A dual quaternion linear-quadratic optimal controller for trajectory tracking.
Marinho, M. M.; Figueredo, L. F. C.; and Adorno, B. V.
In
2015 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), volume 2015-Decem, pages 4047–4052, sep 2015. IEEE
Paper
doi
link
bibtex
abstract
12 downloads
@inproceedings{Marinho2015,
abstract = {This work addresses the task-space design prob- lem of a linear-quadratic optimal tracking controller for robotic manipulators using the unit dual quaternion formalism. The efficiency, compactness, and lack of singularity of the representation render the unit dual quaternion a suitable framework for simultaneously describing the attitude and the position of the end-effector. Motivated by the advantages of this kinematic description, we propose a new task-space linear- quadratic optimal tracking controller in order to find an optimal trajectory for the end-effector, providing a tool to balance more conveniently the end-effector error and its task- space velocity. This is possible because the kinematic control problem using the dual quaternion transformation invariant error can be reduced to an affine time-varying system. The proposed optimal tracking controller allows the compensation of trajectory induced disturbances, as well as other modeled additive disturbances and known bias. Simulation results with different design parameters provide a performance overview, in comparison with standard kinematic controllers with and without a feed-forward term, for tracking a desired reference.},
author = {Marinho, M. M. and Figueredo, L. F. C. and Adorno, B. V.},
booktitle = {2015 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS)},
doi = {10.1109/IROS.2015.7353948},
file = {:D$\backslash$:/murilo/Dropbox/artigos/Vers{\~{o}}es Publicadas/(2015) IROS.pdf:pdf},
isbn = {978-1-4799-9994-1},
issn = {21530866},
month = {sep},
pages = {4047--4052},
publisher = {IEEE},
title = {{A dual quaternion linear-quadratic optimal controller for trajectory tracking}},
url = {http://ieeexplore.ieee.org/document/7353948/},
volume = {2015-Decem},
year = {2015}
}
This work addresses the task-space design prob- lem of a linear-quadratic optimal tracking controller for robotic manipulators using the unit dual quaternion formalism. The efficiency, compactness, and lack of singularity of the representation render the unit dual quaternion a suitable framework for simultaneously describing the attitude and the position of the end-effector. Motivated by the advantages of this kinematic description, we propose a new task-space linear- quadratic optimal tracking controller in order to find an optimal trajectory for the end-effector, providing a tool to balance more conveniently the end-effector error and its task- space velocity. This is possible because the kinematic control problem using the dual quaternion transformation invariant error can be reduced to an affine time-varying system. The proposed optimal tracking controller allows the compensation of trajectory induced disturbances, as well as other modeled additive disturbances and known bias. Simulation results with different design parameters provide a performance overview, in comparison with standard kinematic controllers with and without a feed-forward term, for tracking a desired reference.
Whole-Body Modeling and Control of an Unmanned Aerial Manipulator.
Mello, L. S.; Adorno, B. V.; and Raffo, G. V.
In
XII Simpósio Brasileiro de Automação Inteligente (SBAI), pages 969–974, Natal, 2015.
link
bibtex
@InProceedings{Mello2014a,
author = {Mello, Laysa Santos and Adorno, Bruno Vilhena and Raffo, Guilherme Vianna},
title = {{Whole-Body Modeling and Control of an Unmanned Aerial Manipulator}},
booktitle = {XII Simp{\'{o}}sio Brasileiro de Automa{\c{c}}{\~{a}}o Inteligente (SBAI)},
year = {2015},
pages = {969--974},
address = {Natal},
__markedentry = {[nml:6]},
mendeley-groups = {Prestacao de contas/CNPq/MIT 88/2013,My{\_}papers/PQ2017,My{\_}papers/PQ2018,Prestacao de contas/PPP-Fapemig},
}
Consenso utilizando a álgebra de Quatérnios Duais em sistemas compostos por manipuladores móveis.
Brito, R. P; Savino, H. J; Adorno, B. V; and Pimenta, L. C A
In
XII Simpósio Brasileiro de Automação Inteligente (SBAI), pages 1907 – 1912, 2015.
