunk Detection on UAV-Based Point Cloud [link]Website   doi   link   bibtex   abstract  
Detection and Retrieval of Out-of-Distribution Objects in Semantic Segmentation. Oberdiek, P.; Rottmann, M.; and Fink, G., A. 2020.
Detection and Retrieval of Out-of-Distribution Objects in Semantic Segmentation [pdf]Paper   link   bibtex   abstract  
Automated grapevine flower detection and quantification method based on computer vision and deep learning from on-the-go imaging using a mobile sensing platform under field conditions. Palacios, F.; Bueno, G.; Salido, J.; Diago, M., P.; Hernández, I.; and Tardaguila, J. Computers and Electronics in Agriculture, 178: 105796. 11 2020.
Automated grapevine flower detection and quantification method based on computer vision and deep learning from on-the-go imaging using a mobile sensing platform under field conditions [pdf]Paper   doi   link   bibtex   abstract  
A vision-based robust grape berry counting algorithm for fast calibration-free bunch weight estimation in the field. Liu, S.; Zeng, X.; and Whitty, M. Computers and Electronics in Agriculture, 173: 105360. 6 2020.
A vision-based robust grape berry counting algorithm for fast calibration-free bunch weight estimation in the field [pdf]Paper   doi   link   bibtex   abstract  
Yield components detection and image-based indicators for non-invasive grapevine yield prediction at different phenological phases. Victorino, G.; Braga, R.; Santos-Victor, J.; and Lopes, C., M. OENO One, 54(4): 833-848. 10 2020.
Yield components detection and image-based indicators for non-invasive grapevine yield prediction at different phenological phases [pdf]Paper   Yield components detection and image-based indicators for non-invasive grapevine yield prediction at different phenological phases [link]Website   doi   link   bibtex   abstract  
Using Bayesian growth models to predict grape yield. Ellis, R.; Moltchanova, E.; Gerhard, D.; Trought, M.; and Yang, L. OENO One, 54(3): 443-453. 7 2020.
Using Bayesian growth models to predict grape yield [pdf]Paper   Using Bayesian growth models to predict grape yield [link]Website   doi   link   bibtex   abstract  
Vineyard yield estimation by combining remote sensing, computer vision and artificial neural network techniques. Ballesteros, R.; Intrigliolo, D., S.; Ortega, J., F.; Ramírez-Cuesta, J., M.; Buesa, I.; and Moreno, M., A. Precision Agriculture, 21(6): 1242-1262. 12 2020.
Vineyard yield estimation by combining remote sensing, computer vision and artificial neural network techniques [pdf]Paper   Vineyard yield estimation by combining remote sensing, computer vision and artificial neural network techniques [link]Website   doi   link   bibtex   abstract  
GBCNet: In-Field Grape Berries Counting for Yield Estimation by Dilated CNNs. Coviello, L.; Cristoforetti, M.; Jurman, G.; and Furlanello, C. Applied Sciences 2020, Vol. 10, Page 4870, 10(14): 4870. 7 2020.
GBCNet: In-Field Grape Berries Counting for Yield Estimation by Dilated CNNs [pdf]Paper   GBCNet: In-Field Grape Berries Counting for Yield Estimation by Dilated CNNs [link]Website   doi   link   bibtex   abstract  
Vineyard yield estimation using 2-D proximal sensing: a multitemporal approach. Hacking, C.; Poona, N.; and Poblete-Echeverría, C. OENO One, 54(4): 793-812. 10 2020.
Vineyard yield estimation using 2-D proximal sensing: a multitemporal approach [pdf]Paper   Vineyard yield estimation using 2-D proximal sensing: a multitemporal approach [link]Website   doi   link   bibtex   abstract  
Weakly-supervised Domain Adaptation via GAN and Mesh Model for Estimating 3D Hand Poses Interacting Objects. Baek, S. In 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition, CVPR 2020, Seattle, WA, USA, June 13-19, 2020, pages 6120--6130, 2020.
Weakly-supervised Domain Adaptation via GAN and Mesh Model for Estimating 3D Hand Poses Interacting Objects [pdf]Paper   Weakly-supervised Domain Adaptation via GAN and Mesh Model for Estimating 3D Hand Poses Interacting Objects [link]Website   link   bibtex   abstract  
Combining Domain Adaptation and Spatial Consistency for Unseen Fruits Counting: A Quasi-Unsupervised Approach. Bellocchio, E.; Costante, G.; Cascianelli, S.; Fravolini, M., L.; and Valigi, P. IEEE Robotics and Automation Letters, 5(2): 1079-1086. 4 2020.
doi   link   bibtex   abstract  
Combining Domain Adaptation and Spatial Consistency for Unseen Fruits Counting: A Quasi-Unsupervised Approach. Bellocchio, E.; Costante, G.; Cascianelli, S.; Fravolini, M., L.; and Valigi, P. IEEE Robotics and Automation Letters, 5(2): 1079-1086. 4 2020.
Combining Domain Adaptation and Spatial Consistency for Unseen Fruits Counting: A Quasi-Unsupervised Approach [pdf]Paper   doi   link   bibtex   abstract  
Estimating low-rank region likelihood maps. Csurka, G.; Kato, Z.; Juhasz, A.; and Humenberger, M. Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, (March): 13773-13782. 2020.
Estimating low-rank region likelihood maps [pdf]Paper   doi   link   bibtex   abstract  
(12)发明专利. , 27(19): 1-23. 2020.
(12)发明专利 [pdf]Paper   link   bibtex  
Assessment of RGB Vegetation Indices to Estimate Chlorophyll Content in Sugar Beet Leaves in the Final Cultivation Stage. Sánchez-Sastre, L., F.; Alte da Veiga, N., M.; Ruiz-Potosme, N., M.; Carrión-Prieto, P.; Marcos-Robles, J., L.; Navas-Gracia, L., M.; and Martín-Ramos, P. AgriEngineering 2020, Vol. 2, Pages 128-149, 2(1): 128-149. 3 2020.
Assessment of RGB Vegetation Indices to Estimate Chlorophyll Content in Sugar Beet Leaves in the Final Cultivation Stage [pdf]Paper   Assessment of RGB Vegetation Indices to Estimate Chlorophyll Content in Sugar Beet Leaves in the Final Cultivation Stage [link]Website   doi   link   bibtex   abstract  
Learning memory-guided normality for anomaly detection. Park, H.; Noh, J.; and Ham, B. Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition,14360-14369. 2020.
Learning memory-guided normality for anomaly detection [pdf]Paper   doi   link   bibtex   abstract  
Probing Predictions on OOD Images via Nearest Categories. Yang, Y.; Rashtchian, C.; Salakhutdinov, R.; and Chaudhuri, K. ,1-33. 2020.
Probing Predictions on OOD Images via Nearest Categories [pdf]Paper   Probing Predictions on OOD Images via Nearest Categories [link]Website   link   bibtex   abstract  
Generalized ODIN: Detecting Out-of-Distribution Image without Learning from Out-of-Distribution Data. Hsu, Y., C.; Shen, Y.; Jin, H.; and Kira, Z. Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition,10948-10957. 2020.
Generalized ODIN: Detecting Out-of-Distribution Image without Learning from Out-of-Distribution Data [pdf]Paper   doi   link   bibtex   abstract  
Counting of grapevine berries in images via semantic segmentation using convolutional neural networks. Zabawa, L.; Kicherer, A.; Klingbeil, L.; Töpfer, R.; Kuhlmann, H.; and Roscher, R. ISPRS Journal of Photogrammetry and Remote Sensing, 164: 73-83. 6 2020.
Counting of grapevine berries in images via semantic segmentation using convolutional neural networks [pdf]Paper   doi   link   bibtex   abstract  
PaDiM: a Patch Distribution Modeling Framework for Anomaly Detection and Localization. Defard, T.; Setkov, A.; Loesch, A.; and Audigier, R. Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), 12664 LNCS: 475-489. 11 2020.
PaDiM: a Patch Distribution Modeling Framework for Anomaly Detection and Localization [pdf]Paper   PaDiM: a Patch Distribution Modeling Framework for Anomaly Detection and Localization [link]Website   doi   link   bibtex   abstract  
Benchmarking Unsupervised Outlier Detection with Realistic Synthetic Data. Steinbuss, G.; and Böhm, K. ACM Transactions on Knowledge Discovery from Data, 15(4). 4 2020.
Benchmarking Unsupervised Outlier Detection with Realistic Synthetic Data [pdf]Paper   Benchmarking Unsupervised Outlier Detection with Realistic Synthetic Data [link]Website   doi   link   bibtex   abstract  
Effect of Missing Vines on Total Leaf Area Determined by NDVI Calculated from Sentinel Satellite Data: Progressive Vine Removal Experiments. Vélez, S.; Barajas, E.; Rubio, J., A.; Vacas, R.; and Poblete-Echeverría, C. Applied Sciences 2020, Vol. 10, Page 3612, 10(10): 3612. 5 2020.
Effect of Missing Vines on Total Leaf Area Determined by NDVI Calculated from Sentinel Satellite Data: Progressive Vine Removal Experiments [pdf]Paper   Effect of Missing Vines on Total Leaf Area Determined by NDVI Calculated from Sentinel Satellite Data: Progressive Vine Removal Experiments [link]Website   doi   link   bibtex   abstract  
Evaluation of novel precision viticulture tool for canopy biomass estimation and missing plant detection based on 2.5D and 3D approaches using RGB images acquired by UAV platform. Di Gennaro, S., F.; and Matese, A. Plant Methods, 16(1): 1-12. 7 2020.
Evaluation of novel precision viticulture tool for canopy biomass estimation and missing plant detection based on 2.5D and 3D approaches using RGB images acquired by UAV platform [pdf]Paper   Evaluation of novel precision viticulture tool for canopy biomass estimation and missing plant detection based on 2.5D and 3D approaches using RGB images acquired by UAV platform [link]Website   doi   link   bibtex   abstract  
VddNet: Vine Disease Detection Network Based on Multispectral Images and Depth Map. Kerkech, M.; Hafiane, A.; and Canals, R. Remote Sensing 2020, Vol. 12, Page 3305, 12(20): 3305. 10 2020.
VddNet: Vine Disease Detection Network Based on Multispectral Images and Depth Map [pdf]Paper   VddNet: Vine Disease Detection Network Based on Multispectral Images and Depth Map [link]Website   doi   link   bibtex   abstract  
Vine Disease Detection by Deep Learning Method Combined with 3D Depth Information. Kerkech, M.; Hafiane, A.; Canals, R.; and Ros, F. Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), 12119 LNCS: 82-90. 2020.
Vine Disease Detection by Deep Learning Method Combined with 3D Depth Information [pdf]Paper   Vine Disease Detection by Deep Learning Method Combined with 3D Depth Information [link]Website   doi   link   bibtex   abstract  
Evaluating the suitability of hyper- and multispectral imaging to detect foliar symptoms of the grapevine trunk disease Esca in vineyards. Bendel, N.; Kicherer, A.; Backhaus, A.; Klück, H., C.; Seiffert, U.; Fischer, M.; Voegele, R., T.; and Töpfer, R. Plant Methods, 16(1): 1-18. 12 2020.
Evaluating the suitability of hyper- and multispectral imaging to detect foliar symptoms of the grapevine trunk disease Esca in vineyards [pdf]Paper   Evaluating the suitability of hyper- and multispectral imaging to detect foliar symptoms of the grapevine trunk disease Esca in vineyards [link]Website   doi   link   bibtex   abstract  
Early detection of grapevine leafroll disease in a red-berried wine grape cultivar using hyperspectral imaging. Gao, Z.; Khot, L., R.; Naidu, R., A.; and Zhang, Q. Computers and Electronics in Agriculture, 179: 105807. 12 2020.
Early detection of grapevine leafroll disease in a red-berried wine grape cultivar using hyperspectral imaging [pdf]Paper   doi   link   bibtex   abstract  
Vine disease detection in UAV multispectral images using optimized image registration and deep learning segmentation approach. Kerkech, M.; Hafiane, A.; and Canals, R. Technical Report 2020.
link   bibtex   abstract  
Forecasting severe grape downy mildew attacks using machine learning. Chen, M.; Brun, F.; Raynal, M.; and Makowski, D. PLOS ONE, 15(3): e0230254. 2020.
Forecasting severe grape downy mildew attacks using machine learning [pdf]Paper   Forecasting severe grape downy mildew attacks using machine learning [link]Website   doi   link   bibtex   abstract  
Effect of Missing Vines on Total Leaf Area Determined by NDVI Calculated from Sentinel Satellite Data: Progressive Vine Removal Experiments. Vélez, S.; Barajas, E.; Rubio, J., A.; Vacas, R.; and Poblete-Echeverría, C. Applied Sciences 2020, Vol. 10, Page 3612, 10(10): 3612. 5 2020.
Effect of Missing Vines on Total Leaf Area Determined by NDVI Calculated from Sentinel Satellite Data: Progressive Vine Removal Experiments [pdf]Paper   Effect of Missing Vines on Total Leaf Area Determined by NDVI Calculated from Sentinel Satellite Data: Progressive Vine Removal Experiments [link]Website   doi   link   bibtex   abstract  
Evaluating the suitability of hyper- and multispectral imaging to detect foliar symptoms of the grapevine trunk disease Esca in vineyards. Bendel, N.; Kicherer, A.; Backhaus, A.; Klück, H., C.; Seiffert, U.; Fischer, M.; Voegele, R., T.; and Töpfer, R. Plant Methods, 16(1): 1-18. 12 2020.
Evaluating the suitability of hyper- and multispectral imaging to detect foliar symptoms of the grapevine trunk disease Esca in vineyards [pdf]Paper   Evaluating the suitability of hyper- and multispectral imaging to detect foliar symptoms of the grapevine trunk disease Esca in vineyards [link]Website   doi   link   bibtex   abstract  
Multi-head Knowledge Distillation for Model Compression. Wang, H.; Lohit, S.; Jones, †., M.; and Fu, Y. . 12 2020.
Multi-head Knowledge Distillation for Model Compression [pdf]Paper   Multi-head Knowledge Distillation for Model Compression [link]Website   link   bibtex   abstract  
MiniLMv2: Multi-Head Self-Attention Relation Distillation for Compressing Pretrained Transformers. Wang, W.; Bao, H.; Huang, S.; Dong, L.; and Wei, F. Findings of the Association for Computational Linguistics: ACL-IJCNLP 2021,2140-2151. 12 2020.
MiniLMv2: Multi-Head Self-Attention Relation Distillation for Compressing Pretrained Transformers [pdf]Paper   MiniLMv2: Multi-Head Self-Attention Relation Distillation for Compressing Pretrained Transformers [link]Website   doi   link   bibtex   abstract  
Grape detection, segmentation, and tracking using deep neural networks and three-dimensional association. Santos, T., T.; de Souza, L., L.; dos Santos, A., A.; and Avila, S. Computers and Electronics in Agriculture, 170: 105247. 2020.
link   bibtex  
Grad-CAM: Visual Explanations from Deep Networks via Gradient-Based Localization. Selvaraju, R., R.; Cogswell, M.; Das, A.; Vedantam, R.; Parikh, D.; and Batra, D. International Journal of Computer Vision, 128(2): 336-359. 2020.
link   bibtex  
Deep Learning for Generic Object Detection: a Survey. Liu, L.; Ouyang, W.; Wang, X.; Fieguth, P., W.; Chen, J.; Liu, X.; and Pietikäinen, M. International Journal of Computer Vision, 128(2): 261-318. 2020.
link   bibtex  
Detection of Grapevine Leafroll-Associated Virus 1 and 3 in White and Red Grapevine Cultivars Using Hyperspectral Imaging. Bendel, N.; Kicherer, A.; Backhaus, A.; Köckerling, J.; Maixner, M.; Bleser, E.; Klück, H.; Seiffert, U.; Voegele, R., T.; and Töpfer, R. Remote Sensing, 12(10): 1693. 2020.
link   bibtex  
Different sensor based intelligent spraying systems in Agriculture. Abbas, I.; Liu, J.; Faheem, M.; Noor, R., S.; Shaikh, S., A.; Solangi, K., A.; and Raza, S., M. Sensors and Actuators A: Physical, 316: 112265. 2020.
link   bibtex  
Vine Disease Detection by Deep Learning Method Combined with 3D Depth Information. Kerkech, M.; Hafiane, A.; Canals, R.; and Ros, F. In Image and Signal Processing, pages 82-90, 2020. Springer International Publishing
link   bibtex  
Wine Economics. Castriota, S. The MIT Press, 2020.
link   bibtex  
ResUNet-a: A deep learning framework for semantic segmentation of remotely sensed data. Diakogiannis, F., I.; Waldner, F.; Caccetta, P.; and Wu, C. ISPRS Journal of Photogrammetry and Remote Sensing, 162: 94-114. 2020.
link   bibtex  
UAV Images and Deep-learning Algorithms for Detecting Flavescence Doree Disease in Grapevine Orchards. Musci, M., A.; Persello, C.; and Lingua, A., M. International Archives of the Photogrammetry, Remote Sensing \& Spatial Information Sciences, 43: 1483-1489. 2020.
link   bibtex  
Effect of Missing Vines on Total Leaf Area Determined by NDVI Calculated from Sentinel Satellite Data: Progressive Vine Removal Experiments. Vélez, S.; Barajas, E.; Rubio, J., A.; Vacas, R.; and Poblete-Echeverría, C. Applied Sciences, 10(10): 3612. 2020.
link   bibtex  
VddNet: Vine Disease Detection Network Based on Multispectral Images and Depth Map. Kerkech, M.; Hafiane, A.; and Canals, R. Remote Sensing, 12(20): 3305. 2020.
link   bibtex  
Evaluating the suitability of hyper-and multispectral imaging to detect foliar symptoms of the grapevine trunk disease Esca in vineyards. Bendel, N.; Kicherer, A.; Backhaus, A.; Klück, H.; Seiffert, U.; Fischer, M.; Voegele, R., T.; and Töpfer, R. Plant Methods, 16(1): 1-18. 2020.
link   bibtex  
Individual Grapevine Analysis in a Multi-Temporal Context Using UAV-Based Multi-Sensor Imagery. Pádua, L.; Adão, T.; Sousa, A., M., R.; Peres, E.; and Sousa, J., J. Remote Sensing, 12(1): 139. 2020.
link   bibtex  
Counting of grapevine berries in images via semantic segmentation using convolutional neural networks. Zabawa, L.; Kicherer, A.; Klingbeil, L.; Töpfer, R.; Kuhlmann, H.; and Roscher, R. ISPRS Journal of Photogrammetry and Remote Sensing, 164: 73-83. 2020.
link   bibtex  
GBCNet: In-Field Grape Berries Counting for Yield Estimation by Dilated CNNs. Coviello, L.; Cristoforetti, M.; Jurman, G.; and Furlanello, C. Applied Sciences, 10(14): 4870. 2020.
link   bibtex  
Grape Leaf Disease Identification Using Improved Deep Convolutional Neural Networks. Liu, B.; Ding, Z.; Tian, L.; He, D.; Li, S.; and Wang, H. Frontiers in Plant Science, 11: 1082. 2020.
link   bibtex  
YOLOv5 by Ultralytics. Jocher, G. 2020.
YOLOv5 by Ultralytics [link]Website   doi   link   bibtex  
Hierarchical Multi-Scale Attention for Semantic Segmentation. Tao, A.; Sapra, K.; and Catanzaro, B. Computing Research Repository, abs/2005.1. 2020.
link   bibtex  
Grapevine Phenology: Annual Growth and Development. Giese, G.; Velasco-Cruz, C.; and Leonardelli, M. College of Agricultural, Consumer and Environmental Sciences, 2020.
link   bibtex  
Automatic Detection of Flavescence Dorée Symptoms Across White Grapevine Varieties Using Deep Learning. Boulent, J.; St-Charles, P.; Foucher, S.; and Théau, J. Frontiers in Artificial Intelligence, 3: 564878. 2020.
link   bibtex  
YOLOv4: Optimal Speed and Accuracy of Object Detection. Bochkovskiy, A.; Wang, C.; and Liao, H., M. Computing Research Repository, abs/2004.1. 2020.
link   bibtex  
In Field Detection of Downy Mildew Symptoms with Proximal Colour Imaging. Abdelghafour, F.; Keresztes, B.; Germain, C.; and da Costa, J. Sensors, 20(16): 4380. 2020.
link   bibtex  
Arbitrary-Oriented Object Detection with Circular Smooth Label. Yang, X.; and Yan, J. International Journal of Computer Vision, 130(5): 1340-1365. 3 2020.
Arbitrary-Oriented Object Detection with Circular Smooth Label [pdf]Paper   Arbitrary-Oriented Object Detection with Circular Smooth Label [link]Website   doi   link   bibtex   abstract  
PolarMask: Single shot instance segmentation with polar representation. Xie, E.; Sun, P.; Song, X.; Wang, W.; Liu, X.; Liang, D.; Shen, C.; and Luo, P. Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, 1: 12190-12199. 2020.
PolarMask: Single shot instance segmentation with polar representation [pdf]Paper   doi   link   bibtex   abstract  
Hierarchical Multi-Label Object Detection Framework for Remote Sensing Images. Shin, S., J.; Kim, S.; Kim, Y.; and Kim, S. Remote Sensing 2020, Vol. 12, Page 2734, 12(17): 2734. 8 2020.
Hierarchical Multi-Label Object Detection Framework for Remote Sensing Images [pdf]Paper   Hierarchical Multi-Label Object Detection Framework for Remote Sensing Images [link]Website   doi   link   bibtex   abstract  
Generalized Focal Loss: Learning Qualified and Distributed Bounding Boxes for Dense Object Detection. Li, X.; Wang, W.; Wu, L.; Chen, S.; Hu, X.; Li, J.; Tang, J.; and Yang, J. Advances in Neural Information Processing Systems, 2020-Decem. 6 2020.
Generalized Focal Loss: Learning Qualified and Distributed Bounding Boxes for Dense Object Detection [pdf]Paper   Generalized Focal Loss: Learning Qualified and Distributed Bounding Boxes for Dense Object Detection [link]Website   link   bibtex   abstract  
Distance-IoU Loss: Faster and Better Learning for Bounding Box Regression. Zheng, Z.; Wang, P.; Liu, W.; Li, J.; Ye, R.; and Ren, D. Proceedings of the AAAI Conference on Artificial Intelligence, 34(07): 12993-13000. 4 2020.
Distance-IoU Loss: Faster and Better Learning for Bounding Box Regression [pdf]Paper   Distance-IoU Loss: Faster and Better Learning for Bounding Box Regression [link]Website   doi   link   bibtex   abstract  
PolarMask: Single shot instance segmentation with polar representation. Xie, E.; Sun, P.; Song, X.; Wang, W.; Liu, X.; Liang, D.; Shen, C.; and Luo, P. Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, 1: 12190-12199. 2020.
doi   link   bibtex   abstract  
Dynamic refinement network for oriented and densely packed object detection. Pan, X.; Ren, Y.; Sheng, K.; Dong, W.; Yuan, H.; Guo, X.; Ma, C.; and Xu, C. Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition,11204-11213. 2020.
Dynamic refinement network for oriented and densely packed object detection [pdf]Paper   doi   link   bibtex   abstract  
A review of imaging techniques for plant disease detection. Singh, V.; Sharma, N.; and Singh, S. Artificial Intelligence in Agriculture, 4: 229-242. 1 2020.
A review of imaging techniques for plant disease detection [pdf]Paper   doi   link   bibtex   abstract  
A drone for variable rate spraying of liquid or granules. . 10 2020.
A drone for variable rate spraying of liquid or granules [pdf]Paper   link   bibtex   abstract  
  2019 (71)
Comparison of SIFT encoded and deep learning features for the classification and detection of esca disease in Bordeaux vineyards. Rançon, F.; Bombrun, L.; Keresztes, B.; and Germain, C. Remote Sensing, 11(1). 1 2019.
