generated by bibbase.org
  2021 (3)
Mining contour sequences for significant closed patterns. Conklin, D. Journal of Mathematics and Music, 0(0): 1–13. 2021.
Mining contour sequences for significant closed patterns [link]Paper   doi   bibtex   abstract  
Exploring the foundations of tonality: statistical cognitive modeling of modes in the history of Western classical music. Harasim, D.; Moss, F. C.; Ramirez, M.; and Rohrmeier, M. Humanities and Social Sciences Communications, 8(1). 2021.
Exploring the foundations of tonality: statistical cognitive modeling of modes in the history of Western classical music [link]Paper   doi   bibtex   abstract  
End-Accented Sentences: Towards a Theory of Phrase-Rhythmic Progression. Ng, S. Music Theory Spectrum. jan 2021.
End-Accented Sentences: Towards a Theory of Phrase-Rhythmic Progression [link]Paper   doi   bibtex   abstract  
  2020 (24)
Implementação de um sistema composicional semiaberto a partir da similaridade entre conjuntos de classes de notas. Braga, V.; Penchel, J.; Chagas, I.; Furman, R.; Proença, P.; and Pitombeira, L. OPUS, 26(2): 1. oct 2020.
Implementação de um sistema composicional semiaberto a partir da similaridade entre conjuntos de classes de notas [link]Paper   doi   bibtex   abstract  
Digital Approaches to Troubadour Song. Chapman, K. E. Ph.D. Thesis, Indiana University, 2020.
Digital Approaches to Troubadour Song [link]Paper   bibtex   abstract  
Mode classification and natural units in plainchant. Cornelissen, B.; Zuidema, W.; and Burgoyne, J. A. In Proceedings of 21th International Society for Music Information Retrieval Conference, Montréal, Canada, 2020.
Mode classification and natural units in plainchant [link]Paper   bibtex  
Studying Large Plainchant Corpora Using chant21. Cornelissen, B.; Zuidema, W.; and Burgoyne, J. A. In Proceedings of 7th International Conference on Digital Libraries for Musicology, Montréal, Canada, 2020.
Studying Large Plainchant Corpora Using chant21 [link]Paper   bibtex  
Using Note-Level Music Encodings to Facilitate Interdisciplinary Research on Human Engagement with Music. Devaney, J. Transactions of the International Society for Music Information Retrieval, 3(1): 205–217. oct 2020.
Using Note-Level Music Encodings to Facilitate Interdisciplinary Research on Human Engagement with Music [link]Paper   doi   bibtex   abstract  
Voice-Leading Schema Recognition Using Rhythm and Pitch Features. Finkensiep, C.; Déguernel, K.; Neuwirth, M.; and Rohrmeier, M. In Proceedings of 21st International Conference on Music Information Retrieval, pages 520–526, Montréal, Canada, 2020.
bibtex  
Miles Vs. Trane: Computational and Statistical Comparison of the Improvisatory Styles of Miles Davis and John Coltrane. Frieler, K. Jazz Perspectives, 12(1): 123–145. jan 2020.
Miles Vs. Trane: Computational and Statistical Comparison of the Improvisatory Styles of Miles Davis and John Coltrane [link]Paper   doi   bibtex   abstract  
Glossário de termos schenkerianos. Gerling, C. C.; and de Barros, G. S. TeMA, Salvador, BA, 2020.
bibtex  
Reprise Structures in Haydn's Op. 50 Minuets. Inman, S. M. Indiana Theory Review, 36(1-2): 23–55. 2020.
Reprise Structures in Haydn's Op. 50 Minuets [link]Paper   bibtex  
Music genre descriptor for classification based on tonnetz trajectories. Karystinaios, E.; Guichaoua, C.; Andreatta, M.; Bigo, L.; and Bloch, I. Journées d'Informatique Musicale. 2020.
bibtex  
A Survey on Visualizations for Musical Data. Khulusi, R.; Kusnick, J.; Meinecke, C.; Gillmann, C.; Focht, J.; and Jänicke, S. Computer Graphics Forum, 00(00): 1–28. 2020.