link
bibtex
abstract
@InProceedings{Brito2015b,
author = {Brito, Rafael P and Savino, Heitor J and Adorno, Bruno V and Pimenta, Luciano C A},
title = {{Consenso utilizando a {\'{a}}lgebra de Quat{\'{e}}rnios Duais em sistemas compostos por manipuladores m{\'{o}}veis}},
booktitle = {XII Simp{\'{o}}sio Brasileiro de Automa{\c{c}}{\~{a}}o Inteligente (SBAI)},
year = {2015},
pages = {1907 -- 1912},
__markedentry = {[nml:6]},
abstract = {Resumo— Este artigo trata do problema de consenso entre m{\'{u}}ltiplos manipuladores m{\'{o}}veis. O sistema {\'{e}} modelado utilizando {\'{a}}lgebra de quat{\'{e}}rnios duais e dois casos s{\~{a}}o considerados: o problema de rendezvous e o de consenso na pose dos efetuadores dos manipuladores m{\'{o}}veis utilizando-se referenciais locais. Para o controle local dos manipuladores m{\'{o}}veis, utiliza-se uma abordagem de controle hier{\'{a}}rquico com duas tarefas executadas em diferentes n{\'{i}}veis de prioridade. A t{\'{e}}cnica proposta {\'{e}} avaliada em simula{\c{c}}{\~{a}}o, mostrando que o sistema fica est{\'{a}}vel quando o consenso {\'{e}} atingido. Palavras-chave— Quat{\'{e}}rnios duais, consenso, rendezvous, manipulador m{\'{o}}vel, controle de corpo completo. Abstract— This paper deals with the consensus problem of multiple mobile manipulators. The system is modeled by using dual quaternion algebra and two problems are considered: the rendezvous problem and the pose consensus of the end-effectors with local frames. In order to perform the local control of the mobile manipulators, a hierarchical approach is used such that two tasks are executed simultaneously with different priorities. The proposed technique is evaluated in simulation, which shows that the system stabilizes when the consensus is achieved.},
mendeley-groups = {Prestacao de contas/CNPq/MIT 88/2013,My{\_}papers/PQ2017,My{\_}papers/PQ2018,Prestacao de contas/PPP-Fapemig},
}
Resumo— Este artigo trata do problema de consenso entre múltiplos manipuladores móveis. O sistema é modelado utilizando álgebra de quatérnios duais e dois casos são considerados: o problema de rendezvous e o de consenso na pose dos efetuadores dos manipuladores móveis utilizando-se referenciais locais. Para o controle local dos manipuladores móveis, utiliza-se uma abordagem de controle hierárquico com duas tarefas executadas em diferentes níveis de prioridade. A técnica proposta é avaliada em simulação, mostrando que o sistema fica estável quando o consenso é atingido. Palavras-chave— Quatérnios duais, consenso, rendezvous, manipulador móvel, controle de corpo completo. Abstract— This paper deals with the consensus problem of multiple mobile manipulators. The system is modeled by using dual quaternion algebra and two problems are considered: the rendezvous problem and the pose consensus of the end-effectors with local frames. In order to perform the local control of the mobile manipulators, a hierarchical approach is used such that two tasks are executed simultaneously with different priorities. The proposed technique is evaluated in simulation, which shows that the system stabilizes when the consensus is achieved.
Balance Control of a Humanoid Robot Based on the Cooperative Dual Task-Space Framework.
Oliveira, A. C.; and Adorno, B. V.
In
XII Simpósio Brasileiro de Automação Inteligente (SBAI), pages 485 – 490, 2015. SBA
Paper
link
bibtex
abstract
@InProceedings{Oliveira2015a,
author = {Oliveira, Ana Christine and Adorno, Bruno Vilhena},
title = {{Balance Control of a Humanoid Robot Based on the Cooperative Dual Task-Space Framework}},
booktitle = {XII Simp{\'{o}}sio Brasileiro de Automa{\c{c}}{\~{a}}o Inteligente (SBAI)},
year = {2015},
pages = {485 -- 490},
publisher = {SBA},
__markedentry = {[nml:6]},
abstract = {— This paper presents a technique for the modeling and balance control of humanoid robots based on dual quaternion algebra and the Cooperative Dual Task-Space Framework. A strategy for controlling the Center of Mass (CoM) position that takes into account the system's stability constraints is presented and validated in a realistic simulation. The results show that the presented control strategy is able to track a desired 3D trajectory for the CoM while ensuring the robot's balance, and may potentially be extended to perform bipedal locomotion. Keywords— Humanoid robots, Center of Mass (CoM), CoM control, Dual quaternion, Cooperative Dual Task-Space (CDTS). Resumo— Este artigo apresenta uma t{\'{e}}cnica de modelagem e controle de equil{\'{i}}brio de rob{\^{o}}s human{\'{o}}ides baseada na {\'{a}}lgebra de quat{\'{e}}rnios duais e no Espa{\c{c}}o de Coopera{\c{c}}{\~{a}}o Dual. Uma estrat{\'{e}}gia para controlar a posi{\c{c}}{\~{a}}o do Centro de Massa (CM), que leva em considera{\c{c}}{\~{a}}o as restri{\c{c}}{\~{o}}es de estabilidade do sistema, {\'{e}} apresentada e validada em um ambiente de simula{\c{c}}{\~{a}}o real{\'{i}}stico. Os resultados obtidos mostram que esta estrat{\'{e}}gia de controle {\'{e}} capaz de realizar o rastreamento de uma trajet{\'{o}}ria 3D desejada para o CM, enquanto garante o equil{\'{i}}brio do rob{\^{o}}, e pode, potencialmente, ser estendida para a locomo{\c{c}}{\~{a}}o de rob{\^{o}}s b{\'{i}}pedes. Palavras-chave— Rob{\^{o}}s human{\'{o}}ides, Centro de Massa, Controle do Centro de Massa, Quat{\'{e}}rnios duais, Espa{\c{c}}o de Coopera{\c{c}}{\~{a}}o Dual.},