Comparison of SIFT encoded and deep learning features for the classification and detection of esca disease in Bordeaux vineyards [pdf]Paper   doi   link   bibtex   abstract  
Survey and evaluation of monocular visual-inertial SLAM algorithms for augmented reality. Jinyu, L.; Bangbang, Y.; Danpeng, C.; Nan, W.; Guofeng, Z.; and Hujun, B. Virtual Reality & Intelligent Hardware, 1(4): 386-410. 8 2019.
Survey and evaluation of monocular visual-inertial SLAM algorithms for augmented reality [pdf]Paper   doi   link   bibtex   abstract  
A Review of SLAM Techniques and Security in Autonomous Driving. Singandhupe, A.; and La, H., M. 3rd IEEE International Conference on Robotic Computing, IRC 2019, Naples, Italy, February 25-27, 2019,602--607. 2019.
A Review of SLAM Techniques and Security in Autonomous Driving [pdf]Paper   doi   link   bibtex   abstract  
Visual-Inertial Navigation: A Concise Review. Huang, G. Proceedings - IEEE International Conference on Robotics and Automation, 2019-May: 9572-9582. 6 2019.
Visual-Inertial Navigation: A Concise Review [pdf]Paper   Visual-Inertial Navigation: A Concise Review [link]Website   doi   link   bibtex   abstract  
A Variational Observation Model of 3D Object for Probabilistic Semantic SLAM. Yu, H., W.; and Lee, B., H. 2019 International Conference on Robotics and Automation (ICRA). 2019.
A Variational Observation Model of 3D Object for Probabilistic Semantic SLAM [pdf]Paper   link   bibtex   abstract  
3D Keypoint Repeatability for Heterogeneous Multi-Robot SLAM. Boroson, E., R.; and Ayanian, N. 2019 International Conference on Robotics and Automation (ICRA). 2019.
3D Keypoint Repeatability for Heterogeneous Multi-Robot SLAM [pdf]Paper   link   bibtex   abstract  
BAD SLAM: Bundle Adjusted Direct RGB-D SLAM. Schöps, T.; Sattler, T.; and Pollefeys, M. In IEEE Conference on Computer Vision and Pattern Recognition, CVPR 2019, Long Beach, CA, USA, June 16-20, 2019, pages 134--144, 2019.
BAD SLAM: Bundle Adjusted Direct RGB-D SLAM [pdf]Paper   BAD SLAM: Bundle Adjusted Direct RGB-D SLAM [link]Website   link   bibtex   abstract  
Low-cost aerial imaging for small holder farmers. Adityajain; Kapetanovic, Z.; Kumar, A.; Swamy, V., N.; Patii, R.; Vasisht, D.; Sharma, R.; Swaminathan, M.; Chandra, R.; Badam, A.; Ranade, G.; Sinha, S.; and Akshay Uttama Nambi, S., N. COMPASS 2019 - Proceedings of the 2019 Conference on Computing and Sustainable Societies,41-51. 2019.
Low-cost aerial imaging for small holder farmers [pdf]Paper   doi   link   bibtex   abstract  
Aerial imagery or on-ground detection? An economic analysis for vineyard crops. Andújar, D.; Moreno, H.; Bengochea-Guevara, J., M.; de Castro, A.; and Ribeiro, A. Computers and Electronics in Agriculture, 157(September 2018): 351-358. 2019.
Aerial imagery or on-ground detection? An economic analysis for vineyard crops [pdf]Paper   Aerial imagery or on-ground detection? An economic analysis for vineyard crops [link]Website   doi   link   bibtex   abstract  
R2D2: Repeatable and reliable detector and descriptor. Revaud, J.; Weinzaepfel, P.; de Souza, C.; and Humenberger, M. Advances in Neural Information Processing Systems, 32. 2019.
R2D2: Repeatable and reliable detector and descriptor [pdf]Paper   link   bibtex   abstract  
Sparse-to-Dense Hypercolumn Matching for Long-Term Visual Localization. Germain, H.; Bourmaud, G.; and Lepetit, V. Proceedings - 2019 International Conference on 3D Vision, 3DV 2019,513-523. 2019.
Sparse-to-Dense Hypercolumn Matching for Long-Term Visual Localization [pdf]Paper   doi   link   bibtex   abstract  
D2-net: A trainable CNN for joint description and detection of local features. Dusmanu, M.; Rocco, I.; Pajdla, T.; Pollefeys, M.; Sivic, J.; Torii, A.; and Sattler, T. Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, 2019-June: 8084-8093. 2019.
D2-net: A trainable CNN for joint description and detection of local features [pdf]Paper   doi   link   bibtex   abstract  
Object pose estimation from monocular image using multi-view keypoint correspondence. Kundu, J., N.; Rahul, M., V.; Ganeshan, A.; and Babu, R., V. Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), 11131 LNCS: 298-313. 2019.
Object pose estimation from monocular image using multi-view keypoint correspondence [pdf]Paper   doi   link   bibtex   abstract  
Sosnet: Second order similarity regularization for local descriptor learning. Tian, Y.; Yu, X.; Fan, B.; Wu, F.; Heijnen, H.; and Balntas, V. Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, 2019-June: 11008-11017. 2019.
Sosnet: Second order similarity regularization for local descriptor learning [pdf]Paper   doi   link   bibtex   abstract  
From coarse to fine: Robust hierarchical localization at large scale. Sarlin, P., E.; Cadena, C.; Siegwart, R.; and Dymczyk, M. Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, 2019-June: 12708-12717. 2019.
From coarse to fine: Robust hierarchical localization at large scale [pdf]Paper   doi   link   bibtex   abstract  
Key.Net: Keypoint detection by handcrafted and learned CNN filters. Laguna, A., B.; Riba, E.; Ponsa, D.; and Mikolajczyk, K. Proceedings of the IEEE International Conference on Computer Vision, 2019-Octob(Iccv): 5835-5843. 2019.
Key.Net: Keypoint detection by handcrafted and learned CNN filters [pdf]Paper   doi   link   bibtex   abstract  
In-field high throughput grapevine phenotyping with a consumer-grade depth camera. Milella, A.; Marani, R.; Petitti, A.; and Reina, G. Computers and Electronics in Agriculture, 156(May 2018): 293-306. 2019.
In-field high throughput grapevine phenotyping with a consumer-grade depth camera [pdf]Paper   In-field high throughput grapevine phenotyping with a consumer-grade depth camera [link]Website   doi   link   bibtex   abstract  
Quantifying the effect of Jacobiasca lybica pest on vineyards with UAVs by combining geometric and computer vision techniques. Del-Campo-Sanchez, A.; Ballesteros, R.; Hernandez-Lopez, D.; Fernando Ortega, J.; and Moreno, M., A. PLoS ONE, 14(4): 1-20. 2019.
Quantifying the effect of Jacobiasca lybica pest on vineyards with UAVs by combining geometric and computer vision techniques [pdf]Paper   doi   link   bibtex   abstract  
A low-cost and unsupervised image recognition methodology for yield estimation in a vineyard. Di Gennaro, S., F.; Toscano, P.; Cinat, P.; Berton, A.; and Matese, A. Frontiers in Plant Science, 10(May): 1-13. 2019.
A low-cost and unsupervised image recognition methodology for yield estimation in a vineyard [pdf]Paper   doi   link   bibtex   abstract  
Detection of grapevine yellows symptoms in Vitis vinifera L. with artificial intelligence. Cruz, A.; Ampatzidis, Y.; Pierro, R.; Materazzi, A.; Panattoni, A.; De Bellis, L.; and Luvisi, A. Computers and Electronics in Agriculture, 157(November 2018): 63-76. 2019.
Detection of grapevine yellows symptoms in Vitis vinifera L. with artificial intelligence [pdf]Paper   Detection of grapevine yellows symptoms in Vitis vinifera L. with artificial intelligence [link]Website   doi   link   bibtex   abstract  
Methods to compare the spatial variability of UAV-based spectral and geometric information with ground autocorrelated data. A case of study for precision viticulture. Matese, A.; Di Gennaro, S., F.; and Santesteban, L., G. Computers and Electronics in Agriculture, 162: 931-940. 7 2019.
Methods to compare the spatial variability of UAV-based spectral and geometric information with ground autocorrelated data. A case of study for precision viticulture [pdf]Paper   doi   link   bibtex   abstract  
Comparison of Satellite and UAV-Based Multispectral Imagery for Vineyard Variability Assessment. Khaliq, A.; Comba, L.; Biglia, A.; Ricauda Aimonino, D.; Chiaberge, M.; and Gay, P. Remote Sensing 2019, Vol. 11, Page 436, 11(4): 436. 2 2019.
Comparison of Satellite and UAV-Based Multispectral Imagery for Vineyard Variability Assessment [pdf]Paper   Comparison of Satellite and UAV-Based Multispectral Imagery for Vineyard Variability Assessment [link]Website   doi   link   bibtex   abstract  
A Bayesian framework for joint structure and colour based pixel-wise classification of grapevine proximal images. Abdelghafour, F.; Rosu, R.; Keresztes, B.; Germain, C.; and Da Costa, J., P. Computers and Electronics in Agriculture, 158: 345-357. 3 2019.
A Bayesian framework for joint structure and colour based pixel-wise classification of grapevine proximal images [pdf]Paper   doi   link   bibtex   abstract  
R2D2: Repeatable and Reliable Detector and Descriptor. Revaud, J.; Weinzaepfel, P.; De Souza, C.; Pion, N.; Csurka, G.; Cabon, Y.; and Humenberger, M. Advances in Neural Information Processing Systems, 32. 6 2019.
R2D2: Repeatable and Reliable Detector and Descriptor [pdf]Paper   R2D2: Repeatable and Reliable Detector and Descriptor [link]Website   doi   link   bibtex   abstract  
Detection of Single Grapevine Berries in Images Using Fully Convolutional Neural Networks. Zabawa, L.; Kicherer, A.; Klingbeil, L.; Milioto, A.; Topfer, R.; Kuhlmann, H.; and Roscher, R. IEEE Computer Society Conference on Computer Vision and Pattern Recognition Workshops, 2019-June: 2571-2579. 5 2019.
Detection of Single Grapevine Berries in Images Using Fully Convolutional Neural Networks [pdf]Paper   Detection of Single Grapevine Berries in Images Using Fully Convolutional Neural Networks [link]Website   doi   link   bibtex   abstract  
Vineyard Variability Analysis through UAV-Based Vigour Maps to Assess Climate Change Impacts. Pádua, L.; Marques, P.; Adão, T.; Guimarães, N.; Sousa, A.; Peres, E.; and Sousa, J., J. Agronomy 2019, Vol. 9, Page 581, 9(10): 581. 9 2019.
Vineyard Variability Analysis through UAV-Based Vigour Maps to Assess Climate Change Impacts [link]Website   doi   link   bibtex   abstract  
Dual Activation Function-Based Extreme Learning Machine (ELM) for Estimating Grapevine Berry Yield and Quality. Maimaitiyiming, M.; Sagan, V.; Sidike, P.; and Kwasniewski, M., T. Remote Sensing 2019, Vol. 11, Page 740, 11(7): 740. 3 2019.
Dual Activation Function-Based Extreme Learning Machine (ELM) for Estimating Grapevine Berry Yield and Quality [pdf]Paper   Dual Activation Function-Based Extreme Learning Machine (ELM) for Estimating Grapevine Berry Yield and Quality [link]Website   doi   link   bibtex   abstract  
Vineyard Variability Analysis through UAV-Based Vigour Maps to Assess Climate Change Impacts. Pádua, L.; Marques, P.; Adão, T.; Guimarães, N.; Sousa, A.; Peres, E.; and Sousa, J., J. Agronomy 2019, Vol. 9, Page 581, 9(10): 581. 9 2019.
Vineyard Variability Analysis through UAV-Based Vigour Maps to Assess Climate Change Impacts [link]Website   doi   link   bibtex   abstract  
Semi-supervised Domain Adaptation via Minimax Entropy. Saito, K.; Kim, D.; Sclaroff, S.; Darrell, T.; and Saenko, K. In 2019 IEEE/CVF International Conference on Computer Vision, ICCV 2019, Seoul, Korea (South), October 27 - November 2, 2019, pages 8049--8057, 2019.
Semi-supervised Domain Adaptation via Minimax Entropy [pdf]Paper   Semi-supervised Domain Adaptation via Minimax Entropy [link]Website   link   bibtex   abstract  
Spatial Transformer for 3D Point Clouds. Wang, J.; Chakraborty, R.; and Yu, S., X. arXiv preprint arXiv:1906.10887. 6 2019.
Spatial Transformer for 3D Point Clouds [pdf]Paper   Spatial Transformer for 3D Point Clouds [link]Website   doi   link   bibtex   abstract  
A Bayesian framework for joint structure and colour based pixel-wise classification of grapevine proximal images. Abdelghafour, F.; Rosu, R.; Keresztes, B.; Germain, C.; and {Da Costa}, J. Computers and Electronics in Agriculture, 158: 345-357. 3 2019.
A Bayesian framework for joint structure and colour based pixel-wise classification of grapevine proximal images [pdf]Paper   doi   link   bibtex   abstract  
EfficientNet: Rethinking Model Scaling for Convolutional Neural Networks. Tan, M.; and Le, Q., V. 36th International Conference on Machine Learning, ICML 2019, 2019-June: 10691-10700. 5 2019.
EfficientNet: Rethinking Model Scaling for Convolutional Neural Networks [pdf]Paper   EfficientNet: Rethinking Model Scaling for Convolutional Neural Networks [link]Website   link   bibtex   abstract  
Detection of Anomalous Grapevine Berries Using All-Convolutional Autoencoders. Strothmann, L.; Rascher, U.; and Roscher, R. International Geoscience and Remote Sensing Symposium (IGARSS),3701-3704. 7 2019.
Detection of Anomalous Grapevine Berries Using All-Convolutional Autoencoders [pdf]Paper   doi   link   bibtex   abstract  
Real-time Joint Object Detection and Semantic Segmentation Network for Automated Driving. Sistu, G.; Leang, I.; and Yogamani, S. , (Nips): 1-5. 2019.
Real-time Joint Object Detection and Semantic Segmentation Network for Automated Driving [pdf]Paper   Real-time Joint Object Detection and Semantic Segmentation Network for Automated Driving [link]Website   link   bibtex   abstract  
Vineyard Variability Analysis through UAV-Based Vigour Maps to Assess Climate Change Impacts. Pádua, L.; Marques, P.; Adão, T.; Guimarães, N.; Sousa, A.; Peres, E.; and Sousa, J., J. Agronomy 2019, Vol. 9, Page 581, 9(10): 581. 9 2019.
Vineyard Variability Analysis through UAV-Based Vigour Maps to Assess Climate Change Impacts [pdf]Paper   Vineyard Variability Analysis through UAV-Based Vigour Maps to Assess Climate Change Impacts [link]Website   doi   link   bibtex   abstract  
On-the-go assessment of vineyard canopy porosity, bunch and leaf exposure by image analysis. Diago, M., P.; Aquino, A.; Millan, B.; Palacios, F.; and Tardaguila, J. Australian Journal of Grape and Wine Research, 25(3): 363-374. 7 2019.
On-the-go assessment of vineyard canopy porosity, bunch and leaf exposure by image analysis [pdf]Paper   On-the-go assessment of vineyard canopy porosity, bunch and leaf exposure by image analysis [link]Website   doi   link   bibtex   abstract  
A Low-Cost and Unsupervised Image Recognition Methodology for Yield Estimation in a Vineyard. Di Gennaro, S., F.; Toscano, P.; Cinat, P.; Berton, A.; and Matese, A. Frontiers in Plant Science, 10. 4 2019.
A Low-Cost and Unsupervised Image Recognition Methodology for Yield Estimation in a Vineyard [pdf]Paper   A Low-Cost and Unsupervised Image Recognition Methodology for Yield Estimation in a Vineyard [link]Website   doi   link   bibtex   abstract  
Efficient Convolutional Neural Networks for Depth-Based Multi-Person Pose Estimation. Martínez-González, A.; Villamizar, M.; Canévet, O.; and Odobez, J. IEEE Transactions on Circuits and Systems for Video Technology, 30(11): 4207-4221. 12 2019.
Efficient Convolutional Neural Networks for Depth-Based Multi-Person Pose Estimation [pdf]Paper   Efficient Convolutional Neural Networks for Depth-Based Multi-Person Pose Estimation [link]Website   doi   link   bibtex   abstract  
Comparison of Unsupervised Algorithms for Vineyard Canopy Segmentation from UAV Multispectral Images. Cinat, P.; Di Gennaro, S., F.; Berton, A.; and Matese, A. Remote Sensing 2019, Vol. 11, Page 1023, 11(9): 1023. 4 2019.
Comparison of Unsupervised Algorithms for Vineyard Canopy Segmentation from UAV Multispectral Images [pdf]Paper   Comparison of Unsupervised Algorithms for Vineyard Canopy Segmentation from UAV Multispectral Images [link]Website   doi   link   bibtex   abstract  
Investigating 2-D and 3-D Proximal Remote Sensing Techniques for Vineyard Yield Estimation. Hacking, C.; Poona, N.; Manzan, N.; and Poblete-Echeverría, C. Sensors 2019, Vol. 19, Page 3652, 19(17): 3652. 8 2019.
Investigating 2-D and 3-D Proximal Remote Sensing Techniques for Vineyard Yield Estimation [pdf]Paper   Investigating 2-D and 3-D Proximal Remote Sensing Techniques for Vineyard Yield Estimation [link]Website   doi   link   bibtex   abstract  
A Non-Invasive Method Based on Computer Vision for Grapevine Cluster Compactness Assessment Using a Mobile Sensing Platform under Field Conditions. Palacios, F.; Diago, M., P.; and Tardaguila, J. Sensors (Basel, Switzerland), 19(17). 9 2019.
A Non-Invasive Method Based on Computer Vision for Grapevine Cluster Compactness Assessment Using a Mobile Sensing Platform under Field Conditions [pdf]Paper   A Non-Invasive Method Based on Computer Vision for Grapevine Cluster Compactness Assessment Using a Mobile Sensing Platform under Field Conditions [link]Website   doi   link   bibtex   abstract  
On-the-go assessment of vineyard canopy porosity, bunch and leaf exposure by image analysis. Diago, M., P.; Aquino, A.; Millan, B.; Palacios, F.; and Tardaguila, J. Australian Journal of Grape and Wine Research, 25(3): 363-374. 7 2019.
On-the-go assessment of vineyard canopy porosity, bunch and leaf exposure by image analysis [pdf]Paper   On-the-go assessment of vineyard canopy porosity, bunch and leaf exposure by image analysis [link]Website   doi   link   bibtex   abstract  
Pixel-level crack delineation in images with convolutional feature fusion. Ni, F., T.; Zhang, J.; and Chen, Z., Q. Structural Control and Health Monitoring, 26(1): e2286. 1 2019.
Pixel-level crack delineation in images with convolutional feature fusion [pdf]Paper   Pixel-level crack delineation in images with convolutional feature fusion [link]Website   doi   link   bibtex   abstract  
Multi-Task Networks With Universe, Group, and Task Feature Learning. Pentyala, S.; Liu, M.; Alexa, A.; and Dreyer, M. . 2019.
Multi-Task Networks With Universe, Group, and Task Feature Learning [pdf]Paper   link   bibtex   abstract  
Multi-task network embedding. Xu, L.; Wei, X.; Cao, J.; and Yu, P., S. International Journal of Data Science and Analytics, 8(2): 183-198. 9 2019.
Multi-task network embedding [pdf]Paper   Multi-task network embedding [link]Website   doi   link   bibtex   abstract  
MultiNet++: Multi-Stream Feature Aggregation and Geometric Loss Strategy for Multi-Task Learning. Chennupati, S.; Sistu, G.; Yogamani, S.; Rawashdeh, S., A.; and America, V., N. 2019.
MultiNet++: Multi-Stream Feature Aggregation and Geometric Loss Strategy for Multi-Task Learning [pdf]Paper   link   bibtex   abstract  
Multi-task Network for Panoptic Segmentation in Automated Driving. Petrovai, A.; and Nedevschi, S. 2019 IEEE Intelligent Transportation Systems Conference, ITSC 2019,2394-2401. 10 2019.
Multi-task Network for Panoptic Segmentation in Automated Driving [pdf]Paper   doi   link   bibtex   abstract  
Graph-based Knowledge Distillation by Multi-head Attention Network. Lee, S.; and Song, B., C. 30th British Machine Vision Conference 2019, BMVC 2019. 7 2019.
Graph-based Knowledge Distillation by Multi-head Attention Network [pdf]Paper   Graph-based Knowledge Distillation by Multi-head Attention Network [link]Website   link   bibtex   abstract  
Improving Multi-Task Deep Neural Networks via Knowledge Distillation for Natural Language Understanding. Liu, X.; He, P.; Chen, W.; and Gao, J. . 4 2019.
Improving Multi-Task Deep Neural Networks via Knowledge Distillation for Natural Language Understanding [pdf]Paper   Improving Multi-Task Deep Neural Networks via Knowledge Distillation for Natural Language Understanding [link]Website   link   bibtex   abstract  
Graph Representation Learning via Multi-task Knowledge Distillation. Ma, J.; and Mei, Q. . 11 2019.
Graph Representation Learning via Multi-task Knowledge Distillation [pdf]Paper   Graph Representation Learning via Multi-task Knowledge Distillation [link]Website   link   bibtex   abstract  
Protocol for the definition of a multi-spectral sensor for specific foliar disease detection: Case of “Flavescence dorée”. Al-Saddik, H.; Laybros, A.; Simon, J.; and Cointault, F. Phytoplasmas: Methods and Protocols,213-238. 2019.
link   bibtex  
Searching for mobileNetV3. Howard, A.; Sandler, M.; Chen, B.; Wang, W.; Chen, L., C.; Tan, M.; Chu, G.; Vasudevan, V.; Zhu, Y.; Pang, R.; Le, Q.; and Adam, H. In Proceedings of the IEEE International Conference on Computer Vision, volume 2019-Octob, pages 1314-1324, 10 2019. Institute of Electrical and Electronics Engineers Inc.
Searching for mobileNetV3 [link]Website   doi   link   bibtex   abstract  
mySense: a comprehensive data management environment to improve precision agriculture practices. Morais, R.; Silva, N.; Mendes, J.; Adão, T.; Pádua, L.; López-Riquelme, J., A.; Pulido, N., P.; Sousa, J., J.; and Peres, E. Computers and Electronics in Agriculture, 162: 882-894. 2019.
link   bibtex  
Comparison of SIFT Encoded and Deep Learning Features for the Classification and Detection of Esca Disease in Bordeaux Vineyards. Rançon, F.; Bombrun, L.; Keresztes, B.; and Germain, C. Remote Sensing, 11(1): 1. 2019.
link   bibtex  
On the Potentiality of UAV Multispectral Imagery to Detect Flavescence dorée and Grapevine Trunk Diseases. Albetis, J.; Jacquin, A.; Goulard, M.; Poilvé, H.; Rousseau, J.; Clenet, H.; Dedieu, G.; and Duthoit, S. Remote Sensing, 11(1): 23. 2019.
link   bibtex  
An efficient implementation of artificial neural networks with K-fold cross-validation for process optimization. Srinivasan, K.; Cherukuri, A., K.; Vincent, D., R.; Garg, A.; and Chen, B. Journal of Internet Technology, 20(4): 1213-1225. 2019.
link   bibtex  
Quantifying the effect of Jacobiasca lybica pest on vineyards with UAVs by combining geometric and computer vision techniques. del-Campo-Sanchez, A.; Ballesteros, R.; David, H.; Ortega, J., F.; and Moreno, M., A. PLoS One, 14(4): e0215521. 2019.
link   bibtex  
TensorLy: Tensor Learning in Python. Kossaifi, J.; Panagakis, Y.; Anandkumar, A.; and Pantic, M. Journal of Machine Learning Research, 20(26): 1-6. 2019.
link   bibtex  
A Bayesian framework for joint structure and colour based pixel-wise classification of grapevine proximal images. Abdelghafour, F.; Rosu, R.; Keresztes, B.; Germain, C.; and da Costa, J. Computers and Electronics in Agriculture, 158: 345-357. 2019.
link   bibtex  
Detection of Anomalous Grapevine Berries Using All-Convolutional Autoencoders. Strothmann, L.; Rascher, U.; and Roscher, R. In IGARSS 2019 - 2019 IEEE International Geoscience and Remote Sensing Symposium, pages 3701-3704, 2019.
link   bibtex  
Detection of Single Grapevine Berries in Images Using Fully Convolutional Neural Networks. Zabawa, L.; Kicherer, A.; Klingbeil, L.; Milioto, A.; Töpfer, R.; Kuhlmann, H.; and Roscher, R. In IEEE Conference on Computer Vision and Pattern Recognition Workshops, CVPR Workshops 2019, Long Beach, CA, USA, June 16-20, 2019, pages 2571-2579, 2019. IEEE
link   bibtex  
Detection of grapevine yellows symptoms in \emphVitis vinifera L. with artificial intelligence. Cruz, A.; Ampatzidis, Y.; Pierro, R.; Materazzi, A.; Panattoni, A.; Bellis, L., D.; and Luvisi, A. Computers and Electronics in Agriculture, 157: 63-76. 2019.
link   bibtex  
Learning RoI Transformer for Oriented Object Detection in Aerial Images. Ding, J.; Xue, N.; Long, Y.; Xia, G.; and Lu, Q. 2019.