doi   bibtex   abstract  
A corpus-based analysis of syncopated patterns in Ragtime. Kirlin, P. B In Proceedings of 21th International Society for Music Information Retrieval Conference, Montréal, Canada, 2020.
bibtex  
Rule mining for local boundary detection in melodies. van Kranenburg, P. In Proceedings of 21st International Conference on Music Information Retrieval, pages 271–278, Montréal, Canada, 2020.
bibtex  
Historiography of the form of symbolic music through a computer-assisted analysis. Kutschke, B. R.; and Bachmann, T. In Proceedings of the 17th Sound and Music Computing Conference, pages 386–393, Torino, 2020.
bibtex  
Grouping compositions based on similarity of music themes. Laskowska, B.; and Kamola, M. PLoS ONE, 15(10). oct 2020.
Grouping compositions based on similarity of music themes [link]Paper   doi   bibtex  
The Tonal Diffusion Model. Lieck, R.; Moss, F. C.; and Rohrmeier, M. , 3: 153–164. 2020.
The Tonal Diffusion Model [link]Paper   bibtex  
Not All Roads Lead to Rome: Pitch Representation and Model Architecture for Automatic Harmonic Analysis. Micchi, G.; Gotham, M.; and Giraud, M. Transactions of the International Society for Music Information Retrieval, 3(1): 42–54. 2020.
doi   bibtex   abstract  
A Systematic Literature Review on Computational Musicology. Mor, B.; Garhwal, S.; and Kumar, A. Archives of Computational Methods in Engineering, 27(3): 923–937. 2020.
A Systematic Literature Review on Computational Musicology [link]Paper   doi   bibtex   abstract  
Harmony and Form in Brazilian Choro: A Corpus-Driven Approach to Musical Style Analysis. Moss, F. C.; de Souza, W. F.; and Rohrmeier, M. Journal of New Music Research, 0(0): 1–22. 2020.
Harmony and Form in Brazilian Choro: A Corpus-Driven Approach to Musical Style Analysis [link]Paper   doi   bibtex  
SymPlot : A Web-Tool to Visualise Symbolic Musical Data. Muñoz-Lago, P.; Llorens, A.; Parada-Cabaleiro, E.; and Torrente, Á. In Proc. 24th International Converence Information Visualisation (IV), pages 515–521, Melbourne, Australia, 2020.
SymPlot : A Web-Tool to Visualise Symbolic Musical Data [pdf]Paper   doi   bibtex  
Mining Characteristic Patterns for Comparative Music Corpus Analysis. Neubarth, K.; and Conklin, D. Applied Sciences, 10(6). 2020.
doi   bibtex  
From Music Ontology towards Ethno-Music-Ontology. Proutskova, P.; Volk, A.; Fazekas, G.; and Heidarian, P. In Proceedings of 21st International Conference on Music Information Retrieval, pages 923–931, Montréal, Canada, 2020.
bibtex  
A quantitative study of pitch registers in string quartets opus 17, by Joseph Haydn. Sampaio, M. d. S.; de Oliveira, V. S.; Travassos, M.; and Castro, C. Musica Theorica, 5(1): 119–177. 2020.
A quantitative study of pitch registers in string quartets opus 17, by Joseph Haydn [link]Paper   bibtex   abstract  
A cluster analysis of harmony in the McGill Billboard dataset. Shaffer, K.; Vasiete, E.; Jacquez, B.; Davis, A.; Escalante, D.; Hicks, C.; McCann, J.; Noufi, C.; and Salminen, P. Empirical Musicology Review, 14(3-4): 146. jul 2020.
A cluster analysis of harmony in the McGill Billboard dataset [link]Paper   doi   bibtex   abstract  
  2019 (25)
Learning Sonata Form Structure on Mozart's String Quartets. Allegraud, P.; Bigo, L.; Feisthauer, L.; Giraud, M.; Groult, R.; Leguy, E.; and Levé, F. Transactions of the International Society for Music Information Retrieval, 2(1): 82–96. 2019.
Learning Sonata Form Structure on Mozart's String Quartets [link]Paper   doi   bibtex  
A Computational Model of Immanent Accent Salience in Tonal Music. Bisesi, E.; Friberg, A.; and Parncutt, R. Frontiers in Psychology, 10(MAR): 1–19. mar 2019.