keywords = {center of mass,com,com control,cooperative dual,dual quaternion,humanoid robots},
url = {http://swge.inf.br/SBAI2015/anais/139.pdf},
}
— This paper presents a technique for the modeling and balance control of humanoid robots based on dual quaternion algebra and the Cooperative Dual Task-Space Framework. A strategy for controlling the Center of Mass (CoM) position that takes into account the system's stability constraints is presented and validated in a realistic simulation. The results show that the presented control strategy is able to track a desired 3D trajectory for the CoM while ensuring the robot's balance, and may potentially be extended to perform bipedal locomotion. Keywords— Humanoid robots, Center of Mass (CoM), CoM control, Dual quaternion, Cooperative Dual Task-Space (CDTS). Resumo— Este artigo apresenta uma técnica de modelagem e controle de equilíbrio de robôs humanóides baseada na álgebra de quatérnios duais e no Espaço de Cooperação Dual. Uma estratégia para controlar a posição do Centro de Massa (CM), que leva em consideração as restrições de estabilidade do sistema, é apresentada e validada em um ambiente de simulação realístico. Os resultados obtidos mostram que esta estratégia de controle é capaz de realizar o rastreamento de uma trajetória 3D desejada para o CM, enquanto garante o equilíbrio do robô, e pode, potencialmente, ser estendida para a locomoção de robôs bípedes. Palavras-chave— Robôs humanóides, Centro de Massa, Controle do Centro de Massa, Quatérnios duais, Espaço de Cooperação Dual.
A New Algebraic Approach for the Description of Robotic Manipulation Tasks.
Lana, E. P.; Adorno, B. V.; and Maia, C. A.
In
2015 IEEE International Conference on Robotics and Automation (ICRA), pages 3083–3088, Seattle, Washington, 2015. IEEE
link
bibtex
@InProceedings{Lana2015,
author = {Lana, Ernesto Pablo and Adorno, Bruno Vilhena and Maia, Carlos Andrey},
title = {{A New Algebraic Approach for the Description of Robotic Manipulation Tasks}},
booktitle = {2015 IEEE International Conference on Robotics and Automation (ICRA)},
year = {2015},
pages = {3083--3088},
address = {Seattle, Washington},
publisher = {IEEE},
__markedentry = {[nml:6]},
isbn = {9781479969227},
keywords = {Manipulation Planning,Planning,Scheduling and Coordination,Service Robots},
}
Kinematic modeling and control for human-robot cooperation considering different interaction roles.
Adorno, B. V.; Bó, a. P. L.; and Fraisse, P.
Robotica, 33(2): 314–331. feb 2015.
Paper
doi
link
bibtex
abstract
@Article{Adorno2015,
author = {Adorno, Bruno Vilhena and B{\'{o}}, a. P. L. and Fraisse, P.},
title = {{Kinematic modeling and control for human-robot cooperation considering different interaction roles}},
journal = {Robotica},
year = {2015},
volume = {33},
number = {2},
pages = {314--331},
month = {feb},
issn = {0263-5747},
__markedentry = {[nml:6]},
abstract = {This paper presents a novel approach for the description of physical human-robot interaction (pHRI) tasks that involve two-arm coordination, and where tasks are described by the relative pose between the human hand and the robot hand. We develop a unified kinematic model that takes into account the human-robot system from a holistic point of view, and we also propose a kinematic control strategy for pHRI that comprises different levels of shared autonomy. Since the kinematic model takes into account the complete human-robot interaction system and the kinematic control law is closed loop at the interaction level, the kinematic constraints of the task are enforced during its execution. Experiments are performed in order to validate the proposed approach, including a particular case where the robot controls the human arm by means of functional electrical stimulation (FES), which may potentially provide useful solutions for the interaction between assistant robots and impaired individuals (e.g., quadriplegics and hemiplegics).},
doi = {10.1017/S0263574714000356},
url = {http://www.journals.cambridge.org/abstract{\_}S0263574714000356},
}
This paper presents a novel approach for the description of physical human-robot interaction (pHRI) tasks that involve two-arm coordination, and where tasks are described by the relative pose between the human hand and the robot hand. We develop a unified kinematic model that takes into account the human-robot system from a holistic point of view, and we also propose a kinematic control strategy for pHRI that comprises different levels of shared autonomy. Since the kinematic model takes into account the complete human-robot interaction system and the kinematic control law is closed loop at the interaction level, the kinematic constraints of the task are enforced during its execution. Experiments are performed in order to validate the proposed approach, including a particular case where the robot controls the human arm by means of functional electrical stimulation (FES), which may potentially provide useful solutions for the interaction between assistant robots and impaired individuals (e.g., quadriplegics and hemiplegics).