Learning RoI Transformer for Oriented Object Detection in Aerial Images [pdf]Paper   link   bibtex   abstract  
SCRDet: Towards More Robust Detection for Small, Cluttered and Rotated Objects. Yang, X.; Yang, J.; Yan, J.; Zhang, Y.; Zhang, T.; Guo, Z.; Sun, X.; and Fu, K. 2019.
SCRDet: Towards More Robust Detection for Small, Cluttered and Rotated Objects [pdf]Paper   SCRDet: Towards More Robust Detection for Small, Cluttered and Rotated Objects [link]Website   link   bibtex   abstract  
CenterNet: Keypoint triplets for object detection. Duan, K.; Bai, S.; Xie, L.; Qi, H.; Huang, Q.; and Tian, Q. Proceedings of the IEEE International Conference on Computer Vision, 2019-Octob: 6568-6577. 2019.
CenterNet: Keypoint triplets for object detection [pdf]Paper   doi   link   bibtex   abstract  
Face alignment with expression-and pose-based adaptive initialization. Mo, H.; Liu, L.; Zhu, W.; Yin, S.; and Wei, S. IEEE Transactions on Multimedia, 21(4): 943-956. 4 2019.
Face alignment with expression-and pose-based adaptive initialization [pdf]Paper   doi   link   bibtex   abstract  
Vegetation Index Weighted Canopy Volume Model (CVMVI) for soybean biomass estimation from Unmanned Aerial System-based RGB imagery. Maimaitijiang, M.; Sagan, V.; Sidike, P.; Maimaitiyiming, M.; Hartling, S.; Peterson, K., T.; Maw, M., J.; Shakoor, N.; Mockler, T.; and Fritschi, F., B. ISPRS Journal of Photogrammetry and Remote Sensing, 151: 27-41. 5 2019.
Vegetation Index Weighted Canopy Volume Model (CVMVI) for soybean biomass estimation from Unmanned Aerial System-based RGB imagery [pdf]Paper   doi   link   bibtex   abstract  
Precision agriculture implementation method by UAV systems and artificial intelligence image processing technologies. -Jung Lin, H.; -Lin, Y.; Yang, -.; -Tong Zou, J.; and Chen, S. . 9 2019.
Precision agriculture implementation method by UAV systems and artificial intelligence image processing technologies [pdf]Paper   link   bibtex   abstract  
Estimation of pedestrian pose orientation using soft target training based on teacher-student framework. Heo, D.; Nam, J., Y.; and Ko, B., C. Sensors (Switzerland), 19(5). 3 2019.
Estimation of pedestrian pose orientation using soft target training based on teacher-student framework [pdf]Paper   doi   link   bibtex   abstract  
EuroCity Persons: A Novel Benchmark for Person Detection in Traffic Scenes. Braun, M.; Krebs, S.; Flohr, F.; and Gavrila, D., M. IEEE Transactions on Pattern Analysis and Machine Intelligence, 41(8): 1844-1861. 8 2019.
EuroCity Persons: A Novel Benchmark for Person Detection in Traffic Scenes [pdf]Paper   doi   link   bibtex   abstract  
Improved generalization of heading direction estimation for aerial filming using semi-supervised regression. Wang, W.; Ahuja, A.; Zhang, Y.; Bonatti, R.; and Scherer, S. Proceedings - IEEE International Conference on Robotics and Automation, 2019-May: 5901-5907. 5 2019.
Improved generalization of heading direction estimation for aerial filming using semi-supervised regression [pdf]Paper   doi   link   bibtex   abstract  
  2018 (66)
Near infrared hyperspectral dataset of healthy and infected apple tree leaves images for the early detection of apple scab disease. Nouri, M.; Gorretta, N.; Vaysse, P.; Giraud, M.; Germain, C.; Keresztes, B.; and Roger, J., M. Data in Brief, 16: 967-971. 2 2018.
Near infrared hyperspectral dataset of healthy and infected apple tree leaves images for the early detection of apple scab disease [pdf]Paper   doi   link   bibtex   abstract  
A Review of Visual-Inertial Simultaneous Localization and Mapping from Filtering-Based and Optimization-Based Perspectives. Chen, C.; Zhu, H.; Li, M.; and You, S. Robotics 2018, Vol. 7, Page 45, 7(3): 45. 8 2018.
A Review of Visual-Inertial Simultaneous Localization and Mapping from Filtering-Based and Optimization-Based Perspectives [pdf]Paper   A Review of Visual-Inertial Simultaneous Localization and Mapping from Filtering-Based and Optimization-Based Perspectives [link]Website   doi   link   bibtex   abstract  
Evaluating the Performance of Structure from Motion Pipelines. Bianco, S.; Ciocca, G.; and Marelli, D. Journal of Imaging 2018, Vol. 4, Page 98, 4(8): 98. 8 2018.
Evaluating the Performance of Structure from Motion Pipelines [pdf]Paper   Evaluating the Performance of Structure from Motion Pipelines [link]Website   doi   link   bibtex   abstract  
Direct Sparse Odometry. Engel, J.; Koltun, V.; and Cremers, D. IEEE Transactions on Pattern Analysis and Machine Intelligence, 40(3): 611-625. 3 2018.
Direct Sparse Odometry [pdf]Paper   doi   link   bibtex   abstract  
A Benchmark Comparison of Monocular Visual-Inertial Odometry Algorithms for Flying Robots. Delmerico, J.; and Scaramuzza, D. 2018 IEEE International Conference on Robotics and Automation, ICRA 2018, Brisbane, Australia, May 21-25, 2018,2502--2509. 2018.
A Benchmark Comparison of Monocular Visual-Inertial Odometry Algorithms for Flying Robots [pdf]Paper   A Benchmark Comparison of Monocular Visual-Inertial Odometry Algorithms for Flying Robots [link]Website   link   bibtex   abstract  
VINS-Mono: A Robust and Versatile Monocular Visual-Inertial State Estimator. Qin, T.; Li, P.; and Shen, S. IEEE Trans. Robotics, 34(4): 1004--1020. 2018.
VINS-Mono: A Robust and Versatile Monocular Visual-Inertial State Estimator [pdf]Paper   VINS-Mono: A Robust and Versatile Monocular Visual-Inertial State Estimator [link]Website   link   bibtex   abstract  
CodeSLAM-Learning a Compact, Optimisable Representation for Dense Visual SLAM. Bloesch, M.; Czarnowski, J.; Clark, R.; Leutenegger, S.; and Davison, A., J. In 2018 IEEE Conference on Computer Vision and Pattern Recognition, CVPR 2018, Salt Lake City, UT, USA, June 18-22, 2018, pages 2560--2568, 2018.
CodeSLAM-Learning a Compact, Optimisable Representation for Dense Visual SLAM [pdf]Paper   link   bibtex   abstract  
SuperPoint: Self-supervised interest point detection and description. Detone, D.; Malisiewicz, T.; and Rabinovich, A. IEEE Computer Society Conference on Computer Vision and Pattern Recognition Workshops, 2018-June: 337-349. 2018.
SuperPoint: Self-supervised interest point detection and description [pdf]Paper   doi   link   bibtex   abstract  
Improving Landmark Localization with Semi-Supervised Learning. Honari, S.; Molchanov, P.; Tyree, S.; Vincent, P.; Pal, C.; and Kautz, J. Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition,1546-1555. 2018.
Improving Landmark Localization with Semi-Supervised Learning [pdf]Paper   doi   link   bibtex   abstract  
From handcrafted to deep local features. Csurka, G.; Dance, C., R.; and Humenberger, M. , (July). 2018.
From handcrafted to deep local features [pdf]Paper   From handcrafted to deep local features [link]Website   link   bibtex   abstract  
Repeatability is not enough: Learning affine regions via discriminability. Mishkin, D.; Radenović, F.; and Matas, J. Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), 11213 LNCS: 287-304. 2018.
Repeatability is not enough: Learning affine regions via discriminability [pdf]Paper   doi   link   bibtex   abstract  
KCNN: Extremely-efficient hardware keypoint detection with a compact convolutional neural network. Di Febbo, P.; Dal Mutto, C.; Tieu, K.; and Mattoccia, S. IEEE Computer Society Conference on Computer Vision and Pattern Recognition Workshops, 2018-June: 795-803. 2018.
KCNN: Extremely-efficient hardware keypoint detection with a compact convolutional neural network [pdf]Paper   doi   link   bibtex   abstract  
NetVLAD: CNN Architecture for Weakly Supervised Place Recognition. Arandjelovic, R.; Gronat, P.; Torii, A.; Pajdla, T.; and Sivic, J. IEEE Transactions on Pattern Analysis and Machine Intelligence, 40(6): 1437-1451. 2018.
NetVLAD: CNN Architecture for Weakly Supervised Place Recognition [pdf]Paper   doi   link   bibtex   abstract  
Learning to Detect Features in Texture Images. Zhang, L.; and Rusinkiewicz, S. Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition,6325-6333. 2018.
Learning to Detect Features in Texture Images [pdf]Paper   doi   link   bibtex   abstract  
24/7 Place Recognition by View Synthesis. Torii, A.; Arandjelovic, R.; Sivic, J.; Okutomi, M.; and Pajdla, T. IEEE Transactions on Pattern Analysis and Machine Intelligence, 40(2): 257-271. 2018.
24/7 Place Recognition by View Synthesis [pdf]Paper   doi   link   bibtex   abstract  
Hierarchical Metric Learning and Matching for. Correspondences, G.; Fathy, M., E.; Tran, Q.; Zia, M., Z.; Vernaza, P.; and Chandraker, M. . 2018.
Hierarchical Metric Learning and Matching for [pdf]Paper   Hierarchical Metric Learning and Matching for [link]Website   link   bibtex   abstract  
Neighbourhood consensus networks. Rocco, I.; Cimpoi, M.; Arandjelović, R.; Torii, A.; Pajdla, T.; and Sivic, J. Advances in Neural Information Processing Systems, 2018-Decem(NeurIPS): 1651-1662. 2018.
Neighbourhood consensus networks [pdf]Paper   link   bibtex   abstract  
Bingan: Learning compact binary descriptors with a regularized GaN. Zieba, M.; El-Gaaly, T.; Semberecki, P.; and Trzcinski, T. Advances in Neural Information Processing Systems, 2018-Decem(NeurIPS): 3608-3618. 2018.
Bingan: Learning compact binary descriptors with a regularized GaN [pdf]Paper   link   bibtex   abstract  
Hashing as Tie-Aware Learning to Rank. He, K.; Cakir, F.; Bargal, S., A.; and Sclaroff, S. Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition,4023-4032. 2018.
Hashing as Tie-Aware Learning to Rank [pdf]Paper   doi   link   bibtex   abstract  
Local Descriptors Optimized for Average Precision. He, K.; Lu, Y.; and Sclaroff, S. Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition,596-605. 2018.
Local Descriptors Optimized for Average Precision [pdf]Paper   doi   link   bibtex   abstract  
Automatic Coregistration Algorithm to Remove Canopy Shaded Pixels in UAV-Borne Thermal Images to Improve the Estimation of Crop Water Stress Index of a Drip-Irrigated Cabernet Sauvignon Vineyard. Poblete, T.; Ortega-Farías, S.; and Ryu, D. Sensors (Switzerland), 18(2): 1-17. 2018.
Automatic Coregistration Algorithm to Remove Canopy Shaded Pixels in UAV-Borne Thermal Images to Improve the Estimation of Crop Water Stress Index of a Drip-Irrigated Cabernet Sauvignon Vineyard [pdf]Paper   doi   link   bibtex   abstract  
A pattern recognition strategy for visual grape bunch detection in vineyards. Pérez-Zavala, R.; Torres-Torriti, M.; Cheein, F., A.; and Troni, G. Computers and Electronics in Agriculture, 151(June): 136-149. 2018.
A pattern recognition strategy for visual grape bunch detection in vineyards [pdf]Paper   A pattern recognition strategy for visual grape bunch detection in vineyards [link]Website   doi   link   bibtex   abstract  
3-D Characterization of Vineyards Using a Novel UAV Imagery-Based OBIA Procedure for Precision Viticulture Applications. de Castro, A., I.; Jiménez-Brenes, F., M.; Torres-Sánchez, J.; Peña, J., M.; Borra-Serrano, I.; and López-Granados, F. Remote Sensing 2018, Vol. 10, Page 584, 10(4): 584. 4 2018.
3-D Characterization of Vineyards Using a Novel UAV Imagery-Based OBIA Procedure for Precision Viticulture Applications [pdf]Paper   3-D Characterization of Vineyards Using a Novel UAV Imagery-Based OBIA Procedure for Precision Viticulture Applications [link]Website   doi   link   bibtex   abstract  
Vision-based system for detecting Grapevine Yellow diseases using artificial intelligence Conventional diagnosis of the pathogen strongly relies on symptom identification , because analysis concentration of the pathogen and its erratic distribution in the. Ampatzidis, Y.; Cruz, A.; Pierro, R.; Materazzi, A.; Panattoni, A.; Bellis, D.; and Luvisi, A. In International Society for Horticultural Science International Symposium on Mechanization, Precision Horticulture, and Robotics, Istanbul, Turkey, 2018, 2018.
Vision-based system for detecting Grapevine Yellow diseases using artificial intelligence Conventional diagnosis of the pathogen strongly relies on symptom identification , because analysis concentration of the pathogen and its erratic distribution in the [pdf]Paper   link   bibtex   abstract  
On the Potentiality of UAV Multispectral Imagery to Detect Flavescence dorée and Grapevine Trunk Diseases. Albetis, J.; Jacquin, A.; Goulard, M.; Poilvé, H.; Rousseau, J.; Clenet, H.; Dedieu, G.; and Duthoit, S. Remote Sensing 2019, Vol. 11, Page 23, 11(1): 23. 12 2018.
On the Potentiality of UAV Multispectral Imagery to Detect Flavescence dorée and Grapevine Trunk Diseases [pdf]Paper   On the Potentiality of UAV Multispectral Imagery to Detect Flavescence dorée and Grapevine Trunk Diseases [link]Website   doi   link   bibtex   abstract  
Joint structure and colour based parametric classification of grapevine organs from proximal images through several critical phenological stages. Abdelghafour, F.; and Rosu, R. In 14th International Conference on Precision Agriculture, 2018.
Joint structure and colour based parametric classification of grapevine organs from proximal images through several critical phenological stages [link]Website   link   bibtex  
Computer vision and machine learning for viticulture technology. Seng, K., P.; Ang, L., M.; Schmidtke, L., M.; and Rogiers, S., Y. IEEE Access, 6: 67494-67510. 2018.
Computer vision and machine learning for viticulture technology [pdf]Paper   doi   link   bibtex   abstract  
Automated early yield prediction in vineyards from on-the-go image acquisition. Aquino, A.; Millan, B.; Diago, M., P.; and Tardaguila, J. Computers and Electronics in Agriculture, 144: 26-36. 1 2018.
Automated early yield prediction in vineyards from on-the-go image acquisition [pdf]Paper   doi   link   bibtex   abstract  
A robust automated flower estimation system for grape vines. Liu, S.; Li, X.; Wu, H.; Xin, B.; Tang, J.; Petrie, P., R.; and Whitty, M. Biosystems Engineering, 172: 110-123. 8 2018.
A robust automated flower estimation system for grape vines [pdf]Paper   doi   link   bibtex   abstract  
Computer vision and machine learning for viticulture technology. Seng, K., P.; Ang, L., M.; Schmidtke, L., M.; and Rogiers, S., Y. IEEE Access, 6: 67494-67510. 2018.
Computer vision and machine learning for viticulture technology [pdf]Paper   doi   link   bibtex   abstract  
A pattern recognition strategy for visual grape bunch detection in vineyards. Pérez-Zavala, R.; Torres-Torriti, M.; Cheein, F., A.; and Troni, G. Computers and Electronics in Agriculture, 151: 136-149. 8 2018.
A pattern recognition strategy for visual grape bunch detection in vineyards [pdf]Paper   doi   link   bibtex   abstract  
Unsupervised detection of vineyards by 3D point-cloud UAV photogrammetry for precision agriculture. Comba, L.; Biglia, A.; Ricauda Aimonino, D.; and Gay, P. Computers and Electronics in Agriculture, 155: 84-95. 12 2018.
Unsupervised detection of vineyards by 3D point-cloud UAV photogrammetry for precision agriculture [pdf]Paper   doi   link   bibtex   abstract  
Deep Visual Domain Adaptation: A Survey. Wang, M.; and Deng, W. Neurocomputing, 312: 135--153. 2018.
Deep Visual Domain Adaptation: A Survey [pdf]Paper   link   bibtex   abstract  
Aligning Infinite-Dimensional Covariance Matrices in Reproducing Kernel Hilbert Spaces for Domain Adaptation. Zhang, Z.; Wang, M.; Huang, Y.; and Nehorai, A. In 2018 IEEE Conference on Computer Vision and Pattern Recognition, CVPR 2018, Salt Lake City, UT, USA, June 18-22, 2018, pages 3437--3445, 2018.
Aligning Infinite-Dimensional Covariance Matrices in Reproducing Kernel Hilbert Spaces for Domain Adaptation [pdf]Paper   link   bibtex   abstract  
CyCADA: Cycle-Consistent Adversarial Domain Adaptation. Hoffman, J.; Tzeng, E.; Park, T.; Zhu, J.; Isola, P.; Saenko, K.; Efros, A., A.; and Darrell, T. In Proceedings of the 35th International Conference on Machine Learning, ICML 2018, Stockholmsm\"assan, Stockholm, Sweden, July 10-15, 2018, pages 1994--2003, 2018.
CyCADA: Cycle-Consistent Adversarial Domain Adaptation [pdf]Paper   link   bibtex   abstract  
StarGAN: Unified Generative Adversarial Networks for Multi-Domain Image-to-Image Translation. Choi, Y.; Choi, M.; Kim, M.; Ha, J.; Kim, S.; and Choo, J. In 2018 IEEE Conference on Computer Vision and Pattern Recognition, CVPR 2018, Salt Lake City, UT, USA, June 18-22, 2018, pages 8789--8797, 2018.
StarGAN: Unified Generative Adversarial Networks for Multi-Domain Image-to-Image Translation [pdf]Paper   link   bibtex   abstract  
Self-ensembling for visual domain adaptation. French, G.; Mackiewicz, M.; and Fisher, M. In 6th International Conference on Learning Representations, ICLR 2018, Vancouver, BC, Canada, April 30 - May 3, 2018, Conference Track Proceedings, 2018.
Self-ensembling for visual domain adaptation [pdf]Paper   link   bibtex   abstract  
METHOD AND SYSTEM FOR ASSESSING VESSEL OBSTRUCTION BASED ON MACHINE LEARNING. Isgum, I.; Zreik, M.; and Aben, J., -., P. 2018.
METHOD AND SYSTEM FOR ASSESSING VESSEL OBSTRUCTION BASED ON MACHINE LEARNING [pdf]Paper   link   bibtex   abstract  
Leaf movements of indoor plants monitored by terrestrial LiDAR. Herrero-Huerta, M.; Lindenbergh, R.; and Gard, W. Frontiers in Plant Science, 9(February): 1-9. 2018.
Leaf movements of indoor plants monitored by terrestrial LiDAR [pdf]Paper   doi   link   bibtex   abstract  
Piggyback: Adapting a Single Network to Multiple Tasks by Learning to Mask Weights. Mallya, A.; Davis, D.; and Lazebnik, S. . 1 2018.
link   bibtex   abstract  
Multi-Temporal Vineyard Monitoring through UAV-Based RGB Imagery. Pádua, L.; Marques, P.; Hruška, J.; Adão, T.; Peres, E.; Morais, R.; and Sousa, J., J. Remote Sensing 2018, Vol. 10, Page 1907, 10(12): 1907. 11 2018.
Multi-Temporal Vineyard Monitoring through UAV-Based RGB Imagery [pdf]Paper   Multi-Temporal Vineyard Monitoring through UAV-Based RGB Imagery [link]Website   doi   link   bibtex   abstract  
Joint structure and colour based parametric classification of grapevine organs from proximal images through several critical phenological stages. Abdelghafour, F.; Rosu, R.; Keresztes, B.; Germain, C.; and Costa, J., d. . 2018.
Joint structure and colour based parametric classification of grapevine organs from proximal images through several critical phenological stages [pdf]Paper   Joint structure and colour based parametric classification of grapevine organs from proximal images through several critical phenological stages [link]Website   link   bibtex   abstract  
TrimBot2020: an outdoor robot for automatic gardening. Strisciuglio, N.; Tylecek, R.; Blaich, M.; Petkov, N.; Bieber, P.; Hemming, J.; van Henten, E.; Sattler, T.; Pollefeys, M.; Gevers, T.; Brox, T.; and Fisher, R., B. . 4 2018.
TrimBot2020: an outdoor robot for automatic gardening [pdf]Paper   TrimBot2020: an outdoor robot for automatic gardening [link]Website   link   bibtex   abstract  
A leaf vein detection scheme for locating individual plant leaves. Zhang, L.; Xia, C.; Xiao, D.; Weckler, P.; Lan, Y.; and Lee, J., M. 2018 International Conference on Information and Communication Technology Robotics, ICT-ROBOT 2018. 11 2018.
A leaf vein detection scheme for locating individual plant leaves [pdf]Paper   doi   link   bibtex   abstract  
A leaf vein detection scheme for locating individual plant leaves. Zhang, L.; Xia, C.; Xiao, D.; Weckler, P.; Lan, Y.; and Lee, J., M. 2018 International Conference on Information and Communication Technology Robotics, ICT-ROBOT 2018. 11 2018.
A leaf vein detection scheme for locating individual plant leaves [pdf]Paper   doi   link   bibtex   abstract  
Recursive Deep Residual Learning for Single Image Dehazing. Du, Y.; and Li, X. In 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops (CVPRW), pages 843-8437, 2018.
link   bibtex  
Close-range hyperspectral image analysis for the early detection of stress responses in individual plants in a high-throughput phenotyping platform. Asaari, M., S., M.; Mishra, P.; Mertens, S.; Dhondt, S.; Inzé, D.; Wuyts, N.; and Scheunders, P. ISPRS Journal of Photogrammetry and Remote Sensing, 138: 121-138. 2018.
link   bibtex  
UMAP: Uniform Manifold Approximation and Projection for Dimension Reduction. McInnes, L.; and Healy, J. Computing Research Repository, abs/1802.0. 2018.
link   bibtex  
ShuffleNet V2: Practical Guidelines for Efficient CNN Architecture Design. Ma, N.; Zhang, X.; Zheng, H.; and Sun, J. Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), 11218 LNCS: 122-138. 7 2018.
ShuffleNet V2: Practical Guidelines for Efficient CNN Architecture Design [link]Website   link   bibtex   abstract  
MobileNetV2: Inverted Residuals and Linear Bottlenecks. Sandler, M.; Howard, A.; Zhu, M.; Zhmoginov, A.; and Chen, L. Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition,4510-4520. 1 2018.