A Computational Model of Immanent Accent Salience in Tonal Music [link]Paper   doi   bibtex   abstract  
Alternative measures: A musicologist workbench for popular music. Clark, B.; and Arthur, C. In Proceedings of the Sound and Music Computing Conferences, pages 407–414, 2019.
bibtex   abstract  
HUMDRUMR : a new take on an old approach to Computational Musicology. Condit-Schultz, N.; and Arthur, C. In Proceedings of the 20th International Society for Music Information Retrieval Conference, pages 715–722, Delft, Netherlands, 2019.
bibtex  
Learning, Probability and Logic: Toward a Unified Approach for Content-Based Music Information Retrieval. Crayencour, H.; and Cella, C. Frontiers in Digital Humanities, 6(April): 1–25. 2019.
doi   bibtex   abstract  
Modeling and learning structural breaks in sonata forms. Feisthauer, L.; Bigo, L.; and Giraud, M. In Proc. International Society for Music Information Retrieval Conference 2019, Utrecht, Netherlands, 2019.
Modeling and learning structural breaks in sonata forms [link]Paper   bibtex   abstract  
Visualizing music similarity: clustering and mapping 500 classical music composers. Georges, P.; and Nguyen, N. Scientometrics, (0123456789). 2019.
Visualizing music similarity: clustering and mapping 500 classical music composers [link]Paper   doi   bibtex  
Taking Form: a representation standard, conversion code, and example corpus for recording, visualizing, and studying analysis of musical form. Gotham, M.; and Ireland, M. T In Proceedings of the 20th International Society for Music Information Retrieval Conference, Delft, Netherlands, 2019.
bibtex  
Minor-Mode Sonata-Form Dynamics in Haydn's String Quartets. Hall, M. J. Haydn: Online Journal of the Haydn Society of North America, 9(1). 2019.
Minor-Mode Sonata-Form Dynamics in Haydn's String Quartets [pdf]Paper   bibtex   abstract  
Algorithmic Ability to Predict the Musical Future: Datasets and Evaluation. Janssen, B.; Collins, T.; and Ren, I. Y. In Proceedings of the 20th International Society for Music Information Retrieval Conference, pages 208–215, Delft, Netherlands, 2019.
doi   bibtex  
Annotator subjectivity in harmony annotations of popular music. Koops, H. V.; de Haas, W. B.; Burgoyne, J. A.; Bransen, J.; Kent-Muller, A.; and Volk, A. Journal of New Music Research, 0(0): 1–21. 2019.
Annotator subjectivity in harmony annotations of popular music [link]Paper   doi   bibtex  
A Deep Learning Approach to generate Beethoven's 10th Symphony. Lago, P. M. Ph.D. Thesis, Universidad Complutense de Madrid, 2019.
bibtex  
What Constitutes a Musical Pattern ?. Melkonian, O.; Ren, I. Y.; Swierstra, W.; and Volk, A. In Proceedings of the 7th ACM SIGPLAN International Workshop on Functional Art, Music, Modeling, and Design (FARM '19), Berlin, 2019.
bibtex  
Statistical characteristics of tonal harmony: a corpus study of Beethoven's string quartets. Moss, F. C.; Neuwirth, M.; Harasim, D.; and Rohrmeier, M. PLoS ONE,1–16. 2019.
Statistical characteristics of tonal harmony: a corpus study of Beethoven's string quartets [link]Paper   doi   bibtex  
Transitions of Tonality: A Model-Based Corpus Study. Moss, F. C. Ph.D. Thesis, École Polytehcnique Fédérale de Lausanne, 2019.
bibtex  
Contributing to New Musicological Theories with Computational Methods: The Case of Centonization in Arab-Andalusian Music. Nuttall, T.; García-Casado, M.; Núñez-Tarifa, V.; Repetto, R. C.; and Serra, X. In Proceedings of the 20th International Society for Music Information Retrieval Conference, pages 223–228, Delft, Netherlands, 2019.
doi   bibtex   abstract  
Towards a Graphical User Interface for Quantitative Analysis in Digital Musicology. Ortloff, A.; Güntner, L.; and Schmidt, T. In Proc. Mensch und Computer 2019 - Workshopband, pages 535–538, Hamburg, Germany, 2019. Gesellschaft für Informatik e.V.