MobileNetV2: Inverted Residuals and Linear Bottlenecks [link]Website   link   bibtex   abstract  
Squeeze-and-Excitation Networks. Hu, J.; Shen, L.; and Sun, G. In 2018 IEEE Conference on Computer Vision and Pattern Recognition, CVPR 2018, Salt Lake City, UT, USA, June 18-22, 2018, pages 7132-7141, 2018. IEEE Computer Society
link   bibtex  
Encoder-Decoder with Atrous Separable Convolution for Semantic Image Segmentation. Chen, L.; Zhu, Y.; Papandreou, G.; Schroff, F.; and Adam, H. In Computer Vision - ECCV 2018 - 15th European Conference, Munich, Germany, September 8-14, 2018, Proceedings, Part VII, volume 11211, of Lecture Notes in Computer Science, pages 833-851, 2018. Springer
link   bibtex  
Computer Vision and Machine Learning for Viticulture Technology. Seng, K., P.; Ang, L., M.; Schmidtke, L., M.; and Rogiers, S., Y. IEEE Access, 6: 67494-67510. 2018.
link   bibtex  
Vision-based system for detecting Grapevine Yellow diseases using artificial intelligence. Ampatzidis, Y.; Cruz, A.; Pierro, R.; Materazzi, A.; Panattoni, A.; De Bellis, L.; and Luvisi, A. In Acta Horticulturae, volume 1279, pages 225-230, 2018. International Society for Horticultural Science (ISHS), Leuven, Belgium
link   bibtex  
Deep learning in agriculture: A survey. Kamilaris, A.; and Prenafeta-Boldú, F., X. Computers and Electronics in Agriculture, 147: 70-90. 2018.
link   bibtex  
Deep leaning approach with colorimetric spaces and vegetation indices for vine diseases detection in UAV images. Kerkech, M.; Hafiane, A.; and Canals, R. Computers and Electronics in Agriculture, 155: 237-243. 2018.
link   bibtex  
Path Aggregation Network for Instance Segmentation. Liu, S.; Qi, L.; Qin, H.; Shi, J.; and Jia, J. In 2018 IEEE Conference on Computer Vision and Pattern Recognition, CVPR 2018, Salt Lake City, UT, USA, June 18-22, 2018, pages 8759-8768, 2018.
link   bibtex  
CBAM: Convolutional Block Attention Module. Woo, S.; Park, J.; Lee, J.; and Kweon, I., S. In Proceedings of the European Conference on Computer Vision (ECCV), pages 3-19, 2018.
link   bibtex  
Real-time Fruit Detection Using Deep Neural Networks. Keresztes, B.; Abdelghafour, F.; Randriamanga, D.; da Costa, J.; and Germain, C. In Proceedings of the 14th International Conference on Precision Agriculture, Montreal, QC, Canada, 24 June–2 July 2018, 2018. International Society of Precision Agriculture
link   bibtex  
DOTA: A Large-Scale Dataset for Object Detection in Aerial Images. Xia, G., S.; Bai, X.; Ding, J.; Zhu, Z.; Belongie, S.; Luo, J.; Datcu, M.; Pelillo, M.; and Zhang, L. Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition,3974-3983. 2018.
DOTA: A Large-Scale Dataset for Object Detection in Aerial Images [pdf]Paper   doi   link   bibtex   abstract  
Multiscale Rotated Bounding Box-Based Deep Learning Method for Detecting Ship Targets in Remote Sensing Images. Li, S.; Zhang, Z.; Li, B.; and Li, C. Sensors 2018, Vol. 18, Page 2702, 18(8): 2702. 8 2018.
Multiscale Rotated Bounding Box-Based Deep Learning Method for Detecting Ship Targets in Remote Sensing Images [pdf]Paper   Multiscale Rotated Bounding Box-Based Deep Learning Method for Detecting Ship Targets in Remote Sensing Images [link]Website   doi   link   bibtex   abstract  
Artificial Intelligence (AI) in Agriculture. Dharmaraj, V.; and Vijayanand, C. International Journal of Current Microbiology and Applied Sciences, 7(12): 2122-2128. 12 2018.
doi   link   bibtex   abstract  
Agricultural drone system using individual nozzle control for efficient pesticide application. . 3 2018.
Agricultural drone system using individual nozzle control for efficient pesticide application [pdf]Paper   link   bibtex   abstract  
Multifunctional iot () device for monitoring crops using adaptive intelligence. De, C.; and De Invenție, B. . 2 2018.
Multifunctional iot () device for monitoring crops using adaptive intelligence [pdf]Paper   Multifunctional iot () device for monitoring crops using adaptive intelligence [link]Website   link   bibtex   abstract  
Method for determining vegetation condition of crops by means of an aerial system, such as an agricultural drone. De Determinare, }.; Stării, A.; and Vegetație, D., E. . 9 2018.
Method for determining vegetation condition of crops by means of an aerial system, such as an agricultural drone [pdf]Paper   link   bibtex   abstract  
The Differential Entropy of Mixtures: New Bounds and Applications. Melbourne, J.; Talukdar, S.; Bhaban, S.; Madiman, M.; and Salapaka, M., V. . 5 2018.
The Differential Entropy of Mixtures: New Bounds and Applications [pdf]Paper   The Differential Entropy of Mixtures: New Bounds and Applications [link]Website   doi   link   bibtex   abstract  
  2017 (58)
Visual SLAM algorithms: A survey from 2010 to 2016. Taketomi, T.; Uchiyama, H.; and Ikeda, S. IPSJ Transactions on Computer Vision and Applications, 9(1): 1-11. 6 2017.
Visual SLAM algorithms: A survey from 2010 to 2016 [pdf]Paper   Visual SLAM algorithms: A survey from 2010 to 2016 [link]Website   doi   link   bibtex   abstract  
SVO: Semi-Direct Visual Odometry for Monocular and Multi-Camera Systems. Forster, C.; Zhang, Z.; Gassner, M.; Werlberger, M.; and Scaramuzza, D. IEEE Trans. Robotics, 33(2): 249--265. 2017.
SVO: Semi-Direct Visual Odometry for Monocular and Multi-Camera Systems [pdf]Paper   SVO: Semi-Direct Visual Odometry for Monocular and Multi-Camera Systems [link]Website   link   bibtex   abstract  
ORB-SLAM2: an Open-Source SLAM System for Monocular, Stereo and RGB-D Cameras. Mur-Artal, R.; and Tardos, J., D. IEEE Transactions on Robotics, 33(5): 1255-1262. 10 2017.
ORB-SLAM2: an Open-Source SLAM System for Monocular, Stereo and RGB-D Cameras [pdf]Paper   ORB-SLAM2: an Open-Source SLAM System for Monocular, Stereo and RGB-D Cameras [link]Website   doi   link   bibtex   abstract  
A High-Performance System-on-Chip Architecture for Direct Tracking for SLAM. Boikos, K.; and Bouganis, C. 27th International Conference on Field Programmable Logic and Applications, FPL 2017, Ghent, Belgium, September 4-8, 2017,1--7. 2017.
A High-Performance System-on-Chip Architecture for Direct Tracking for SLAM [pdf]Paper   link   bibtex   abstract  
Robust Stereo Visual Inertial Odometry for Fast Autonomous Flight. Sun, K.; Mohta, K.; Pfrommer, B.; Watterson, M.; Liu, S.; Mulgaonkar, Y.; Taylor, C., J.; and Kumar, V. IEEE Robotics and Automation Letters, 3(2): 965-972. 11 2017.
Robust Stereo Visual Inertial Odometry for Fast Autonomous Flight [pdf]Paper   Robust Stereo Visual Inertial Odometry for Fast Autonomous Flight [link]Website   doi   link   bibtex   abstract  
Visual-Inertial Monocular SLAM with Map Reuse. Mur-Artal, R.; and Tardos, J., D. IEEE Robotics and Automation Letters, 2(2): 796-803. 10 2017.
Visual-Inertial Monocular SLAM with Map Reuse [pdf]Paper   Visual-Inertial Monocular SLAM with Map Reuse [link]Website   doi   link   bibtex   abstract  
Simultaneous Localization And Mapping: A Survey of Current Trends in Autonomous Driving. Bresson, G.; Alsayed, Z.; Yu, L.; and Glaser, S. EEE Transactions on Intelligent Vehicles, 2(3): 194-220. 2017.
Simultaneous Localization And Mapping: A Survey of Current Trends in Autonomous Driving [pdf]Paper   Simultaneous Localization And Mapping: A Survey of Current Trends in Autonomous Driving [link]Website   doi   link   bibtex   abstract  
Toward Geometric Deep SLAM. DeTone, D.; Malisiewicz, T.; and Rabinovich, A. . 2017.
Toward Geometric Deep SLAM [pdf]Paper   Toward Geometric Deep SLAM [link]Website   link   bibtex   abstract  
HPatches: A benchmark and evaluation of handcrafted and learned local descriptors. Balntas, V.; Lenc, K.; Vedaldi, A.; and Mikolajczyk, K. Proceedings - 30th IEEE Conference on Computer Vision and Pattern Recognition, CVPR 2017, 2017-Janua: 3852-3861. 2017.
HPatches: A benchmark and evaluation of handcrafted and learned local descriptors [pdf]Paper   doi   link   bibtex   abstract  
Deconvolution and Checkerboard Artifacts. Odena, A.; Dumoulin, V.; and Olah, C. Distill, 1(10): 1-9. 2017.
Deconvolution and Checkerboard Artifacts [pdf]Paper   doi   link   bibtex   abstract  
RoomNet: End-to-End Room Layout Estimation. Lee, C., Y.; Badrinarayanan, V.; Malisiewicz, T.; and Rabinovich, A. Proceedings of the IEEE International Conference on Computer Vision, 2017-Octob: 4875-4884. 2017.
RoomNet: End-to-End Room Layout Estimation [pdf]Paper   doi   link   bibtex   abstract  
Game Theory for Data Science Synthesis Lectures on Artificial Intelligence and Machine Learning Editors. Brachman, R., J. 2017.
Game Theory for Data Science Synthesis Lectures on Artificial Intelligence and Machine Learning Editors [pdf]Paper   link   bibtex  
Synthesis and Complexation of a New 14‐Membered N2O2 Macrocycle with vic‐Dioxime Moieties. Hamuryudan, E.; and Bekaroǧlu, Ö. Chemische Berichte, 127(12): 2483-2488. 2017.
Synthesis and Complexation of a New 14‐Membered N2O2 Macrocycle with vic‐Dioxime Moieties [pdf]Paper   doi   link   bibtex   abstract  
Learning Spread-Out Local Feature Descriptors. Zhang, X.; Yu, F., X.; Kumar, S.; and Chang, S., F. Proceedings of the IEEE International Conference on Computer Vision, 2017-Octob: 4605-4613. 2017.
Learning Spread-Out Local Feature Descriptors [pdf]Paper   doi   link   bibtex   abstract  
L2-Net: Deep learning of discriminative patch descriptor in Euclidean space. Tian, Y.; Fan, B.; and Wu, F. Proceedings - 30th IEEE Conference on Computer Vision and Pattern Recognition, CVPR 2017, 2017-Janua: 6128-6136. 2017.
L2-Net: Deep learning of discriminative patch descriptor in Euclidean space [pdf]Paper   doi   link   bibtex   abstract  
City-Scale Localization for Cameras with Known Vertical Direction. Svarm, L.; Enqvist, O.; Kahl, F.; and Oskarsson, M. IEEE Transactions on Pattern Analysis and Machine Intelligence, 39(7): 1455-1461. 2017.
City-Scale Localization for Cameras with Known Vertical Direction [pdf]Paper   doi   link   bibtex   abstract  
Quad-networks: Unsupervised learning to rank for interest point detection. Savinov, N.; Seki, A.; Ladický, L.; Sattler, T.; and Pollefeys, M. Proceedings - 30th IEEE Conference on Computer Vision and Pattern Recognition, CVPR 2017, 2017-Janua: 3929-3937. 2017.
Quad-networks: Unsupervised learning to rank for interest point detection [pdf]Paper   doi   link   bibtex   abstract  
Efficient & Effective Prioritized Matching for Large-Scale Image-Based Localization. Sattler, T.; Leibe, B.; and Kobbelt, L. IEEE Transactions on Pattern Analysis and Machine Intelligence, 39(9): 1744-1756. 2017.
Efficient & Effective Prioritized Matching for Large-Scale Image-Based Localization [pdf]Paper   doi   link   bibtex   abstract  
Recent advances in features extraction and description algorithms: A comprehensive survey. Salahat, E.; and Qasaimeh, M. Proceedings of the IEEE International Conference on Industrial Technology,1059-1063. 2017.
Recent advances in features extraction and description algorithms: A comprehensive survey [pdf]Paper   doi   link   bibtex   abstract  
Working hard to know your neighbor's margins: Local descriptor learning loss. Mishchuk, A.; Mishkin, D.; Radenović, F.; and Matas, J. Advances in Neural Information Processing Systems, 2017-Decem(Nips): 4827-4838. 2017.
Working hard to know your neighbor's margins: Local descriptor learning loss [pdf]Paper   link   bibtex   abstract  
Recent Advances in Image Processing Techniques for Automated Harvesting Purposes: A Review. Pereira, C., S.; Morais, R.; and Reis, M., J., C., S. Information Processing in Agriculture. 2017.
Recent Advances in Image Processing Techniques for Automated Harvesting Purposes: A Review [pdf]Paper   doi   link   bibtex   abstract  
Rainfall simulation and Structure-from-Motion photogrammetry for the analysis of soil water erosion in Mediterranean vineyards. Prosdocimi, M.; Burguet, M.; Di Prima, S.; Sofia, G.; Terol, E.; Rodrigo Comino, J.; Cerdà, A.; and Tarolli, P. Science of the Total Environment, 574: 204-215. 2017.
Rainfall simulation and Structure-from-Motion photogrammetry for the analysis of soil water erosion in Mediterranean vineyards [pdf]Paper   doi   link   bibtex   abstract  
High-resolution UAV-based thermal imaging to estimate the instantaneous and seasonal variability of plant water status within a vineyard. Santesteban, L., G.; Di Gennaro, S., F.; Herrero-Langreo, A.; Miranda, C.; Royo, J., B.; and Matese, A. Agricultural Water Management, 183: 49-59. 3 2017.
High-resolution UAV-based thermal imaging to estimate the instantaneous and seasonal variability of plant water status within a vineyard [pdf]Paper   doi   link   bibtex   abstract  
Implementation of a four-wheel drive agricultural mobile robot for crop/soil information collection on the open field. Fan, Z.; Qiu, Q.; and Meng, Z. In Proceedings - 2017 32nd Youth Academic Annual Conference of Chinese Association of Automation, YAC 2017, pages 408-412, 6 2017. Institute of Electrical and Electronics Engineers Inc.
Implementation of a four-wheel drive agricultural mobile robot for crop/soil information collection on the open field [pdf]Paper   doi   link   bibtex   abstract  
Review of agriculture robotics: Practicality and feasibility. Hajjaj, S., S., H.; and Sahari, K., S., M. In IRIS 2016 - 2016 IEEE 4th International Symposium on Robotics and Intelligent Sensors: Empowering Robots with Smart Sensors, pages 194-198, 10 2017. Institute of Electrical and Electronics Engineers Inc.
Review of agriculture robotics: Practicality and feasibility [pdf]Paper   doi   link   bibtex   abstract  
Unified Deep Supervised Domain Adaptation and Generalization. Motiian, S.; Piccirilli, M.; Adjeroh, D., A.; and Doretto, G. In IEEE International Conference on Computer Vision, ICCV 2017, Venice, Italy, October 22-29, 2017, pages 5716-5726, 9 2017. Institute of Electrical and Electronics Engineers Inc.
Unified Deep Supervised Domain Adaptation and Generalization [pdf]Paper   Unified Deep Supervised Domain Adaptation and Generalization [link]Website   doi   link   bibtex   abstract  
Adversarial Discriminative Domain Adaptation. Tzeng, E.; Hoffman, J.; Saenko, K.; and Darrell, T. In 2017 IEEE Conference on Computer Vision and Pattern Recognition, CVPR 2017, Honolulu, HI, USA, July 21-26, 2017, pages 2962--2971, 2017.
Adversarial Discriminative Domain Adaptation [pdf]Paper   link   bibtex   abstract  
SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation. Badrinarayanan, V.; Kendall, A.; and Cipolla, R. IEEE Transactions on Pattern Analysis and Machine Intelligence, 39(12): 2481-2495. 12 2017.
SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation [pdf]Paper   doi   link   bibtex   abstract  
Beyond Grand Theft Auto V for Training, Testing and Enhancing Deep Learning in Self Driving Cars. Anthony, M.; Ii, M.; Sitawarin, C.; Finch, K.; Yablonski, A.; and Kornhauser, A. . 2017.
Beyond Grand Theft Auto V for Training, Testing and Enhancing Deep Learning in Self Driving Cars [pdf]Paper   link   bibtex  
METHOD OF IDENTIFYING AND REPLACING AN OBJECT OR AREA IN A DIGITAL IMAGE WITH ANOTHER OBJECT OR AREA. Ludwigsen, D., M., ..; Dirk Dewar Brown; Glassett, R., J.; Jason Griffith; and Bradshaw, M. 2017.
METHOD OF IDENTIFYING AND REPLACING AN OBJECT OR AREA IN A DIGITAL IMAGE WITH ANOTHER OBJECT OR AREA [pdf]Paper   link   bibtex  
PointNet: Deep Learning on Point Sets for 3D Classification and Segmentation. Qi, C., R.; Su, H.; Mo, K.; and Guibas, L., J. 2017.
PointNet: Deep Learning on Point Sets for 3D Classification and Segmentation [pdf]Paper   link   bibtex   abstract  
Implementation of a four-wheel drive agricultural mobile robot for crop/soil information collection on the open field. Fan, Z.; Qiu, Q.; and Meng, Z. In Proceedings - 2017 32nd Youth Academic Annual Conference of Chinese Association of Automation, YAC 2017, pages 408-412, 6 2017. Institute of Electrical and Electronics Engineers Inc.
Implementation of a four-wheel drive agricultural mobile robot for crop/soil information collection on the open field [pdf]Paper   doi   link   bibtex   abstract  
Automatic crop detection under field conditions using the HSV colour space and morphological operations. Hamuda, E.; Mc Ginley, B.; Glavin, M.; and Jones, E. Computers and Electronics in Agriculture, 133: 97-107. 2017.
link   bibtex  
High-resolution UAV-based thermal imaging to estimate the instantaneous and seasonal variability of plant water status within a vineyard. Santesteban, L., G.; Di Gennaro, S., F.; Herrero-Langreo, A.; Miranda, C.; Royo, J., B.; and Matese, A. Agricultural Water Management, 183: 49-59. 2017.
link   bibtex  
Rainfall simulation and Structure-from-Motion photogrammetry for the analysis of soil water erosion in Mediterranean vineyards. Prosdocimi, M.; Burguet, M.; Di Prima, S.; Sofia, G.; Terol, E.; Comino, J., R.; Cerdà, A.; and Tarolli, P. Science of the Total Environment, 574: 204-215. 2017.
link   bibtex  
Densely Connected Convolutional Networks. Huang, G.; Liu, Z.; van der Maaten, L.; and Weinberger, K., Q. In 2017 IEEE Conference on Computer Vision and Pattern Recognition, CVPR 2017, Honolulu, HI, USA, July 21-26, 2017, pages 2261-2269, 2017. IEEE Computer Society
link   bibtex  
Feature Pyramid Networks for Object Detection. Lin, T.; Dollár, P.; Girshick, R.; He, K.; Hariharan, B.; and Belongie, S. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pages 2117-2125, 2017. IEEE
link   bibtex  
Xception: Deep Learning with Depthwise Separable Convolutions. Chollet, F. In 2017 IEEE Conference on Computer Vision and Pattern Recognition, CVPR 2017, Honolulu, HI, USA, July 21-26, 2017, pages 1800-1807, 2017. IEEE Computer Society
link   bibtex  
MobileNets: Efficient Convolutional Neural Networks for Mobile Vision Applications. Howard, A., G.; Zhu, M.; Chen, B.; Kalenichenko, D.; Wang, W.; Weyand, T.; Andreetto, M.; and Adam, H. Computing Research Repository, abs/1704.0. 2017.
link   bibtex  
L2 Regularization versus Batch and Weight Normalization. van Laarhoven, T. Computing Research Repository, abs/1706.0. 2017.
link   bibtex  
Mask R-CNN. He, K.; Gkioxari, G.; Dollár, P.; and Girshick, R., B. In IEEE International Conference on Computer Vision, ICCV 2017, Venice, Italy, October 22-29, 2017, pages 2980-2988, 2017. IEEE Computer Society
link   bibtex  
The Robotanist: a ground-based agricultural robot for high-throughput crop phenotyping. Mueller-Sim, T.; Jenkins, M.; Abel, J.; and Kantor, G. In 2017 IEEE International Conference on Robotics and Automation, ICRA 2017, Singapore, Singapore, May 29 - June 3, 2017, pages 3634-3639, 2017. IEEE
link   bibtex  
Fully Convolutional Networks for Semantic Segmentation. Shelhamer, E.; Long, J.; and Darrell, T. IEEE Transactions on Pattern Analysis and Machine Intelligence, 39(4): 640-651. 2017.
link   bibtex  
PROSPECT-D: Towards modeling leaf optical properties through a complete lifecycle. Féret, J., B.; Gitelson, A., A.; Noble, S., D.; and Jacquemoud, S. Remote Sensing of Environment, 193: 204-215. 2017.
link   bibtex  
High Throughput Phenotyping of Tomato Spot wilt Disease in Peanuts using Unmanned Aerial Systems and Multispectral Imaging. Patrick, A.; Pelham, S.; Culbreath, A.; Holbrook, C., C.; De Godoy, I., J.; and Li, C. IEEE Instrumentation \& Measurement Magazine, 20(3): 4-12. 2017.
link   bibtex  
Mean centering. Hofer, M. The International Encyclopedia of Communication Research Methods,1-3. 2017.
link   bibtex  
European drones outlook study: Unlocking the value for Europe. Single European Sky ATM Research 3 Joint Undertaking Publications Office, 2017.
link   bibtex  
Wine Grapes. Robinson, J.; Harding, J.; and Vouillamoz, J. Harper Collins, 2017.
link   bibtex  
SegNet: a Deep Convolutional Encoder-Decoder Architecture for Image Segmentation. Badrinarayanan, V.; Kendall, A.; and Cipolla, R. IEEE Transactions on Pattern Analysis and Machine Intelligence, 39(12): 2481-2495. 2017.
link   bibtex  
Recent advances in image processing techniques for automated harvesting purposes: A review. Pereira, C., S.; Morais, R.; and Reis, M., J., C., S. In 2017 Intelligent Systems Conference (IntelliSys), pages 566-575, 2017. IEEE
link   bibtex  
SIFT Meets CNN: A Decade Survey of Instance Rretrieval. Zheng, L.; Yang, Y.; and Tian, Q. IEEE Transactions on Pattern Analysis and Machine Intelligence, 40(5): 1224-1244. 2017.
link   bibtex  
Rethinking Atrous Convolution for Semantic Image Segmentation. Chen, L.; Papandreou, G.; Schroff, F.; and Adam, H. Computing Research Repository, abs/1706.0. 2017.
link   bibtex  
Faster R-CNN: Towards Real-Time Object Detection with Region Proposal Networks. Ren, S.; He, K.; Girshick, R., B.; and Sun, J. IEEE Transactions on Pattern Analysis and Machine Intelligence, 39(6): 1137-1149. 2017.
link   bibtex  
Deformable Convolutional Networks. Dai, J.; Qi, H.; Xiong, Y.; Li, Y.; Zhang, G.; Hu, H.; and Wei, Y. Proceedings of the IEEE International Conference on Computer Vision, 2017-Octob: 764-773. 2017.
Deformable Convolutional Networks [pdf]Paper   doi   link   bibtex   abstract  
Deformable Convolutional Networks. Dai, J.; Qi, H.; Xiong, Y.; Li, Y.; Zhang, G.; Hu, H.; and Wei, Y. Proceedings of the IEEE International Conference on Computer Vision, 2017-Octob: 764-773. 2017.
doi   link   bibtex   abstract  
Introducing MVTec ITODD - A Dataset for 3D Object Recognition in Industry. Drost, B.; Ulrich, M.; Bergmann, P.; Hartinger, P.; and Steger, C. Proceedings - 2017 IEEE International Conference on Computer Vision Workshops, ICCVW 2017, 2018-January: 2200-2208. 7 2017.
Introducing MVTec ITODD - A Dataset for 3D Object Recognition in Industry [pdf]Paper   doi   link   bibtex   abstract  
Method for spraying chemical by unmanned flight vehicle, and program. . 4 2017.
Method for spraying chemical by unmanned flight vehicle, and program [pdf]Paper   link   bibtex   abstract  
Drone for agriculture. . 6 2017.
Drone for agriculture [pdf]Paper   link   bibtex   abstract  
  2016 (45)
Past, Present, and Future of Simultaneous Localization And Mapping: Towards the Robust-Perception Age. Cadena, C.; Carlone, L.; Carrillo, H.; Latif, Y.; Scaramuzza, D.; Neira, J.; Reid, I.; and Leonard, J., J. IEEE Transactions on Robotics, 32(6): 1309-1332. 6 2016.
Past, Present, and Future of Simultaneous Localization And Mapping: Towards the Robust-Perception Age [pdf]Paper   Past, Present, and Future of Simultaneous Localization And Mapping: Towards the Robust-Perception Age [link]Website   doi   link   bibtex   abstract  
Semi-Dense SLAM on an FPGA SoC. Boikos, K.; and Bouganis, C. 26th International Conference on Field Programmable Logic and Applications, FPL 2016, Lausanne, Switzerland, August 29 - September 2, 2016,1--4. 2016.
Semi-Dense SLAM on an FPGA SoC [pdf]Paper   link   bibtex   abstract  
FPGA design of EKF block accelerator for 3D visual SLAM. Tertei, D., T.; Piat, J.; and Devy, M. Comput. Electr. Eng., 55: 123--137. 2016.
FPGA design of EKF block accelerator for 3D visual SLAM [pdf]Paper   link   bibtex   abstract  
Keypoint selection for efficient bag-of-words feature generation and effective image classification. Lin, W., C.; Tsai, C., F.; Chen, Z., Y.; and Ke, S., W. Information Sciences, 329: 33-51. 2016.
Keypoint selection for efficient bag-of-words feature generation and effective image classification [pdf]Paper   Keypoint selection for efficient bag-of-words feature generation and effective image classification [link]Website   doi   link   bibtex   abstract  
Keypoint Extraction Using SURF Algorithm for CMFD. Raj, R.; and Joseph, N. Procedia Computer Science, 93(September): 375-381. 2016.
Keypoint Extraction Using SURF Algorithm for CMFD [pdf]Paper   Keypoint Extraction Using SURF Algorithm for CMFD [link]Website   doi   link   bibtex   abstract  
The ARTI Reference Architecture – PROSA Revisited. Valckenaers, P.; and Van Brussel, H. Design for the Unexpected,77-127. 2016.
The ARTI Reference Architecture – PROSA Revisited [pdf]Paper   doi   link   bibtex   abstract  
Deep Image Homography Estimation. DeTone, D.; Malisiewicz, T.; and Rabinovich, A. . 2016.
Deep Image Homography Estimation [pdf]Paper   Deep Image Homography Estimation [link]Website   link   bibtex   abstract  
LIFT: Learned Invariant Feature Transform Kwang. Gevers, T.; and Smeulders, A. Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), 9914 LNCS: V. 2016.
LIFT: Learned Invariant Feature Transform Kwang [pdf]Paper   doi   link   bibtex  
Foreword. Gevers, T.; and Smeulders, A. Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), 9914 LNCS: V. 2016.
Foreword [pdf]Paper   doi   link   bibtex  
Learning local feature descriptors with triplets and shallow convolutional neural networks. Balntas, V.; Riba, E.; Ponsa, D.; and Mikolajczyk, K. British Machine Vision Conference 2016, BMVC 2016, 2016-Septe: 119.1-119.11. 2016.
Learning local feature descriptors with triplets and shallow convolutional neural networks [pdf]Paper   doi   link   bibtex   abstract  
Fast 6D Pose Estimation Using Hierarchical Pose Trees. Konishi, Y.; Hanzawa, Y.; Kawade, M.; and Hashimoto, M. Eccv,398-413. 2016.
Fast 6D Pose Estimation Using Hierarchical Pose Trees [pdf]Paper   doi   link   bibtex   abstract  
Pose Machines :. Wei, S.; Ramakrishna, V.; Kanada, T.; and Sheikh, Y. Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. 2016.
Pose Machines : [pdf]Paper   link   bibtex   abstract  
Structure-from-Motion Revisited. Schonberger, J., L.; and Frahm, J., M. Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, 2016-Decem: 4104-4113. 2016.
Structure-from-Motion Revisited [pdf]Paper   doi   link   bibtex   abstract  
Real-Time Single Image and Video Super-Resolution Using an Efficient Sub-Pixel Convolutional Neural Network. Shi, W.; Caballero, J.; Huszar, F.; Totz, J.; Aitken, A., P.; Bishop, R.; Rueckert, D.; and Wang, Z. Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, 2016-Decem: 1874-1883. 2016.
Real-Time Single Image and Video Super-Resolution Using an Efficient Sub-Pixel Convolutional Neural Network [pdf]Paper   doi   link   bibtex   abstract  
หล ั กส ู ตรธ ุ รก ิ จเทคโนโลย ี และการจ ั ดการนว ั ตกรรม บ ั ณฑ ิ ตว ิ ทยาล ั ย. Pr, C. , 2016(December): 2559-2560. 2016.
หล ั กส ู ตรธ ุ รก ิ จเทคโนโลย ี และการจ ั ดการนว ั ตกรรม บ ั ณฑ ิ ตว ิ ทยาล ั ย [pdf]Paper   link   bibtex  
Universal correspondence network. Choy, C., B.; Gwak, J., Y.; Savarese, S.; and Chandraker, M. Advances in Neural Information Processing Systems, (Nips): 2414-2422. 2016.
Universal correspondence network [pdf]Paper   link   bibtex   abstract  
Learning deep embeddings with histogram loss. Ustinova, E.; and Lempitsky, V. Advances in Neural Information Processing Systems, (Nips): 4177-4185. 2016.
Learning deep embeddings with histogram loss [pdf]Paper   link   bibtex   abstract  
DeepMatching: Hierarchical Deformable Dense Matching. Revaud, J.; Weinzaepfel, P.; Harchaoui, Z.; and Schmid, C. International Journal of Computer Vision, 120(3): 300-323. 2016.
DeepMatching: Hierarchical Deformable Dense Matching [pdf]Paper   doi   link   bibtex   abstract  
Hyperspectral phenotyping of the reaction of grapevine genotypes to Plasmopara viticola. Oerke, E., C.; Herzog, K.; and Toepfer, R. Journal of Experimental Botany, 67(18): 5529-5543. 2016.
Hyperspectral phenotyping of the reaction of grapevine genotypes to Plasmopara viticola [pdf]Paper   doi   link   bibtex   abstract  
Digital surface model applied to unmanned aerial vehicle based photogrammetry to assess potential biotic or abiotic effects on grapevine canopies. Su, B., F.; Xue, J., R.; Xie, C., Y.; Fang, Y., L.; Song, Y., Y.; and Fuentes, S. International Journal of Agricultural and Biological Engineering, 9(6): 119-130. 2016.
Digital surface model applied to unmanned aerial vehicle based photogrammetry to assess potential biotic or abiotic effects on grapevine canopies [pdf]Paper   doi   link   bibtex   abstract  
Soil water erosion on Mediterranean vineyards: A review. Prosdocimi, M.; Cerdà, A.; and Tarolli, P. Catena, 141: 1-21. 2016.
Soil water erosion on Mediterranean vineyards: A review [pdf]Paper   Soil water erosion on Mediterranean vineyards: A review [link]Website   doi   link   bibtex   abstract  
Automated yield estimation in viticulture by computer vision. Liu, S. Ph.D. Thesis, 2016.
Automated yield estimation in viticulture by computer vision [pdf]Paper   Automated yield estimation in viticulture by computer vision [link]Website   link   bibtex  
Precision farming using unmanned aerial and ground vehicles. Vasudevan, A.; Kumar, D., A.; and Bhuvaneswari, N., S. Proceedings - 2016 IEEE International Conference on Technological Innovations in ICT for Agriculture and Rural Development, TIAR 2016,146-150. 12 2016.
doi   link   bibtex   abstract  
Precision farming using unmanned aerial and ground vehicles. Vasudevan, A.; Kumar, D., A.; and Bhuvaneswari, N., S. Proceedings - 2016 IEEE International Conference on Technological Innovations in ICT for Agriculture and Rural Development, TIAR 2016,146-150. 12 2016.
Precision farming using unmanned aerial and ground vehicles [pdf]Paper   doi   link   bibtex   abstract  
Using deep learning for image-based plant disease detection. Mohanty, S., P.; Hughes, D., P.; and Salathé, M. Frontiers in Plant Science, 7(September): 1-10. 2016.
Using deep learning for image-based plant disease detection [pdf]Paper   doi   link   bibtex   abstract  
Unsupervised Domain Adaptation with Residual Transfer Networks. Long, M.; Zhu, H.; Wang, J.; and Jordan, M., I. In Advances in Neural Information Processing Systems 29: Annual Conference on Neural Information Processing Systems 2016, December 5-10, 2016, Barcelona, Spain, pages 136--144, 2016.
Unsupervised Domain Adaptation with Residual Transfer Networks [pdf]Paper   link   bibtex   abstract  
Learning Cross-Domain Landmarks for Heterogeneous Domain Adaptation. Tsai, Y., H.; Yeh, Y.; and Wang, Y., F. In 2016 IEEE Conference on Computer Vision and Pattern Recognition, CVPR 2016, Las Vegas, NV, USA, June 27-30, 2016, pages 5081--5090, 2016.
Learning Cross-Domain Landmarks for Heterogeneous Domain Adaptation [pdf]Paper   link   bibtex   abstract  
Deep reconstruction-classification networks for unsupervised domain adaptation. Ghifary, M.; Kleijn, W., B.; Zhang, M.; Balduzzi, D.; and Li, W. In Computer Vision - ECCV 2016 - 14th European Conference, Amsterdam, The Netherlands, October 11-14, 2016, Proceedings, Part IV, volume 9908 LNCS, pages 597-613, 2016. Springer Verlag
Deep reconstruction-classification networks for unsupervised domain adaptation [pdf]Paper   Deep reconstruction-classification networks for unsupervised domain adaptation [link]Website   doi   link   bibtex   abstract  
A fast and objective multidimensional kernel density estimation method: fastKDE. O'Brien, T., A.; Kashinath, K.; Cavanaugh, N., R.; Collins, W., D.; and O'Brien, J., P. Computational Statistics & Data Analysis, 101: 148-160. 9 2016.
A fast and objective multidimensional kernel density estimation method: fastKDE [pdf]Paper   doi   link   bibtex   abstract  
Playing for Data: Ground Truth from Computer Games. Richter, S., R.; Vineet, V.; Roth, S.; and Koltun, V. . 2016.
Playing for Data: Ground Truth from Computer Games [pdf]Paper   doi   link   bibtex   abstract  
Optimal color space selection method for plant/soil segmentation in agriculture. Hernández-Hernández, J., L.; García-Mateos, G.; González-Esquiva, J., M.; Escarabajal-Henarejos, D.; Ruiz-Canales, A.; and Molina-Martínez, J., M. Computers and Electronics in Agriculture, 122: 124-132. 3 2016.
Optimal color space selection method for plant/soil segmentation in agriculture [pdf]Paper   doi   link   bibtex   abstract  
Neural Module Networks. Andreas, J.; Rohrbach, M.; Darrell, T.; and Klein, D. 2016.
Neural Module Networks [pdf]Paper   Neural Module Networks [link]Website   link   bibtex   abstract  
MultiNet: Real-time Joint Semantic Reasoning for Autonomous Driving. Teichmann, M.; Weber, M.; Zoellner, M.; Cipolla, R.; and Urtasun, R. . 12 2016.
MultiNet: Real-time Joint Semantic Reasoning for Autonomous Driving [pdf]Paper   MultiNet: Real-time Joint Semantic Reasoning for Autonomous Driving [link]Website   link   bibtex   abstract  
Integrated Perception with Recurrent Multi-Task Neural Networks. Bilen, H.; and Vedaldi, A. . 2016.
Integrated Perception with Recurrent Multi-Task Neural Networks [pdf]Paper   link   bibtex   abstract  
Cross-stitch Networks for Multi-task Learning. Misra, I.; Shrivastava, A.; Gupta, A.; and Hebert, M. . 2016.
Cross-stitch Networks for Multi-task Learning [pdf]Paper   link   bibtex   abstract  
Plant disease detection by imaging sensors – Parallels and specific demands for precision agriculture and plant phenotyping. Mahlein, A., K. 2 2016.
Plant disease detection by imaging sensors – Parallels and specific demands for precision agriculture and plant phenotyping [pdf]Paper   doi   link   bibtex  
Agricultural robots for field operations: Concepts and components. Bechar, A.; and Vigneault, C. 9 2016.
Agricultural robots for field operations: Concepts and components [pdf]Paper   doi   link   bibtex   abstract  
Using Deep Learning for Image-Based Plant Disease Detection. Mohanty, S., P.; Hughes, D., P.; and Salathé, M. Frontiers in Plant Science, 7: 1419. 2016.
link   bibtex  
Deep Residual Learning for Image Recognition. He, K.; Zhang, X.; Ren, S.; and Sun, J. In 2016 IEEE Conference on Computer Vision and Pattern Recognition, CVPR 2016, Las Vegas, NV, USA, June 27-30, 2016, pages 770-778, 2016. IEEE Computer Society
link   bibtex  
Soil water erosion on Mediterranean vineyards: A review. Prosdocimi, M.; Cerdà, A.; and Tarolli, P. Catena, 141: 1-21. 2016.
link   bibtex  
Rethinking the Inception Architecture for Computer Vision. Szegedy, C.; Vanhoucke, V.; Ioffe, S.; Shlens, J.; and Wojna, Z. In 2016 IEEE Conference on Computer Vision and Pattern Recognition, CVPR 2016, Las Vegas, NV, USA, June 27-30, 2016, pages 2818-2826, 2016. IEEE Computer Society
link   bibtex  
Approximate georeferencing and automatic blurred image detection to reduce the costs of UAV use in environmental and agricultural applications. Ribeiro-Gomes, K.; Hernandez-Lopez, D.; Ballesteros, R.; and Moreno, M., A. Biosystems Engineering, 151: 308-327. 2016.
link   bibtex  
Comparison of Canopy Volume Measurements of Scattered Eucalypt Farm Trees Derived from High Spatial Resolution Imagery and LiDAR. Kiran Verma, N.; Lamb, D., W.; Reid, N.; Wilson, B.; Lausch, A.; Heurich, M.; Baghdadi, N.; and Thenkabail, P., S. Remote Sensing 2016, Vol. 8, Page 388, 8(5): 388. 5 2016.
Comparison of Canopy Volume Measurements of Scattered Eucalypt Farm Trees Derived from High Spatial Resolution Imagery and LiDAR [pdf]Paper   Comparison of Canopy Volume Measurements of Scattered Eucalypt Farm Trees Derived from High Spatial Resolution Imagery and LiDAR [link]Website   doi   link   bibtex   abstract  
Tethered drone assembly. Faivre, S., M.; and Joseph Zerillo, P. . 4 2016.
Tethered drone assembly [pdf]Paper   link   bibtex   abstract  
Monocular 3D Object Detection for Autonomous Driving. Chen, X.; Kundu, K.; Zhang, Z.; Ma, H.; Fidler, S.; and Urtasun, R. Technical Report 2016.
Monocular 3D Object Detection for Autonomous Driving [pdf]Paper   link   bibtex   abstract  
  2015 (45)
Distilling the Knowledge in a Neural Network. Hinton, G.; Vinyals, O.; and Dean, J. CoRR. 3 2015.
Distilling the Knowledge in a Neural Network [pdf]Paper   Distilling the Knowledge in a Neural Network [link]Website   link   bibtex   abstract  
An Overview to Visual Odometry and Visual SLAM: Applications to Mobile Robotics. Yousif, K.; Bab-Hadiashar, A.; and Hoseinnezhad, R. Intelligent Industrial Systems 2015 1:4, 1(4): 289-311. 11 2015.
An Overview to Visual Odometry and Visual SLAM: Applications to Mobile Robotics [pdf]Paper   An Overview to Visual Odometry and Visual SLAM: Applications to Mobile Robotics [link]Website   doi   link   bibtex   abstract  
Visual simultaneous localization and mapping: a survey. Fuentes-Pacheco, J.; Ruiz-Ascencio, J.; and Rendón-Mancha, J., M. Artificial Intelligence Review, 43(1): 55-81. 11 2015.
Visual simultaneous localization and mapping: a survey [pdf]Paper   Visual simultaneous localization and mapping: a survey [link]Website   doi   link   bibtex   abstract  
Large-Scale Direct SLAM with Stereo Cameras. Caruso, D.; Engel, J.; and Cremers, D. IEEE International Conference on Intelligent Robots and Systems, 2015-Decem: 141-148. 2015.
Large-Scale Direct SLAM with Stereo Cameras [pdf]Paper   doi   link   bibtex   abstract  
Large-scale direct SLAM for omnidirectional cameras. Caruso, D.; Engel, J.; and Cremers, D. IEEE International Conference on Intelligent Robots and Systems, 2015-Decem: 141-148. 2015.
Large-scale direct SLAM for omnidirectional cameras [pdf]Paper   doi   link   bibtex   abstract  
ElasticFusion: Dense SLAM Without A Pose Graph. Whelan, T.; Leutenegger, S.; Salas-Moreno, R., F.; Glocker, B.; and Davison, A., J. In Robotics: Science and Systems XI, Sapienza University of Rome, Rome, Italy, July 13-17, 2015, 2015.
ElasticFusion: Dense SLAM Without A Pose Graph [pdf]Paper   link   bibtex   abstract  
Local convolutional features with unsupervised training for image retrieval. Paulin, M.; Douze, M.; Harchaoui, Z.; Mairal, J.; Perronin, F.; and Schmid, C. Proceedings of the IEEE International Conference on Computer Vision, 2015 Inter: 91-99. 2015.
Local convolutional features with unsupervised training for image retrieval [pdf]Paper   doi   link   bibtex   abstract  
Discriminative learning of deep convolutional feature point descriptors. Simo-Serra, E.; Trulls, E.; Ferraz, L.; Kokkinos, I.; Fua, P.; and Moreno-Noguer, F. Proceedings of the IEEE International Conference on Computer Vision, 2015 Inter: 118-126. 2015.
Discriminative learning of deep convolutional feature point descriptors [pdf]Paper   doi   link   bibtex   abstract  
Spatial transformer networks. Jaderberg, M.; Simonyan, K.; Zisserman, A.; and Kavukcuoglu, K. Advances in Neural Information Processing Systems, 2015-Janua: 2017-2025. 2015.
Spatial transformer networks [pdf]Paper   link   bibtex   abstract  
Learning to compare image patches via convolutional neural networks. Zagoruyko, S.; and Komodakis, N. Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, 07-12-June(i): 4353-4361. 2015.
Learning to compare image patches via convolutional neural networks [pdf]Paper   doi   link   bibtex   abstract  
Discriminative learning of deep convolutional feature point descriptors. Simo-Serra, E.; Trulls, E.; Ferraz, L.; Kokkinos, I.; Fua, P.; and Moreno-Noguer, F. Proceedings of the IEEE International Conference on Computer Vision, 2015 Inter: 118-126. 2015.
Discriminative learning of deep convolutional feature point descriptors [pdf]Paper   doi   link   bibtex   abstract  
TILDE: A Temporally Invariant Learned DEtector. Verdie, Y.; Yi, K., M.; Fua, P.; and Lepetit, V. Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, 07-12-June: 5279-5288. 2015.
TILDE: A Temporally Invariant Learned DEtector [pdf]Paper   doi   link   bibtex   abstract  
Computing the Stereo Matching Cost with a Convolutional Neural Network Seminar Recent Trends in 3D Computer Vision. Herb, M. Computer Vision and Pattern Recognition (CVPR), 2015 IEEE Conference on, (1): 1592-1599. 2015.
Computing the Stereo Matching Cost with a Convolutional Neural Network Seminar Recent Trends in 3D Computer Vision [pdf]Paper   link   bibtex   abstract  
MatchNet: Unifying feature and metric learning for patch-based matching. Han, X.; Leung, T.; Jia, Y.; Sukthankar, R.; and Berg, A., C. Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, 07-12-June: 3279-3286. 2015.
MatchNet: Unifying feature and metric learning for patch-based matching [pdf]Paper   doi   link   bibtex   abstract  
Domain-size pooling in local descriptors: DSP-SIFT. Dong, J.; and Soatto, S. Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, 07-12-June(1): 5097-5106. 2015.
Domain-size pooling in local descriptors: DSP-SIFT [pdf]Paper   doi   link   bibtex   abstract  
A sampling-based speaker clustering using utterance-oriented Dirichlet process mixture model and its evaluation on large-scale data. Tawara, N.; Ogawa, T.; Watanabe, S.; Nakamura, A.; and Kobayashi, T. APSIPA Transactions on Signal and Information Processing, 4. 2015.
A sampling-based speaker clustering using utterance-oriented Dirichlet process mixture model and its evaluation on large-scale data [pdf]Paper   doi   link   bibtex   abstract  
Very deep convolutional networks for large-scale image recognition. Simonyan, K.; and Zisserman, A. 3rd International Conference on Learning Representations, ICLR 2015 - Conference Track Proceedings,1-14. 2015.
Very deep convolutional networks for large-scale image recognition [pdf]Paper   link   bibtex   abstract  
Discriminative learning of deep convolutional feature point descriptors. Simo-Serra, E.; Trulls, E.; Ferraz, L.; Kokkinos, I.; Fua, P.; and Moreno-Noguer, F. Proceedings of the IEEE International Conference on Computer Vision, 2015 Inter: 118-126. 2015.
Discriminative learning of deep convolutional feature point descriptors [pdf]Paper   doi   link   bibtex   abstract  
Learning image descriptors with boosting. Trzcinski, T.; Christoudias, M.; and Lepetit, V. IEEE Transactions on Pattern Analysis and Machine Intelligence, 37(3): 597-610. 2015.
Learning image descriptors with boosting [pdf]Paper   doi   link   bibtex   abstract  
FaceNet: A Unified Embedding for Face Recognition and Clustering http://arxiv.org/abs/1503.03832 (Google Research) #ml #dlearn pic.twitter.com/fFotqHa1HC. Champandard, A., J. Proceedings of the IEEE conference on computer vision and pattern recognition,815-823. 2015.
FaceNet: A Unified Embedding for Face Recognition and Clustering http://arxiv.org/abs/1503.03832 (Google Research) #ml #dlearn pic.twitter.com/fFotqHa1HC [pdf]Paper   FaceNet: A Unified Embedding for Face Recognition and Clustering http://arxiv.org/abs/1503.03832 (Google Research) #ml #dlearn pic.twitter.com/fFotqHa1HC [link]Website   link   bibtex   abstract  
Hyperpoints and fine vocabularies for large-scale location recognition. Sattler, T.; Havlena, M.; Radenovic, F.; Schindler, K.; and Pollefeys, M. Proceedings of the IEEE International Conference on Computer Vision, 2015 Inter: 2102-2106. 2015.
Hyperpoints and fine vocabularies for large-scale location recognition [pdf]Paper   doi   link   bibtex   abstract  
Hypercolumns for object segmentation and fine-grained localization. Hariharan, B.; Arbeláez, P.; Girshick, R.; and Malik, J. Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, 07-12-June: 447-456. 2015.