Towards a Graphical User Interface for Quantitative Analysis in Digital Musicology [link]Paper   doi   bibtex   abstract  
Evolution of the Informational Complexity of Contemporary Western Music. Parmer, T.; and Ahn, Y. In Proceedings of the 20th International Society for Music Information Retrieval Conference, pages 175–182, Delft, The Netherlands, 2019.
Evolution of the Informational Complexity of Contemporary Western Music [link]Paper   doi   bibtex   abstract  
A convolutional approach to melody line identification in symbolic scores. Simonetta, F.; Cancino-chacón, C.; Widmer, G.; and Ntalampiras, S. Computing Research Repository, abs/1906.1. 2019.
A convolutional approach to melody line identification in symbolic scores [pdf]Paper   bibtex  
Textural design: A Compositional Theory for the Organization of Musical Texture. de Sousa, D. M. Ph.D. Thesis, Universidade Federal do Rio de Janeiro, 2019.
bibtex  
Machine learning research that matters for music creation: A case study. Sturm, B. L.; Ben-Tal, O.; Monaghan, Ú.; Collins, N.; Herremans, D.; Chew, E.; Hadjeres, G.; Deruty, E.; and Pachet, F. Journal of New Music Research, 48(1): 36–55. jan 2019.
Machine learning research that matters for music creation: A case study [link]Paper   doi   bibtex   abstract  
Second-Position Syncopation in European and American Vocal Music. Temperley, D. Empirical Musicology Review, 14(1-2): 66. nov 2019.
Second-Position Syncopation in European and American Vocal Music [link]Paper   doi   bibtex   abstract  
The RomanText Format: A Flexible and Standard Method for Representing Roman Numerial Analyses. Tymoczko, D.; Gotham, M.; Cuthbert, M.; and Ariza, C. In Proceedings of the 20th International Society for Music Information Retrieval Conference, pages 123–129, Delft, The Netherlands, 2019.
The RomanText Format: A Flexible and Standard Method for Representing Roman Numerial Analyses [link]Paper   doi   bibtex  
Tests of contrasting expressive content between first and second musical themes. Warrenburg, L. A; and Huron, D. Journal of New Music Research, 48(1): 21–35. 2019.
Tests of contrasting expressive content between first and second musical themes [link]Paper   doi   bibtex   abstract  
Distinguishing Chinese Guqin and Western Baroque pieces based on statistical model. Wu, Y.; and Li, S. In Proceedings of Computer Music Multidisciplinary Research 2019, pages 1–12, 2019.
Distinguishing Chinese Guqin and Western Baroque pieces based on statistical model [link]Paper   bibtex  
  2018 (16)
Relevance of musical features for cadence detection. Bigo, L.; Feisthauer, L.; Giraud, M.; and Levé, F. In Proceedings of 19th International Conference on Music Information Retrieval, Paris, 2018.
Relevance of musical features for cadence detection [link]Paper   bibtex   abstract  
An Exploratory Study of Western Orchestration: Patterns through History. Chon, S. H.; Huron, D.; and DeVlieger, D. Empirical Musicology Review, 12(3-4): 116. jun 2018.
An Exploratory Study of Western Orchestration: Patterns through History [link]Paper   doi   bibtex   abstract  
An overview of emerging pattern mining in supervised descriptive rule discovery: taxonomy, empirical study, trends, and prospects. García-Vico, A. M.; Carmona, C. J.; Martín, D.; García-Borroto, M.; and del Jesus, M. J. Wiley Interdisciplinary Reviews: Data Mining and Knowledge Discovery, 8(1): 1–22. 2018.
doi   bibtex   abstract  
Dezrann, a Web Framework to Share Music Analysis. Giraud, M.; Groult, R.; and Leguy, E. In Proceedings of the International Conference on Technologies for Music Notation and Representation, pages 104–110, Montréal, Canada, 2018.
Dezrann, a Web Framework to Share Music Analysis [link]Paper   bibtex   abstract