Hypercolumns for object segmentation and fine-grained localization [pdf]Paper   doi   link   bibtex   abstract  
SOWP: Spatially ordered and weighted patch descriptor for visual tracking. Kim, H., U.; Lee, D., Y.; Sim, J., Y.; and Kim, C., S. Proceedings of the IEEE International Conference on Computer Vision, 2015 Inter: 3011-3019. 2015.
SOWP: Spatially ordered and weighted patch descriptor for visual tracking [pdf]Paper   doi   link   bibtex   abstract  
Technology in precision viticulture: A state of the art review. Matese, A.; and Di Gennaro, S., F. International Journal of Wine Research, 7(1): 69-81. 2015.
Technology in precision viticulture: A state of the art review [pdf]Paper   doi   link   bibtex   abstract  
Vineyard yield estimation by automatic 3D bunch modelling in field conditions. Herrero-Huerta, M.; González-Aguilera, D.; Rodriguez-Gonzalvez, P.; and Hernández-López, D. Computers and Electronics in Agriculture, 110: 17-26. 2015.
Vineyard yield estimation by automatic 3D bunch modelling in field conditions [pdf]Paper   doi   link   bibtex   abstract  
Detection of grapes in natural environment using support vector machine classifier - datasets. Skrabanek, P.; and Runarsson, T., P. In Proceedings of the 21st International Conference on Soft Computing MENDEL, pages 143--150, 2015.
Detection of grapes in natural environment using support vector machine classifier - datasets [pdf]Paper   link   bibtex  
Riemannian Gaussian Distributions on the Space of Symmetric Positive Definite Matrices. Said, S.; Bombrun, L.; Berthoumieu, Y.; and Manton, J., H. IEEE Transactions on Information Theory, 63(4): 2153-2170. 7 2015.
Riemannian Gaussian Distributions on the Space of Symmetric Positive Definite Matrices [pdf]Paper   Riemannian Gaussian Distributions on the Space of Symmetric Positive Definite Matrices [link]Website   doi   link   bibtex   abstract  
Study and comparison of color models for automatic image analysis in irrigation management applications. García-Mateos, G.; Hernández-Hernández, J., L.; Escarabajal-Henarejos, D.; Jaén-Terrones, S.; and Molina-Martínez, J., M. Agricultural Water Management, 151: 158-166. 3 2015.
Study and comparison of color models for automatic image analysis in irrigation management applications [pdf]Paper   doi   link   bibtex   abstract  
Compendium of Grape Diseases, Disorders, and Pests. Wilcox, W., F.; Gubler, W., D.; and Uyemoto, J., K. Am Phytopath Society, 2015.
link   bibtex  
Use of very high-resolution airborne images to analyse 3D canopy architecture of a vineyard. Burgos, S.; Mota, M.; Noll, D.; and Cannelle, B. The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, 40: 399-403. 2015.
link   bibtex  
Tensor Decompositions for Signal Processing Applications: From two-way to multiway component analysis. Cichocki, A.; Mandic, D., P.; Lathauwer, L., D.; Zhou, G.; Zhao, Q.; Caiafa, C., F.; and Phan, A., H. IEEE Signal Processing Magazine, 32(2): 145-163. 2015.
link   bibtex  
Going deeper with convolutions. Szegedy, C.; Liu, W.; Jia, Y.; Sermanet, P.; Reed, S., E.; Anguelov, D.; Erhan, D.; Vanhoucke, V.; and Rabinovich, A. In IEEE Conference on Computer Vision and Pattern Recognition, CVPR 2015, Boston, MA, USA, June 7-12, 2015, pages 1-9, 2015. IEEE Computer Society
link   bibtex  
Detection of grapes in natural environment using support vector machine classifier. Škrabánek, P.; and Runarsson, T., P. Mendel, 2015: 143-150. 2015.
link   bibtex  
An open access repository of images on plant health to enable the development of mobile disease diagnostics through machine learning and crowdsourcing. Hughes, D., P.; and Salathé, M. Computing Research Repository, abs/1511.0. 2015.
link   bibtex  
A Lightweight Method for Grape Berry Counting based on Automated 3D Bunch Reconstruction from a Single Image. Liu, S.; Whitty, M.; and Cossell, S. In ICRA, International Conference on Robotics and Automation (IEEE), Workshop on Robotics in Agriculture, volume 4, pages 4, 2015. IEEE
link   bibtex  
Distilling the Knowledge in a Neural Network. Hinton, G., E.; Vinyals, O.; and Dean, J. Computing Research Repository, abs/1503.0. 2015.
link   bibtex  
Holistically-Nested Edge Detection. Xie, S.; and Tu, Z. In Proceedings of the IEEE International Conference on Computer Vision, pages 1395-1403, 2015.
link   bibtex  
Very Deep Convolutional Networks for Large-Scale Image Recognition. Simonyan, K.; and Zisserman, A. In 3rd International Conference on Learning Representations, ICLR 2015, San Diego, CA, USA, May 7-9, 2015, Conference Track Proceedings, 2015. Association for Computing Machinery
link   bibtex  
Rapid multispectral endoscopic imaging system for near real-time mapping of the mucosa blood supply in the lung. Fawzy, Y.; Lam, S.; and Zeng, H. Biomedical Optics Express, 6(8): 2980-2990. 2015.
link   bibtex  
Technology in precision viticulture: A state of the art review. Matese, A.; and Di Gennaro, S., F. International Journal of Wine Research, 7: 69-81. 2015.
link   bibtex  
U-Net: Convolutional Networks for Biomedical Image Segmentation. Ronneberger, O.; Fischer, P.; and Brox, T. In Medical Image Computing and Computer-Assisted Intervention -- MICCAI 2015, pages 234-241, 2015. Springer International Publishing
link   bibtex  
Accurate affine invariant image matching using oriented least square. Sedaghat, A.; and Ebadi, H. Photogrammetric Engineering and Remote Sensing, 81(9): 733-743. 2015.
Accurate affine invariant image matching using oriented least square [pdf]Paper   doi   link   bibtex   abstract  
Airborne multispectral imaging system with integrated navigation sensors and automatic image stitching. Poling . 10 2015.
Airborne multispectral imaging system with integrated navigation sensors and automatic image stitching [pdf]Paper   link   bibtex   abstract  
Comparison of Kullback-Leibler divergence approximation methods between Gaussian mixture models for satellite image retrieval. Cui, S.; and Datcu, M. International Geoscience and Remote Sensing Symposium (IGARSS), 2015-November: 3719-3722. 11 2015.
Comparison of Kullback-Leibler divergence approximation methods between Gaussian mixture models for satellite image retrieval [pdf]Paper   doi   link   bibtex   abstract  
Data-Driven 3D Voxel Patterns for Object Category Recognition. Xiang, Y.; Choi, W.; Lin, Y.; and Savarese, S. In Computer Vision and Pattern Recognition (CVPR), 2015 IEEE Conference on : date, 7-12 June 2015, 2015. [EEE]
Data-Driven 3D Voxel Patterns for Object Category Recognition [pdf]Paper   link   bibtex   abstract  
  2014 (16)
3D Mapping with an RGB-D Camera. Endres, F.; Hess, J.; Sturm, J.; Cremers, D.; and Burgard, W. IEEE TRANSACTIONS ON ROBOTICS, 30(1). 2014.
3D Mapping with an RGB-D Camera [pdf]Paper   link   bibtex   abstract  
LSD-SLAM: Large-Scale Direct Monocular SLAM. Engel, J.; Sturm, J.; and Cremers, D. Proceedings of the IEEE International Conference on Computer Vision,1449-1456. 2014.
LSD-SLAM: Large-Scale Direct Monocular SLAM [pdf]Paper   link   bibtex   abstract  
Derivative-based scale invariant image feature detector with error resilience. Mainali, P.; Lafruit, G.; Tack, K.; Van Gool, L.; and Lauwereins, R. IEEE Transactions on Image Processing, 23(5): 2380-2391. 2014.
Derivative-based scale invariant image feature detector with error resilience [pdf]Paper   doi   link   bibtex   abstract  
Caffe. Jia, Y.; Shelhamer, E.; Donahue, J.; Karayev, S.; Long, J.; Girshick, R.; Guadarrama, S.; and Darrell, T. ,675-678. 2014.
Caffe [pdf]Paper   doi   link   bibtex   abstract  
Object detection with discriminatively trained part-based models. Forsyth, D. Computer, 47(2): 6-7. 2014.
Object detection with discriminatively trained part-based models [pdf]Paper   doi   link   bibtex   abstract  
Microsoft COCO. Colleges, G., T., U., A.; Academy, O.; Academy, O.; Academy, O.; Science, A., C.; Technology, I.; and Science, A., C. Eccv, (June): 740-755. 2014.
Microsoft COCO [pdf]Paper   link   bibtex   abstract  
Robust global translations with 1DSfM. Wilson, K.; and Snavely, N. Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), 8691 LNCS(PART 3): 61-75. 2014.
Robust global translations with 1DSfM [pdf]Paper   doi   link   bibtex   abstract  
Accurate localization and pose estimation for large 3D models. Svärm, L.; Enqvist, O.; Oskarsson, M.; and Kahl, F. Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition,532-539. 2014.
Accurate localization and pose estimation for large 3D models [pdf]Paper   doi   link   bibtex   abstract  
GPS-free Localisation and Navigation of an Unmanned Ground Vehicle for Yield Forecasting in a Vineyard. Marden, S.; and Whitty, M. In Recent Advances in Agricultural Robotics, International workshop collocated with the 13th International Conference on Intelligent Autonomous Systems (IAS-13), 2014.
GPS-free Localisation and Navigation of an Unmanned Ground Vehicle for Yield Forecasting in a Vineyard [pdf]Paper   link   bibtex   abstract  
Realistic Plant Modeling from Images Based on Analysis-by-Synthesis. Guénard, J.; Morin, G.; Boudon, F.; and Charvillat, V. , 2012(July 2012). 2014.
Realistic Plant Modeling from Images Based on Analysis-by-Synthesis [pdf]Paper   link   bibtex  
Simultaneous Detection and Segmentation. Hariharan, B.; Arbeláez, P.; Girshick, R.; and Malik, J. Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), 8695 LNCS(PART 7): 297-312. 7 2014.
Simultaneous Detection and Segmentation [pdf]Paper   Simultaneous Detection and Segmentation [link]Website   doi   link   bibtex   abstract  
OverFeat: Integrated Recognition, Localization and Detection using Convolutional Networks. Sermanet, P.; Eigen, D.; Zhang, X.; Mathieu, M.; Fergus, R.; and LeCun, Y. In 2nd International Conference on Learning Representations, ICLR 2014, Banff, AB, Canada, April 14-16, 2014, Conference Track Proceedings, 2014.
link   bibtex  
Learning Phrase Representations using RNN Encoder-Decoder for Statistical Machine Translation. Cho, K.; van Merrienboer, B.; Gülçehre, Ç.; Bahdanau, D.; Bougares, F.; Schwenk, H.; and Bengio, Y. In Proceedings of the 2014 Conference on Empirical Methods in Natural Language Processing, EMNLP 2014, October 25-29, 2014, Doha, Qatar, A meeting of SIGDAT, a Special Interest Group of the ACL, pages 1724-1734, 2014. ACL
link   bibtex  
Auto-Encoding Variational Bayes. Kingma, D., P.; and Welling, M. In 2nd International Conference on Learning Representations, ICLR 2014, Banff, AB, Canada, April 14-16, 2014, Conference Track Proceedings, 2014.
link   bibtex  
Joint probabilistic pedestrian head and body orientation estimation. Fabian Flohr; Madalin Dumitru-Guzu; Julian F. P. Kooij; and Dariu M. Gavrila In 2014 IEEE Intelligent Vehicles Symposium, 6 2014. IEEE
Joint probabilistic pedestrian head and body orientation estimation [pdf]Paper   link   bibtex  
Head Detection and Orientation Estimation for Pedestrian Safety. Rehder, E.; Kloeden, H.; and Stiller, C. In 2014 IEEE 17th International Conference on Intelligent Transportation Systems (ITSC), 8 2014.
Head Detection and Orientation Estimation for Pedestrian Safety [pdf]Paper   link   bibtex  
  2013 (15)
Dense Visual SLAM for RGB-D Cameras. Kerl, C.; Sturm, J.; and Cremers, D. 2013 IEEE/RSJ International Conference on Intelligent Robots and Systems, Tokyo, Japan, November 3-7, 2013,2100--2106. 2013.
Dense Visual SLAM for RGB-D Cameras [pdf]Paper   link   bibtex   abstract  
SLAM++: Simultaneous Localisation and Mapping at the Level of Objects. Salas-Moreno, R., F.; Newcombe, R., A.; Strasdat, H.; Kelly, P., H., J.; and Davison, A., J. 2013 IEEE Conference on Computer Vision and Pattern Recognition, Portland, OR, USA, June 23-28, 2013,1352--1359. 2013.
SLAM++: Simultaneous Localisation and Mapping at the Level of Objects [pdf]Paper   link   bibtex   abstract  
Semi-dense visual odometry for a monocular camera. Engel, J.; Sturm, J.; and Cremers, D. Proceedings of the IEEE International Conference on Computer Vision,1449-1456. 2013.
Semi-dense visual odometry for a monocular camera [pdf]Paper   doi   link   bibtex   abstract  
SIFER: Scale-invariant feature detector with error resilience. Mainali, P.; Lafruit, G.; Yang, Q.; Geelen, B.; Gool, L., V.; and Lauwereins, R. International Journal of Computer Vision, 104(2): 172-197. 2013.
SIFER: Scale-invariant feature detector with error resilience [pdf]Paper   doi   link   bibtex   abstract  
Genetic programming as strategy for learning image descriptor operators. Perez, C., B.; and Olague, G. Intelligent Data Analysis, 17(4): 561-583. 2013.
Genetic programming as strategy for learning image descriptor operators [pdf]Paper   doi   link   bibtex   abstract  
A Combined Corner and Edge Detector. Harris, C.; and Stephens, M. ,23.1-23.6. 2013.
A Combined Corner and Edge Detector [pdf]Paper   doi   link   bibtex   abstract  
Using Convex Optimisation. Simonyan, K.; Vedaldi, A.; and Zisserman, A. IEEE Trans. Pattern Anal. Mach. Intell., 36(8): 1-14. 2013.
Using Convex Optimisation [pdf]Paper   link   bibtex  
Applications of image processing in viticulture: A review. Whalley, J.; and Shanmuganathan, S. Proceedings - 20th International Congress on Modelling and Simulation, MODSIM 2013, (December): 531-537. 2013.
Applications of image processing in viticulture: A review [pdf]Paper   doi   link   bibtex   abstract  
Wine and culture: Vineyard to glass. Black, R., E.; and Ulin, R., C. Bloomsbury Publishing, 2013.
link   bibtex  
CrossVit: Enhancing Canopy Monitoring Management Practices in Viticulture. Matese, A.; Vaccari, F., P.; Tomasi, D.; Gennaro, S., F., D.; Primicerio, J.; Sabatini, F.; and Guidoni, S. Sensors, 13(6): 7652-7667. 2013.
link   bibtex  
Fast Explicit Diffusion for Accelerated Features in Nonlinear Scale Spaces. Alcantarilla, P., F.; Nuevo, J.; and Bartoli, A. In British Machine Vision Conference, BMVC 2013, Bristol, UK, September 9-13, 2013, pages 1-11, 2013. BMVA Press
link   bibtex  
Applications of image processing in viticulture: A review. Whalley, J.; and Shanmuganathan, S. Proceedings - 20th International Congress on Modelling and Simulation, MODSIM 2013, (7): 531-537. 2013.
link   bibtex  
An automatic approach to UAV flight planning and control for photogrammetric applications. Hernandez-Lopez, D.; Felipe-Garcia, B.; Gonzalez-Aguilera, D.; and Arias-Perez, B. Photogrammetric Engineering \& Remote Sensing, 79(1): 87-98. 2013.
link   bibtex  
Estimation of leaf area index in onion (Allium cepa L.) using an unmanned aerial vehicle. Córcoles, J., I.; Ortega, J., F.; Hernández, D.; and Moreno, M., A. Biosystems Engineering, 115(1): 31-42. 2013.
link   bibtex  
Pedestrian detection from still images based on multi-feature covariances. Liu, Y.; Yao, J.; Xie, R.; and Zhu, S. 2013 IEEE International Conference on Information and Automation, ICIA 2013,614-619. 2013.
Pedestrian detection from still images based on multi-feature covariances [pdf]Paper   doi   link   bibtex   abstract  
  2012 (22)
Convolutional neural networks applied to house numbers digit classification. Sermanet, P.; Chintala, S.; and Lecun, Y. Proceedings - International Conference on Pattern Recognition, (Icpr): 3288-3291. 2012.
Convolutional neural networks applied to house numbers digit classification [pdf]Paper   link   bibtex   abstract  
FREAK: Fast retina keypoint. Alahi, A.; Ortiz, R.; and Vandergheynst, P. Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition,510-517. 2012.
FREAK: Fast retina keypoint [pdf]Paper   doi   link   bibtex   abstract  
Interesting interest points: A comparative study of interest point performance on a unique data set. Aanæs, H.; Dahl, A., L.; and Pedersen, K., S. International Journal of Computer Vision, 97(1): 18-35. 2012.
Interesting interest points: A comparative study of interest point performance on a unique data set [pdf]Paper   doi   link   bibtex   abstract  
Solid-State Device Research Conference. Strecha, C.; Bronstein, A., M.; Bronstein, M., M.; Member, S.; Fua, P.; and Member, S. IEEE Transactions on Electron Devices, 14(9): 628. 2012.
Solid-State Device Research Conference [pdf]Paper   doi   link   bibtex  
KAZE features. Alcantarilla, P., F.; Bartoli, A.; and Davison, A., J. Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), 7577 LNCS(PART 6): 214-227. 2012.
KAZE features [pdf]Paper   doi   link   bibtex   abstract  
Three things everyone should know to improve object retrieval. Arandjelovic, R.; and Zisserman, A. Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition,2911-2918. 2012.
Three things everyone should know to improve object retrieval [pdf]Paper   doi   link   bibtex   abstract  
Image retrieval for image-based localization revisited. Sattler, T.; Weyand, T.; Leibe, B.; and Kobbelt, L. BMVC 2012 - Electronic Proceedings of the British Machine Vision Conference 2012. 2012.
Image retrieval for image-based localization revisited [pdf]Paper   doi   link   bibtex   abstract  
Classification of Plant Structures from Uncalibrated Image Sequences. Dey, D.; Mummert, L.; and Sukthankar, R. Proceedings of IEEE Workshop on Applications of Computer Vision,329-336. 2012.
Classification of Plant Structures from Uncalibrated Image Sequences [pdf]Paper   doi   link   bibtex   abstract  
Modeling and Calibrating Visual Yield Eestimates in Vineyards. Nuske, S.; Gupta, K.; Narasimhan, S.; and Singh, S. Springer Tracts in Advanced Robotics, 92: 343-356. 2012.
Modeling and Calibrating Visual Yield Eestimates in Vineyards [pdf]Paper   doi   link   bibtex   abstract  
A flexible unmanned aerial vehicle for precision agriculture. Primicerio, J.; Di Gennaro, S., F.; Fiorillo, E.; Genesio, L.; Lugato, E.; Matese, A.; and Vaccari, F., P. Precision Agriculture, 13(4): 517-523. 8 2012.
A flexible unmanned aerial vehicle for precision agriculture [pdf]Paper   A flexible unmanned aerial vehicle for precision agriculture [link]Website   doi   link   bibtex   abstract  
Image recognition of grape downy mildew and grape powdery mildew based on support vector machine. Li, G.; Ma, Z.; and Wang, H. IFIP Advances in Information and Communication Technology, 370 AICT(PART 3): 151-162. 2012.
Image recognition of grape downy mildew and grape powdery mildew based on support vector machine [pdf]Paper   Image recognition of grape downy mildew and grape powdery mildew based on support vector machine [link]Website   doi   link   bibtex   abstract  
Ripeness estimation of grape berries and seeds by image analysis. Rodríguez-Pulido, F., J.; Gómez-Robledo, L.; Melgosa, M.; Gordillo, B.; González-Miret, M., L.; and Heredia, F., J. Computers and Electronics in Agriculture, 82: 128-133. 3 2012.
Ripeness estimation of grape berries and seeds by image analysis [pdf]Paper   doi   link   bibtex   abstract  
Automatic detection of bunches of grapes in natural environment from color images. Reis, M., J.; Morais, R.; Peres, E.; Pereira, C.; Contente, O.; Soares, S.; Valente, A.; Baptista, J.; Ferreira, P., J.; and Bulas Cruz, J. Journal of Applied Logic, 10(4): 285-290. 12 2012.
Automatic detection of bunches of grapes in natural environment from color images [pdf]Paper   doi   link   bibtex   abstract  
Describing the scene as a whole: Joint object detection, scene classification and semantic segmentation. Yao, J.; Fidler, S.; and Urtasun, R. Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition,702-709. 2012.
Describing the scene as a whole: Joint object detection, scene classification and semantic segmentation [pdf]Paper   doi   link   bibtex   abstract  
An improved Canny edge detection algorithm for color image. Geng, X.; Chen, K.; and Hu, X. IEEE International Conference on Industrial Informatics (INDIN),113-117. 2012.
An improved Canny edge detection algorithm for color image [pdf]Paper   doi   link   bibtex   abstract  
Ensemble Machine Learning: Methods and Applications. Zhang, C.; and Ma, Y. Springer, 2012.
link   bibtex  
Examining brain microstructure using structure tensor analysis of histological sections. Budde, M., D.; and Frank, J., A. NeuroImage, 63(1): 1-10. 2012.
link   bibtex  
A novel method for extracting green fractional vegetation cover from digital images. Liu, Y.; Mu, X.; Wang, H.; and Yan, G. Journal of Vegetation Science, 23(3): 406-418. 2012.
link   bibtex  
Random Forests and Decision Trees. Ali, J.; Khan, R.; Ahmad, N.; and Maqsood, I. International Journal of Computer Science Issues (IJCSI), 9(5): 272. 2012.
link   bibtex  
A flexible unmanned aerial vehicle for precision agriculture. Primicerio, J.; Di Gennaro, S., F.; Fiorillo, E.; Genesio, L.; Lugato, E.; Matese, A.; and Vaccari, F., P. Precision Agriculture, 13(4): 517-523. 8 2012.
link   bibtex  
Are we ready for autonomous driving? the KITTI vision benchmark suite. Geiger, A.; Lenz, P.; and Urtasun, R. Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition,3354-3361. 2012.
Are we ready for autonomous driving? the KITTI vision benchmark suite [pdf]Paper   doi   link   bibtex   abstract  
LOWER AND UPPER BOUNDS FOR APPROXIMATION OF THE KULLBACK-LEIBLER DIVERGENCE BETWEEN GAUSSIAN MIXTURE MODELS. Durrieu, J.; Thiran, J.; and Kelly, F. In 2012 IEEE International Conference on Acoustics, Speech, and Signal Processing : ICASSP 2012, pages 5460, 3 2012. IEEE
LOWER AND UPPER BOUNDS FOR APPROXIMATION OF THE KULLBACK-LEIBLER DIVERGENCE BETWEEN GAUSSIAN MIXTURE MODELS [pdf]Paper   link   bibtex   abstract  
  2011 (16)
DTAM: Dense Tracking and Mapping in Real-Time. Newcombe, R., A.; Lovegrove, S., J.; and Davison, A., J. In IEEE International Conference on Computer Vision, ICCV 2011, Barcelona, Spain, November 6-13, 2011, pages 2320--2327, 2011.
DTAM: Dense Tracking and Mapping in Real-Time [pdf]Paper   link   bibtex   abstract  
Edge foci interest points. Zitnick, C., L.; and Ramnath, K. Proceedings of the IEEE International Conference on Computer Vision,359-366. 2011.
Edge foci interest points [pdf]Paper   doi   link   bibtex   abstract  
Local intensity order pattern for feature description. Wang, Z.; Fan, B.; and Wu, F. Proceedings of the IEEE International Conference on Computer Vision,603-610. 2011.
Local intensity order pattern for feature description [pdf]Paper   doi   link   bibtex   abstract  
Aggregating gradient distributions into intensity orders: A novel local image descriptor. Fan, B.; Wu, F.; and Hu, Z. Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition,2377-2384. 2011.
Aggregating gradient distributions into intensity orders: A novel local image descriptor [pdf]Paper   doi   link   bibtex   abstract  
BRISK: Binary Robust invariant scalable keypoints. Leutenegger, S.; Chli, M.; and Siegwart, R., Y. Proceedings of the IEEE International Conference on Computer Vision,2548-2555. 2011.
BRISK: Binary Robust invariant scalable keypoints [pdf]Paper   doi   link   bibtex   abstract  
Discriminative learning of local image descriptors. Brown, M.; Hua, G.; and Winder, S. IEEE Transactions on Pattern Analysis and Machine Intelligence, 33(1): 43-57. 2011.
Discriminative learning of local image descriptors [pdf]Paper   doi   link   bibtex   abstract  
Evaluation of interest point detectors and feature descriptors for visual tracking. Gauglitz, S.; Höllerer, T.; and Turk, M. International Journal of Computer Vision, 94(3): 335-360. 2011.
Evaluation of interest point detectors and feature descriptors for visual tracking [pdf]Paper   doi   link   bibtex   abstract  
Yield Estimation in Vineyards by Visual Grape Detection. Nuske, S.; Achar, S.; Bates, T.; Narasimhan, S.; and Singh, S. In 2011 IEEE/RSJ International Conference on Intelligent Robots and Systems, pages 2352-2358, 2011. IEEE
Yield Estimation in Vineyards by Visual Grape Detection [pdf]Paper   link   bibtex  
Visual Yield Estimation in Vineyards: Experiments with Different Varietals and Calibration Procedures. Nuske, S.; Achar, S.; Gupta, K.; Narasimhan, S.; and Singh, S. Technical Report 2011.
Visual Yield Estimation in Vineyards: Experiments with Different Varietals and Calibration Procedures [pdf]Paper   link   bibtex   abstract  
A semi-automatic non-destructive method to quantify grapevine downy mildew sporulation. Peressotti, E.; Duchêne, E.; Merdinoglu, D.; and Mestre, P. Journal of Microbiological Methods, 84(2): 265-271. 2 2011.
A semi-automatic non-destructive method to quantify grapevine downy mildew sporulation [pdf]Paper   doi   link   bibtex   abstract  
Laser and radar based robotic perception. Adams, M., D.; Mullane, J., (., S.; and Vo, B. Now Pub, 2011.
Laser and radar based robotic perception [pdf]Paper   link   bibtex   abstract  
Co-Training for Domain Adaptation. Chen, M.; Weinberger, K., Q.; and Blitzer, J., C. In Advances in Neural Information Processing Systems 24: 25th Annual Conference on Neural Information Processing Systems 2011. Proceedings of a meeting held 12-14 December 2011, Granada, Spain, pages 2456--2464, 2011.
Co-Training for Domain Adaptation [pdf]Paper   link   bibtex   abstract  
Automatic Detection of White Grapes in Natural Environment Using Image Processing. Reis, M., C.; Morais, R.; Pereira, C.; Soares, S., F., S., P.; Valente, A.; Baptista, J.; Ferreira, P., J., S., G.; and Bulas-Cruz, J. In Soft Computing Models in Industrial and Environmental Applications, 6th International Conference SOCO 2011, 6-8 April, 2011, Salamanca, Spain, volume 87, of Advances in Intelligent and Soft Computing, pages 19-26, 2011. Springer
link   bibtex  
Robust classification of the nutrition state in crop plants by hyperspectral imaging and artificial neural networks. Backhaus, A.; Bollenbeck, F.; and Seiffert, U. In 3rd Workshop on Hyperspectral Image and Signal Processing: Evolution in Remote Sensing, WHISPERS 2011, Lisbon, Portugal, June 6-9, 2011, pages 1-4, 2011. IEEE
link   bibtex  
Representing Local Structure Using Tensors II. Knutsson, H.; Westin, C.; and Andersson, M., T. In Image Analysis - 17th Scandinavian Conference, SCIA 2011, Ystad, Sweden, May 2011. Proceedings, volume 6688, of Lecture Notes in Computer Science, pages 545-556, 2011. Springer
link   bibtex  
Modeling image similarity by Gaussian mixture models and the Signature Quadratic Form Distance. Beecks, C.; Ivanescu, A., M.; Kirchhoff, S.; and Seidl, T. Proceedings of the IEEE International Conference on Computer Vision,1754-1761. 2011.
Modeling image similarity by Gaussian mixture models and the Signature Quadratic Form Distance [pdf]Paper   doi   link   bibtex   abstract  
  2010 (17)
Binary coherent edge descriptors. Zitnick, C., L. Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), 6312 LNCS(PART 2): 170-182. 2010.
Binary coherent edge descriptors [pdf]Paper   doi   link   bibtex   abstract  
Improving SIFT-based descriptors stability to rotations. Bellavia, F.; Tegolo, D.; and Trucco, E. Proceedings - International Conference on Pattern Recognition,3460-3463. 2010.
Improving SIFT-based descriptors stability to rotations [pdf]Paper   doi   link   bibtex   abstract  
Gradient descent optimization of smoothed information retrieval metrics. Chapelle, O.; and Wu, M. Information Retrieval, 13(3): 216-235. 2010.
Gradient descent optimization of smoothed information retrieval metrics [pdf]Paper   doi   link   bibtex   abstract  
DAISY: An efficient dense descriptor applied to wide-baseline stereo. Tola, E.; Lepetit, V.; and Fua, P. IEEE Transactions on Pattern Analysis and Machine Intelligence, 32(5): 815-830. 2010.
DAISY: An efficient dense descriptor applied to wide-baseline stereo [pdf]Paper   doi   link   bibtex   abstract  
Representations of keypoint-based semantic concept detection: A comprehensive study. Jiang, Y., G.; Yang, J.; Ngo, C., W.; and Hauptmann, A., G. IEEE Transactions on Multimedia, 12(1): 42-53. 2010.
Representations of keypoint-based semantic concept detection: A comprehensive study [pdf]Paper   doi   link   bibtex   abstract  
BRIEF: Binary robust independent elementary features. Calonder, M.; Lepetit, V.; Strecha, C.; and Fua, P. Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), 6314 LNCS(PART 4): 778-792. 2010.
BRIEF: Binary robust independent elementary features [pdf]Paper   doi   link   bibtex   abstract  
Image-based indoor positioning system: Fast image matching using omnidirectional panoramic images. Kawaji, H.; Hatada, K.; Yamasaki, T.; and Aizawa, K. MPVA'10 - Proceedings of the 2010 ACM Workshop on Multimodal Pervasive Video Analysis, Co-located with ACM Multimedia 2010,1-4. 2010.
Image-based indoor positioning system: Fast image matching using omnidirectional panoramic images [pdf]Paper   doi   link   bibtex   abstract  
Improving orchard efficiency with autonomous utility vehicles. Hamner, B.; Singh, S.; and Bergerman, M. American Society of Agricultural and Biological Engineers Annual International Meeting 2010, ASABE 2010, 6: 4670-4685. 2010.
doi   link   bibtex   abstract  
Grape clusters and foliage detection algorithms for autonomous selective vineyard sprayer. Berenstein, R.; Ben Shahar, O.; Shapiro, A.; Edan, Y.; Berenstein, R.; Edan, Y.; Shahar, O., B.; and Shapiro, A. Intelligent Service Robotics 2010 3:4, 3(4): 233-243. 9 2010.
Grape clusters and foliage detection algorithms for autonomous selective vineyard sprayer [pdf]Paper   Grape clusters and foliage detection algorithms for autonomous selective vineyard sprayer [link]Website   doi   link   bibtex   abstract  
Applied machine vision of plants: A review with implications for field deployment in automated farming operations. McCarthy, C., L.; Hancock, N., H.; and Raine, S., R. Intelligent Service Robotics, 3(4): 209-217. 8 2010.
Applied machine vision of plants: A review with implications for field deployment in automated farming operations [pdf]Paper   Applied machine vision of plants: A review with implications for field deployment in automated farming operations [link]Website   doi   link   bibtex   abstract  
The Pascal Visual Object Classes (VOC) Challenge. Everingham, M.; Gool, L., V.; Williams, C., K., I.; Winn, J., M.; and Zisserman, A. International Journal of Computer Vision, 88(2): 303-338. 2010.
link   bibtex  
Chemometrics in process analytical technology (PAT). Miller, C., E. Process Analytical Technology: Spectroscopic Tools and Implementation Strategies for the Chemical and Pharmaceutical Industries,353-438. 2010.
link   bibtex  
Stacked denoising autoencoders: Learning useful representations in a deep network with a local denoising criterion. Vincent, P.; Larochelle, H.; Lajoie, I.; Bengio, Y.; Manzagol, P.; and Bottou, L. Journal of Machine Learning Research, 11(12). 2010.
link   bibtex  
Improving the Fisher Kernel for Large-Scale Image Classification. Perronnin, F.; Sánchez, J.; and Mensink, T. In Computer Vision - ECCV 2010, 11th European Conference on Computer Vision, Heraklion, Crete, Greece, September 5-11, 2010, Proceedings, Part IV, volume 6314, of Lecture Notes in Computer Science, pages 143-156, 2010. Springer
link   bibtex  
Radiation Balance in Vineyards. Baeza, P.; Sánchez-De-Miguel, P.; and Lissarrague, J., R. Methodologies and Results in Grapevine Research, pages 21-29. Springer Netherlands, 2010.
link   bibtex  
A tensorial framework for color images. Rittner, L.; Flores, F., C.; and de Alencar Lotufo, R. Pattern Recognition Letters, 31(4): 277-296. 2010.
link   bibtex  
Aggregating local descriptors into a compact image representation. Jégou, H.; Douze, M.; Schmid, C.; and Pérez, P. In The Twenty-Third IEEE Conference on Computer Vision and Pattern Recognition, CVPR 2010, San Francisco, CA, USA, 13-18 June 2010, pages 3304-3311, 2010. IEEE Computer Society
link   bibtex  
  2009 (9)
A High-Speed Iterative Closest Point Tracker on an FPGA Platform. Sweeney Belshaw, M. 12th IEEE International Conference on Computer Vision Workshops, ICCV Workshops 2009, Kyoto, Japan, September 27 - October 4, 2009,1449--1456. 2009.
A High-Speed Iterative Closest Point Tracker on an FPGA Platform [pdf]Paper   link   bibtex  
Detecting interpretable and accurate scale-invariant keypoints. Förstner, W.; Dickscheid, T.; and Schindler, F. Proceedings of the IEEE International Conference on Computer Vision, (Iccv): 2256-2263. 2009.
Detecting interpretable and accurate scale-invariant keypoints [pdf]Paper   doi   link   bibtex   abstract  
E-cient representation of local geometry for large scale object retrieval. Perd'och, M.; Chum, O.; and Matas, J. 2009 IEEE Conference on Computer Vision and Pattern Recognition, CVPR 2009,9-16. 2009.
E-cient representation of local geometry for large scale object retrieval [pdf]Paper   doi   link   bibtex   abstract  
A novel robotic visual perception method using object-based attention. Yu, Y.; Mann, G., K.; and Gosine, R., G. In 2009 IEEE International Conference on Robotics and Biomimetics, ROBIO 2009, pages 1467-1473, 2009.
A novel robotic visual perception method using object-based attention [pdf]Paper   doi   link   bibtex   abstract  
ImageNet: A large-scale hierarchical image database. Deng, J.; Dong, W.; Socher, R.; Li, L.; Li, K.; and Fei-Fei, L. In 2009 IEEE Conference on Computer Vision and Pattern Recognition, pages 248-255, 2009. IEEE
link   bibtex  
The Graph Neural Network Model. Scarselli, F.; Gori, M.; Tsoi, A., C.; Hagenbuchner, M.; and Monfardini, G. IEEE Transactions Neural Networks, 20(1): 61-80. 2009.
link   bibtex  
PROSPECT+SAIL models: A review of use for vegetation characterization. Jacquemoud, S.; Verhoef, W.; Baret, F.; Bacour, C.; Zarco-Tejada, P., J.; Asner, G., P.; François, C.; and Ustin, S., L. Remote Sensing of Environment, 113: S56--S66. 2009.
link   bibtex  
Resistance to Plasmopara viticola in grapevine ‘Bianca’is controlled by a major dominant gene causing localised necrosis at the infection site. Bellin, D.; Peressotti, E.; Merdinoglu, D.; Wiedemann-Merdinoglu, S.; Adam-Blondon, A.; Cipriani, G.; Morgante, M.; Testolin, R.; and Di Gaspero, G. Theoretical and Applied Genetics, 120(1): 163-176. 2009.
link   bibtex  
Learning 3-D object orientation from images. Saxena, A.; Driemeyer, J.; and Ng, A., Y. Proceedings - IEEE International Conference on Robotics and Automation,794-800. 2009.
Learning 3-D object orientation from images [pdf]Paper   doi   link   bibtex   abstract  
  2008 (12)
EPnP: An Accurate O(n) Solution to the PnP Problem. Lepetit, V.; Moreno-Noguer, F.; Fua, P.; Lepetit, V.; Moreno-Noguer, F.; and Fua, P. International Journal of Computer Vision 2008 81:2, 81(2): 155-166. 7 2008.
EPnP: An Accurate O(n) Solution to the PnP Problem [pdf]Paper   EPnP: An Accurate O(n) Solution to the PnP Problem [link]Website   doi   link   bibtex   abstract  
ORB: an efficient alternative to SIFT or SURF Ethan. Hasenbusch, M.; Pelissetto, A.; and Vicari, E. Journal of Statistical Mechanics: Theory and Experiment, 2008(2): 2564-2571. 2008.
ORB: an efficient alternative to SIFT or SURF Ethan [pdf]Paper   link   bibtex   abstract  
A fast local descriptor for dense matching. Tola, E.; Lepetit, V.; and Fua, P. 26th IEEE Conference on Computer Vision and Pattern Recognition, CVPR. 2008.
A fast local descriptor for dense matching [pdf]Paper   doi   link   bibtex   abstract  
FAB-MAP: Probabilistic localization and mapping in the space of appearance. Cummins, M.; and Newman, P. International Journal of Robotics Research, 27(6): 647-665. 2008.
FAB-MAP: Probabilistic localization and mapping in the space of appearance [pdf]Paper   doi   link   bibtex   abstract  
IMAGE SYNTHESIZATION METHOD. Takiguchi, H.; Yano, K.; Katayama, T.; Fumiaki Takahashi; Kenji Hatori; and Koji Hatanaka 2008.
IMAGE SYNTHESIZATION METHOD [pdf]Paper   link   bibtex  
On-the-go Machine Vision Sensing of Cotton Plant Geometric Parameters: First Results. McCarthy, C.; Hancock, N.; and Raine, S. In Mechatronics and Machine Vision in Practice, pages 305-312, 2008. Springer Berlin Heidelberg
link   bibtex  
Multispectral imaging using multiple-bandpass filters. Themelis, G.; Yoo, J., S.; and Ntziachristos, V. Optics Letters, 33(9): 1023-1025. 2008.
link   bibtex  
Wine Grape Production Guide for Eastern North America. Wolf, T. Natural Resource, Agriculture, and Engineering Service, 2008.
link   bibtex  
Grape leaf disease detection from color imagery using hybrid intelligent system. Meunkaewjinda, A.; Kumsawat, P.; Attakitmongcol, K.; and Srikaew, A. In 2008 5th International Conference on Electrical Engineering/Electronics, Computer, Telecommunications and Information Technology, volume 1, pages 513-516, 2008. IEEE
link   bibtex  
Stereo Processing by Semiglobal Matching and Mutual Information. Hirschmüller, H. IEEE Transactions on Pattern Analysis and Machine Intelligence, 30(2): 328-341. 2008.
link   bibtex  
Berry size and vine water deficits as factors in winegrape composition: Anthocyanins and tannins. Roby, G.; Harbertson, J.; Adams, D.; and Matthews, M. Australian Journal of Grape and Wine Research, 10: 100-107. 2008.
link   bibtex  
Affine object recognition and affine parameters estimation based on covariant matrix. Ji, H.; Li, G.; and Wang, Y. 2008 International Symposium on Information Science and Engineering, ISISE 2008, 1: 14-18. 2008.
Affine object recognition and affine parameters estimation based on covariant matrix [pdf]Paper   doi   link   bibtex   abstract  
  2007 (13)
MonoSLAM: Real-Time Single Camera SLAM. Davison, A., J.; Reid, I., D.; Molton, N., D.; and Stasse, O. IEEE Trans. Pattern Anal. Mach. Intell., 29(6): 1052--1067. 2007.
MonoSLAM: Real-Time Single Camera SLAM [pdf]Paper   doi   link   bibtex   abstract  
Parallel Tracking and Mapping for Small AR Workspaces. Klein, G.; and Murray, D. Sixth IEEE/ACM International Symposium on Mixed and Augmented Reality, ISMAR 2007, 13-16 November 2007, Nara, Japan. 2007.
Parallel Tracking and Mapping for Small AR Workspaces [pdf]Paper   link   bibtex   abstract  
Image enhancement based on logarithmic transform coefficient and adaptive histogram equalization. Hossain, M., F.; and Alsharif, M., R. 2007 International Conference on Convergence Information Technology, ICCIT 2007, 27(10): 1439-1444. 2007.
Image enhancement based on logarithmic transform coefficient and adaptive histogram equalization [pdf]Paper   doi   link   bibtex   abstract  
Fast Keypoint Recognition in Ten Lines of Code. Fua, P. . 2007.
Fast Keypoint Recognition in Ten Lines of Code [pdf]Paper   link   bibtex  
Learning a fast emulator of a binary decision process. Šochman, J.; and Matas, J. Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), 4844 LNCS(PART 2): 236-245. 2007.
Learning a fast emulator of a binary decision process [pdf]Paper   doi   link   bibtex   abstract  
Learning local image descriptors. Winder, S., A.; and Brown, M. Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition,3-10. 2007.
Learning local image descriptors [pdf]Paper   doi   link   bibtex   abstract  
Local invariant feature detectors: A survey. Tuytelaars, T.; and Mikolajczyk, K. Foundations and Trends in Computer Graphics and Vision, 3(3): 177-280. 2007.
Local invariant feature detectors: A survey [pdf]Paper   doi   link   bibtex   abstract  
Object retrieval with large vocabularies and fast spatial matching. Philbin, J.; Chum, O.; Isard, M.; Sivic, J.; and Zisserman, A. Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition. 2007.
Object retrieval with large vocabularies and fast spatial matching [pdf]Paper   doi   link   bibtex   abstract  
Use of thermal and visible imagery for estimating crop water status of irrigated grapevine. Möller, M.; Alchanatis, V.; Cohen, Y.; Meron, M.; Tsipris, J.; Naor, A.; Ostrovsky, V.; Sprintsin, M.; and Cohen, S. Journal of Experimental Botany, 58(4): 827-838. 3 2007.
Use of thermal and visible imagery for estimating crop water status of irrigated grapevine [pdf]Paper   Use of thermal and visible imagery for estimating crop water status of irrigated grapevine [link]Website   doi   link   bibtex   abstract  
Accelerating real-time shading with reverse reprojection caching. Nehab, D.; Sander, P., V.; Lawrence, J.; Tatarchuk, N.; and Isidoro, J., R. Proceedings of the SIGGRAPH/Eurographics Workshop on Graphics Hardware,25-35. 2007.
Accelerating real-time shading with reverse reprojection caching [pdf]Paper   link   bibtex   abstract  
Image Classification using Random Forests and Ferns. Bosch, A.; Zisserman, A.; and Muñoz, X. In IEEE 11th International Conference on Computer Vision, ICCV 2007, Rio de Janeiro, Brazil, October 14-20, 2007, pages 1-8, 2007. IEEE Computer Society
link   bibtex  
Grape berry calibration by computer vision using elliptical model fitting. Rabatel, G.; and Guizard, C. In ECPA 2007, 6th European Conference on Precision Agriculture, Skiathos, Greece, volume 6, pages 581-587, 2007.
link   bibtex  
Approximating the Kullback Leibler divergence between Gaussian mixture models. Hershey, J., R.; and Olsen, P., A. ICASSP, IEEE International Conference on Acoustics, Speech and Signal Processing - Proceedings, 4. 2007.
Approximating the Kullback Leibler divergence between Gaussian mixture models [pdf]Paper   doi   link   bibtex   abstract  
  2006 (10)
Simultaneous localization and mapping: Part I. Durrant-Whyte, H.; and Bailey, T. IEEE Robotics and Automation Magazine, 13(2): 99-108. 6 2006.
Simultaneous localization and mapping: Part I [pdf]Paper   doi   link   bibtex  
Simultaneous localization and mapping (SLAM): Part II. Bailey, T.; and Durrant-Whyte, H. IEEE Robotics and Automation Magazine, 13(3): 108-117. 9 2006.
Simultaneous localization and mapping (SLAM): Part II [pdf]Paper   doi   link   bibtex  
LNCS 3951 - SURF: Speeded Up Robust Features. Bay, H.; Tuytelaars, T.; and Gool, L., V. Computer Vision–ECCV 2006,404-417. 2006.
LNCS 3951 - SURF: Speeded Up Robust Features [pdf]Paper   LNCS 3951 - SURF: Speeded Up Robust Features [link]Website   link   bibtex   abstract  
Erickson - 2008 - Methods of treatment using anti-erbb antibody-maytansinoid conjugates.pdf. Rosten, E.; and Drummond, T. ,430-443. 2006.
Erickson - 2008 - Methods of treatment using anti-erbb antibody-maytansinoid conjugates.pdf [pdf]Paper   link   bibtex   abstract  
Using evolution to learn how to perform interest point detection. Trujillo, L.; and Olague, G. Proceedings - International Conference on Pattern Recognition, 1: 211-214. 2006.
Using evolution to learn how to perform interest point detection [pdf]Paper   doi   link   bibtex  
Grape detection by image processing. Chamelat, R.; Rosso, E.; Choksuriwong, A.; Rosenberger, C.; Laurent, H.; and Bro, P. IECON Proceedings (Industrial Electronics Conference),3697-3702. 2006.
Grape detection by image processing [pdf]Paper   doi   link   bibtex   abstract  
Grape Detection By Image Processing. Chamelat, R.; Rosso, E.; Choksuriwong, A.; Rosenberger, C.; Laurent, H.; and Bro, P. In IECON 2006 - 32nd Annual Conference on IEEE Industrial Electronics, pages 3697-3702, 2006. IEEE
link   bibtex  
Log-Euclidean metrics for fast and simple calculus on diffusion tensors. Arsigny, V.; Fillard, P.; Pennec, X.; and Ayache, N. Magnetic Resonance in Medicine, 56(2): 411-421. 2006.
link   bibtex  
An introduction to ROC analysis. Fawcett, T. Pattern Recognition Letters, 27(8): 861-874. 2006.
link   bibtex  
Detection, Tracking and Classification of Road Signs in Adverse Conditions. Siogkas, G., K.; and Dermatas, E., S. In MELECON 2006 - 2006 IEEE Mediterranean Electrotechnical Conference, pages 537-540, 2006. IEEE
link   bibtex  
  2005 (5)
Fusing points and lines for high performance real-time tracking Ed Rosten, Tom Drummond University of Cambridge. Rosten, E.; and Drummond, T. . 2005.
Fusing points and lines for high performance real-time tracking Ed Rosten, Tom Drummond University of Cambridge [pdf]Paper   link   bibtex  
A performance evaluation of local descriptors. Mikolajczyk, K.; and Schmid, C. IEEE Transactions on Pattern Analysis and Machine Intelligence, 27(10): 1615-1630. 2005.
A performance evaluation of local descriptors [pdf]Paper   doi   link   bibtex   abstract  
Detection and classification of edges in color images. Koschan, A.; and Abidi, M. IEEE Signal Processing Magazine, 22(1): 64-73. 2005.
Detection and classification of edges in color images [pdf]Paper   doi   link   bibtex  
Grapevine water use and the crop coefficient are linear functions of the shaded area measured beneath the canopy. Williams, L., E.; and Ayars, J., E. Agricultural and Forest Meteorology, 132(3): 201-211. 2005.
link   bibtex  
Wine and the Vine: An Historical Geography of Viticulture and the Wine Trade. Unwin, T. Routledge, 2005.
link   bibtex  
  2004 (4)
Distinctive image features from scale-invariant keypoints. Lowe, D., G. International Journal of Computer Vision, 60(2): 91-110. 2004.
Distinctive image features from scale-invariant keypoints [pdf]Paper   doi   link   bibtex   abstract  
Scale & affine invariant interest point detectors. Mikolajczyk, K.; and Schmid, C. International Journal of Computer Vision, 60(1): 63-86. 2004.
Scale & affine invariant interest point detectors [pdf]Paper   doi   link   bibtex   abstract  
PCA-SIFT: A more distinctive representation for local image descriptors. Ke, Y.; and Sukthankar, R. Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, 2: 2-9. 2004.
PCA-SIFT: A more distinctive representation for local image descriptors [pdf]Paper   doi   link   bibtex   abstract  
Distinctive Image Features from Scale-Invariant Keypoints. Lowe, D., G. International Journal of Computer Vision, 60(2): 91-110. 2004.
link   bibtex  
  2003 (3)
The effect of powdery mildew infection of grape berries on juice and wine composition and on sensory properties of Chardonnay wines. Stummer, B., E.; Francis, I., L.; Markides, A., J.; and Scott, E., S. Australian Journal of Grape and Wine Research, 9: 28-39. 2003.
link   bibtex  
Smarter thinking on soil survey. Bramley, R. Australian and New Zealand Wine Industry Journal, 18(3): 88-94. 2003.
link   bibtex  
Video Google: A Text Retrieval Approach to Object Matching in Videos. Sivic, J.; and Zisserman, A. In Proceedings Ninth IEEE International Conference on Computer Vision, volume 2, pages 1470-1477, 2003. IEEE
link   bibtex  
  2002 (7)
Traumatic spinal epidural hematoma: A case report. Ho, C., A.; Khiew, K., F.; and Hsieh, K., S. Formosan Journal of Surgery, 35(1): 39-43. 2002.
Traumatic spinal epidural hematoma: A case report [pdf]Paper   link   bibtex   abstract  
Book Review:Multiple view geometry in computer vision. Brush, B., C. Review of Social Economy, 36(2): 222-224. 2002.
Book Review:Multiple view geometry in computer vision [pdf]Paper   Book Review:Multiple view geometry in computer vision [link]Website   link   bibtex  
An A ne Invariant Interest P oint D etector. Mikolajczyk, K.; and Schmid, C. Image (Rochester, N.Y.),128-142. 2002.
An A ne Invariant Interest P oint D etector [pdf]Paper   link   bibtex  
Object Recognition from Local Scale-Invariant Features. Lowe, D., G. Concrete Producer, 20(5): 15. 2002.
Object Recognition from Local Scale-Invariant Features [pdf]Paper   doi   link   bibtex  
Novel algorithms for remote estimation of vegetation fraction. Gitelson, A., A.; Kaufman, Y., J.; Stark, R.; and Rundquist, D. Remote Sensing of Environment, 80(1): 76-87. 2002.
link   bibtex  
Genetic analysis of downy mildew resistance derived from Muscadinia rotundifolia. Wiedeman-Merdinoglu, S.; Coste, P.; Dumas, V.; Haetty, S.; Butterlin, G.; Greif, C.; and Merdinoglu, D. In Acta Horticulturae, volume 603, pages 451-456, 2002. International Society for Horticultural Science (ISHS), Leuven, Belgium
link   bibtex  
Evaluation of a technique for measuring canopy volume of shrubs. Thorne, M., S.; Skinner, Q., D.; Smith, M., A.; Rodgers, J., D.; Laycock, W., A.; and Cerekci, S., A. Technical Report 2002.
Evaluation of a technique for measuring canopy volume of shrubs [pdf]Paper   link   bibtex   abstract  
  2001 (2)
Thresholding Images of Line Drawings with Hysteresis. Pridmore, T., P. In Graphics Recognition Algorithms and Applications, 4th International Workshop, GREC 2001, Kingston, Ontario, Canada, September 7-8, 2001, Selected Papers, volume 2390, of Lecture Notes in Computer Science, pages 310-319, 2001. Springer
link   bibtex  
Random Forests. Breiman, L. Machine Learning, 45(1): 5-32. 2001.
link   bibtex  
  2000 (3)
Evaluation of interest point detectors. Schmid, C.; Mohr, R.; and Bauckhage, C. International Journal of Computer Vision, 37(2): 151-172. 2000.
Evaluation of interest point detectors [pdf]Paper   doi   link   bibtex   abstract  
On the reprojection of 3D and 2D scenes without explicit model selection. Shashua, A.; and Avidan, S. Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), 1842: 936-949. 2000.
On the reprojection of 3D and 2D scenes without explicit model selection [pdf]Paper   doi   link   bibtex   abstract  
Radial Basis Functions. Buhmann, M., D. Acta Numerica, 9: 1-38. 2000.
link   bibtex  
  1999 (2)
Assessing leaf pigment content and activity with a reflectometer. Gamon, J., A.; and Surfus, J., S. New Phytologist, 143(1): 105-117. 1999.
link   bibtex  
Wine Grape Varieties. Kerridge, G., H.; and Antcliff, A., J. Csiro Publishing, 1999.
link   bibtex  
  1998 (2)
An Algorithm for Estimating Chlorophyll Content in Leaves Using a Video Camera. Kawashima, S.; and Nakatani, M. Annals of Botany, 81(1): 49-54. 1 1998.
An Algorithm for Estimating Chlorophyll Content in Leaves Using a Video Camera [pdf]Paper   doi   link   bibtex   abstract  
Support Vector Machines. Hearst, M., A.; Dumais, S., T.; Osuna, E.; Platt, J.; and Scholkopf, B. IEEE Intelligent Systems and Their Applications, 13(4): 18-28. 1998.
link   bibtex  
  1997 (1)
Long Short-Term Memory. Hochreiter, S.; and Schmidhuber, J. Neural Computation, 9(8): 1735-1780. 1997.
link   bibtex  
  1995 (3)
A review of vegetation indices. Bannari, A.; Morin, D.; Bonn, F.; and Huete, A. Remote Sensing Reviews, 13(1-2): 95-120. 1995.
link   bibtex  
Development of an infection model for Botrytis bunch rot of grapes based on wetness duration and temperature. Broome, J., C.; English, J., T.; Marois, J., J.; Latorre, B., A.; and Aviles, J., C. Phytopathology, 85(1): 97-102. 1995.
link   bibtex  
Random Decision Forests. Ho, T., K. In Third International Conference on Document Analysis and Recognition, ICDAR 1995, August 14 - 15, 1995, Montreal, Canada. Volume i, pages 278-282, 1995. IEEE Computer Society
link   bibtex  
  1994 (1)
Good Features. Shi, J.; and Tomasi, C. Image (Rochester, N.Y.),593-600. 1994.
Good Features [pdf]Paper   link   bibtex   abstract  
  1993 (1)
"Neural-Gas" Network for Vector Quantization and its Application to Time-Series Prediction. Martinetz, T.; Berkovich, S., G.; and Schulten, K. IEEE Transactions on Neural Networks and Learning Systems, 4(4): 558-569. 1993.
link   bibtex  
  1992 (2)
Camera calibration using multiple images. Beardsley, P.; Murray, D.; and Zisserman, A. Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), 588 LNCS: 312-320. 1992.
doi   link   bibtex   abstract  
Bunch rot of grapes caused by Botrytis cinerea. Nair, N., G.; and Hill, G., K. Plant Diseases of International Importance Volume III Diseases of Fruit Crops,147-169. 1992.
link   bibtex  
  1989 (2)
Approximation by superpositions of a sigmoidal function. Cybenko, G. Mathematics of Control, Signals and Systems, 2(4): 303-314. 1989.
link   bibtex  
Standard normal variate transformation and de-trending of near-infrared diffuse reflectance spectra. Barnes, R., J.; Dhanoa, M., S.; and Lister, S., J. Applied Spectroscopy, 43(5): 772-777. 1989.
link   bibtex  
  1988 (1)
Harris角点论文. Heitz, E. Jahrbücher für wissenschaftliche Botanik, 69: 762-818. 1988.
Harris角点论文 [pdf]Paper   link   bibtex   abstract  
  1987 (1)
Generalization of back propagation to recurrent and higher order neural networks. Pineda, F. In Neural Information Processing Systems, 1987.
link   bibtex  
  1981 (1)
Random Sample Consensus: a Paradigm for Model Fitting with Applications to Image Analysis and Automated Cartography. Fischler, M., A.; and Bolles, R., C. Communications of the ACM, 24(6): 381-395. 1981.
link   bibtex  
  1980 (1)
Obstacle Avoidance and Navigation in the Real World by a Seeing Robot Rover, Tech. Report, Robotics Institute, Carnegie-Mellon University, pp.1-175. Moravec, H., P. Obstacle Avoidance and Navigation in the Real World by a Seeing Robot Rover,1-175. 1980.
Obstacle Avoidance and Navigation in the Real World by a Seeing Robot Rover, Tech. Report, Robotics Institute, Carnegie-Mellon University, pp.1-175 [pdf]Paper   Obstacle Avoidance and Navigation in the Real World by a Seeing Robot Rover, Tech. Report, Robotics Institute, Carnegie-Mellon University, pp.1-175 [link]Website   link   bibtex   abstract  
  1979 (1)
A Threshold Selection Method from Gray-Level Histograms. Otsu, N. IEEE Transactions on Systems, Man, and Cybernetics, 9(1): 62-66. 1979.
link   bibtex  
  1978 (1)
Color Gamut Transform Pairs. Smith, A., R. ACM Siggraph Computer Graphics, 12(3): 12-19. 1978.
link   bibtex  
  1965 (1)
General Viticulture. Winkler, A., J. University of California Press, 1965.
link   bibtex  
  1964 (1)
Smoothing and differentiation of data by simplified least squares procedures. Savitzky, A.; and Golay, M., J., E. Analytical Chemistry, 36(8): 1627-1639. 1964.
link   bibtex  
  1947 (1)
The Generalization of Student's Problem when Several Different Population Variances are Involved. Welch, B., L. Biometrika, 34(1/2): 28-35. 1947.
link   bibtex  
  1945 (1)
An improved grading system for measuring plant diseases. Horsfall, J., G. Phytopathology, 35: 655. 1945.
link   bibtex  
  1929 (1)
Test your soil for acidity. Linsley, C., M.; Bauer, F., C.; and others Circular, University of Illinois, Agricultural Experiment Station; no. 346. 1929.
link   bibtex  
  undefined (37)
[supplement] DeMoN: Depth and Motion Network for Learning Monocular Stereo. Details, A., N., A.; Schedule, B., T.; and Datasets, C. . .
[supplement] DeMoN: Depth and Motion Network for Learning Monocular Stereo [pdf]Paper   link   bibtex  
Robotcar_Ijrr(牛津开源数据集).Pdf. Maddern, W.; Pascoe, G.; Linegar, C.; and Newman, P. , 3(May 2014). .
Robotcar_Ijrr(牛津开源数据集).Pdf [pdf]Paper   link   bibtex   abstract  
Learning Local Image Descriptors with Deep Siamese and Triplet Convolutional Networks by Minimizing Global Loss Functions Supplemental Material 1. Effect of Outliers on the Gradient Magnitude. G, V., K., B.; Carneiro, G.; Reid, I.; Kumar, V.; Carneiro, G.; and Reid, I. ,1-4. .
Learning Local Image Descriptors with Deep Siamese and Triplet Convolutional Networks by Minimizing Global Loss Functions Supplemental Material 1. Effect of Outliers on the Gradient Magnitude [pdf]Paper   Learning Local Image Descriptors with Deep Siamese and Triplet Convolutional Networks by Minimizing Global Loss Functions Supplemental Material 1. Effect of Outliers on the Gradient Magnitude [pdf]Website   link   bibtex   abstract  
Deep Learning Application Based on Embedded GPU. Xu, J.; Wang, B.; Li, J.; Hu, C.; and Pan, J. Technical Report .
Deep Learning Application Based on Embedded GPU [pdf]Paper   link   bibtex   abstract  
2020 IEEE International Symposium on Circuits and Systems (ISCAS) : proceedings : ISCAS 2020 : Virtual Conference, October 10-21, 2020. IEEE Circuits and Systems Society; and Institute of Electrical and Electronics Engineers .
2020 IEEE International Symposium on Circuits and Systems (ISCAS) : proceedings : ISCAS 2020 : Virtual Conference, October 10-21, 2020. [pdf]Paper   link   bibtex   abstract  
ICUFN 2017 : the Ninth International Conference on Ubiquitous and Future Networks : July 4(Tue.)-July 7(Fri.), 2017, Milan, Italy. Institute of Electrical and Electronics Engineers; IEEE Communications Society; Denshi Jōhō Tsūshin Gakkai (Japan). Tsūshin Sosaieti; Springer (Firm); and Han'guk T'ongsin Hakhoe .
ICUFN 2017 : the Ninth International Conference on Ubiquitous and Future Networks : July 4(Tue.)-July 7(Fri.), 2017, Milan, Italy [pdf]Paper   link   bibtex   abstract  
Masked Siamese Networks for Label-Ecient Learning. Assran, M.; Caron, M.; Misra, I.; Bojanowski, P.; Bordes, F.; Vincent, P.; Joulin, A.; Rabbat, M.; Ballas, N.; and Ai, M. . .
Masked Siamese Networks for Label-Ecient Learning [pdf]Paper   Masked Siamese Networks for Label-Ecient Learning [link]Website   link   bibtex   abstract  
Semantic Image Segmentation with Deep Learning for Vine Leaf Phenotyping. Tamvakis, P., N.; Kiourt, C.; Solomou, A., D.; Ioannakis, G.; and Tsirliganis, N., C. Technical Report .
Semantic Image Segmentation with Deep Learning for Vine Leaf Phenotyping [pdf]Paper   link   bibtex   abstract  
Weakly-Supervised Domain Adaptation via GAN and Mesh Model for Estimating 3D Hand Poses Interacting Objects | Enhanced Reader.
link   bibtex  
TWI550549B.pdf.
TWI550549B.pdf [pdf]Paper   link   bibtex  
Applying Knowledge Distillation to Improve Weed Mapping With Drones. Castellano, G.; De Marinis, P.; and Vessio, G. . .
Applying Knowledge Distillation to Improve Weed Mapping With Drones [pdf]Paper   link   bibtex   abstract  
Efficient Grapevine Structure Estimation in Vineyards Conditions. Gentilhomme, T.; Villamizar, M.; Corre, J.; and Odobez, J. . .
Efficient Grapevine Structure Estimation in Vineyards Conditions [pdf]Paper   link   bibtex   abstract  
Comparative Analysis of 2D and 3D Vineyard Yield Prediction System Using Artificial Intelligence ( AI ). Barbole, D.; and Jadhav, P., M. , (Ml): 1-17. .
Comparative Analysis of 2D and 3D Vineyard Yield Prediction System Using Artificial Intelligence ( AI ) [pdf]Paper   link   bibtex  
GRAPE QUALITY PREDICTION IN PRE-POST HARVESTING WITH IMPLEMENTATION OF FUSION DEEP LEARNING. Patil, N.; and Singh, G., G. . .
GRAPE QUALITY PREDICTION IN PRE-POST HARVESTING WITH IMPLEMENTATION OF FUSION DEEP LEARNING [pdf]Paper   GRAPE QUALITY PREDICTION IN PRE-POST HARVESTING WITH IMPLEMENTATION OF FUSION DEEP LEARNING [link]Website   link   bibtex  
A Novel Classification Approach for Grape Leaf Disease Detection Based on Different Attention Deep Learning Techniques. Praveen, S., P.; Nakka, R.; Chokka, A.; Thatha, V., N.; Vellela, S., S.; and Sirisha, U. IJACSA) International Journal of Advanced Computer Science and Applications, 14(6): 2023. .
A Novel Classification Approach for Grape Leaf Disease Detection Based on Different Attention Deep Learning Techniques [pdf]Paper   A Novel Classification Approach for Grape Leaf Disease Detection Based on Different Attention Deep Learning Techniques [link]Website   link   bibtex   abstract  
Pr ep rin t n pe er r ev Pr ep. . .
Pr ep rin t n pe er r ev Pr ep [pdf]Paper   link   bibtex  
Real-time Fruit Detection Using Deep Neural Networks. Keresztes, B.; and Abdelghafour, F. . .
Real-time Fruit Detection Using Deep Neural Networks [pdf]Paper   Real-time Fruit Detection Using Deep Neural Networks [link]Website   link   bibtex  
Plant Disease Detection Using Multispectral Imaging Plant Disease Detection Using Multispectral Imaging ⋆. De Silva, M.; and Brown, D., L. Technical Report .
Plant Disease Detection Using Multispectral Imaging Plant Disease Detection Using Multispectral Imaging ⋆ [pdf]Paper   Plant Disease Detection Using Multispectral Imaging Plant Disease Detection Using Multispectral Imaging ⋆ [link]Website   link   bibtex   abstract  
Knowledge Distillation for Multi-task Learning. Li, W.; and Bilen, H. . .
Knowledge Distillation for Multi-task Learning [pdf]Paper   link   bibtex   abstract  
Enhanced Reader. . .
Enhanced Reader [pdf]Paper   link   bibtex  
Ellipse R-CNN: Learning to Infer Elliptical Object from Clustering and Occlusion. Dong, W.; Member, S.; Roy, P.; Peng, C.; Isler, V.; and Member, S. . .
Ellipse R-CNN: Learning to Infer Elliptical Object from Clustering and Occlusion [pdf]Paper   link   bibtex   abstract  
Ellipse Regression with Predicted Uncertainties for Accurate Multi-View 3D Object Estimation. Dong, W.; and Isler, V. . .
Ellipse Regression with Predicted Uncertainties for Accurate Multi-View 3D Object Estimation [pdf]Paper   link   bibtex   abstract  
ImageNet Classification with Deep Convolutional Neural Networks. Krizhevsky, A.; Sutskever, I.; and Hinton, G., E. Technical Report .
ImageNet Classification with Deep Convolutional Neural Networks [link]Website   link   bibtex   abstract  
Gaussian Bounding Boxes and Probabilistic Intersection-over-Union for Object Detection. Llerena, J., M.; Felipe, L.; Lucas, Z.; Kirsten, N.; and Jung, C. . .
Gaussian Bounding Boxes and Probabilistic Intersection-over-Union for Object Detection [pdf]Paper   link   bibtex   abstract  
ELLIPSDF: Joint Object Pose and Shape Optimization with a Bi-level Ellipsoid and Signed Distance Function Description. Shan, M.; Feng, Q.; Jau, Y.; and Atanasov, N. . .
ELLIPSDF: Joint Object Pose and Shape Optimization with a Bi-level Ellipsoid and Signed Distance Function Description [pdf]Paper   link   bibtex   abstract  
Gaussian Bounding Boxes and Probabilistic Intersection-over-Union for Object Detection. Llerena, J., M.; Felipe, L.; Lucas, Z.; Kirsten, N.; and Jung, C. . .
link   bibtex   abstract  
3D Bounding Box Estimation Using Deep Learning and Geometry. Mousavian, A.; Anguelov, D.; Flynn, J.; and Košecká, J. . .
3D Bounding Box Estimation Using Deep Learning and Geometry [pdf]Paper   link   bibtex   abstract  
ZebraPose: Coarse to Fine Surface Encoding for 6DoF Object Pose Estimation. Su, Y.; Saleh, M.; Fetzer, T.; Rambach, J.; Navab, N.; Busam, B.; Stricker, D.; and Tombari, F. . .
ZebraPose: Coarse to Fine Surface Encoding for 6DoF Object Pose Estimation [pdf]Paper   ZebraPose: Coarse to Fine Surface Encoding for 6DoF Object Pose Estimation [link]Website   link   bibtex   abstract  
Weakly Supervised Monocular 3D Object Detection using Multi-View Projection and Direction Consistency. Tao, R.; Han, W.; Qiu, Z.; Xu, C.; and Shen, J. . .
Weakly Supervised Monocular 3D Object Detection using Multi-View Projection and Direction Consistency [pdf]Paper   Weakly Supervised Monocular 3D Object Detection using Multi-View Projection and Direction Consistency [link]Website   link   bibtex   abstract  
Rethinking Boundary Discontinuity Problem for Oriented Object Detection. Xu, H.; Liu, X.; Xu, H.; Ma, Y.; Zhu, Z.; Yan, C.; and Dai, F. . .
Rethinking Boundary Discontinuity Problem for Oriented Object Detection [pdf]Paper   Rethinking Boundary Discontinuity Problem for Oriented Object Detection [link]Website   link   bibtex   abstract  
melville-et-al-1999-a-comparison-of-two-techniques-for-estimating-tree-canopy-volume. . .
melville-et-al-1999-a-comparison-of-two-techniques-for-estimating-tree-canopy-volume [pdf]Paper   link   bibtex  
Gaze360: Physically Unconstrained Gaze Estimation in the Wild. Kellnhofer, P.; Recasens, A.; Stent, S.; Matusik, W.; and Torralba, A. . .
Gaze360: Physically Unconstrained Gaze Estimation in the Wild [pdf]Paper   Gaze360: Physically Unconstrained Gaze Estimation in the Wild [link]Website   link   bibtex   abstract  
GS3D: An Efficient 3D Object Detection Framework for Autonomous Driving. Li, B.; Ouyang, W.; Sheng, L.; Zeng, X.; and Wang, X. Technical Report .
GS3D: An Efficient 3D Object Detection Framework for Autonomous Driving [pdf]Paper   GS3D: An Efficient 3D Object Detection Framework for Autonomous Driving [link]Website   link   bibtex   abstract  
Deep MANTA: A Coarse-to-fine Many-Task Network for joint 2D and 3D vehicle analysis from monocular image. Chabot, F.; Chaouch, M.; Rabarisoa, J.; Teulì Ere, C.; and Chateau, T. Technical Report .
Deep MANTA: A Coarse-to-fine Many-Task Network for joint 2D and 3D vehicle analysis from monocular image [pdf]Paper   link   bibtex   abstract  
3D Object Proposals for Accurate Object Class Detection. Chen, X.; Kundu, K.; Zhu, Y.; Berneshawi, A.; Ma, H.; Fidler, S.; and Urtasun, R. Technical Report .
3D Object Proposals for Accurate Object Class Detection [pdf]Paper   3D Object Proposals for Accurate Object Class Detection [link]Website   link   bibtex   abstract  
Learning High-Precision Bounding Box for Rotated Object Detection via Kullback-Leibler Divergence. Yang, X.; Yang, X.; Yang, J.; Ming, Q.; Wang, W.; Tian, Q.; and Yan, J. Technical Report .
Learning High-Precision Bounding Box for Rotated Object Detection via Kullback-Leibler Divergence [pdf]Paper   Learning High-Precision Bounding Box for Rotated Object Detection via Kullback-Leibler Divergence [link]Website   link   bibtex   abstract  
Direct and Indirect Estimation of the Variance-Covariance Matrix of the Parameters of a Fitted Ellipse and a Triaxial Ellipsoid. Panou, G.; Agatza-Balodimou, A.; Panou, G.; and Agatza-Balodimou, A. Technical Report .
Direct and Indirect Estimation of the Variance-Covariance Matrix of the Parameters of a Fitted Ellipse and a Triaxial Ellipsoid [pdf]Paper   Direct and Indirect Estimation of the Variance-Covariance Matrix of the Parameters of a Fitted Ellipse and a Triaxial Ellipsoid [link]Website   link   bibtex   abstract